Please wait a minute...
 首页  金属所系列期刊 期刊订阅 广告合作 联系我们 English
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
Aging and disease  2018, Vol. 9 Issue (3): 391-400    DOI: 10.14336/AD.2017.0726
  本期目录 | 过刊浏览 | 高级检索 |
Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging
Sun Wenzhi1, Tan Jiewen2, Li Zhuo3,*, Lu Shibao1,*, Li Man4, Kong Chao1, Hai Yong5, Gao Chunjin3, Liu Xuehua3
1Department of Orthopaedics, Beijing Xuanwu Hospital, Capital Medical University, Beijing 100020, China.
2Department of Hyperbaric Oxygen, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510520, China.
3Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
4Departments of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
5Department of Orthopaedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
全文: PDF(987 KB)   HTML
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

This study aimed to evaluate the therapeutic effect of hyperbaric oxygen (HBO) on acute spinal cord injury (SCI) by measuring the in vivo diffusion tensor imaging (DTI) parameters apparent diffusion coefficient (ADC) and fractional anisotropy (FA) and observing diffusion tensor tractography (DTT) of fiber bundle morphology. The rats were randomly divided into sham-operated (SH), SCI, and SCI and hyperbaric oxygen treatment (SCI + HBO) groups (n = 6 in each group). The Basso-Bettie-Bresnahan (BBB) score was used to evaluate motor function recovery, and DTI was performed on days 3, 7, 14, and 21 after surgery. BBB scores and FA values decreased significantly after SCI, while the two values significantly improved in the SCI + HBO group compared with the SCI group on days 7, 14, and 21. ADC increased significantly on days 14 and 21 postoperatively in the SCI group compared with the SH group but did not significantly differ between the SCI and SCI + HBO groups at any time point. BBB scores had the same variation trend with ADC values and FA values in all three groups. In the SH group, DTT showed a well-organized spinal cord, but the spinal cord showed interruptions at sites of injury after SCI. In conclusion, HBO promotes the recovery of neuronal function after SCI. Parameters of DTI, especially FA, can quantitatively evaluate the efficacy of HBO treatment in SCI, while DTT enables the visualization of the fiber tracking of spinal cord tracts.

Key wordsdiffusion tensor imaging    hyperbaric oxygen    spinal cord injury
收稿日期: 2017-03-22      出版日期: 2018-06-05
引用本文:   
. [J]. Aging and disease, 2018, 9(3): 391-400.
Sun Wenzhi, Tan Jiewen, Li Zhuo, Lu Shibao, Li Man, Kong Chao, Hai Yong, Gao Chunjin, Liu Xuehua. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging. Aging and disease, 2018, 9(3): 391-400.
链接本文:  
http://www.aginganddisease.org/CN/10.14336/AD.2017.0726      或      http://www.aginganddisease.org/CN/Y2018/V9/I3/391
Figure 1.  
Figure 2.  
Figure 3.  
FASHSCISCI + HBO
3 days0.60 ± 0.050.35 ± 0.080.32 ± 0.05
7 days0.70 ± 0.080.41 ± 0.090.54 ± 0.07
14 days0.70 ± 0.090.34 ± 0.060.47 ± 0.08
21 days0.71 ± 0.040.34 ± 0.040.46 ± 0.05
Table 1  
Figure 4.  
Figure 5.  
ADC (10-9 m2/s)SHSCISCI + HBO
3 days1.08 ± 0.080.97 ± 0.250.95 ± 0.11
7 days1.13 ± 0.131.39 ± 0.231.39 ± 0.52
14 days1.28 ± 0.161.58 ± 0.241.63 ± 0.23
21 days1.25 ± 0.141.63 ± 0.151.63 ± 0.22
Table 2  
Figure 6.  
Figure 7.  
[1] Ducreux D, Fillard P, Facon D, Ozanne A, Lepeintre JF, Renoux J, et al. (2007). Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am, 17: 137-47
[2] Nakamura M, Fujiyoshi K, Tsuji O, Konomi T, Hosogane N, Watanabe K, et al. (2012). Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J Neurosurg Spine, 17: 147-52
[3] Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y (2000). Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine (Phila Pa 1976), 25: 677-82
[4] DeBoy CA, Zhang J, Dike S, Shats I, Jones M, Reich DS, et al. (2007). High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain, 130: 2199-210
[5] Ellingson BM, Schmit BD, Kurpad SN (2010). Lesion growth and degeneration patterns measured using diffusion tensor 9.4-T magnetic resonance imaging in rat spinal cord injury. J Neurosurg Spine, 13: 181-92
[6] Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ, et al. (2011). Diffusion tensor imaging in the cervical spinal cord. Eur Spine J, 20: 422-8
[7] Vedantam A, Eckardt G, Wang MC, Schmit BD, Kurpad SN (2015). Clinical correlates of high cervical fractional anisotropy in acute cervical spinal cord injury. World Neurosurg, 83: 824-8
[8] Yoo WK, Kim TH, Hai DM, Sundaram S, Yang YM, Park MS, et al. (2013). Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy. Spine J, 13: 867-76
[9] Shanmuganathan K, Gullapalli RP, Zhuo J, Mirvis SE (2008). Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol, 29: 655-9
[10] Rajasekaran S, Kanna RM, Shetty AP, Ilayaraja V (2012). Efficacy of diffusion tensor anisotropy indices and tractography in assessing the extent of severity of spinal cord injury: an in vitro analytical study in calf spinal cords. Spine J, 12: 1147-53
[11] Li XH, Li JB, He XJ, Wang F, Huang SL, Bai ZL (2015). Timing of diffusion tensor imaging in the acute spinal cord injury of rats. Sci Rep, 5: 12639
[12] Basso DM, Beattie MS, Bresnahan JC (1996). Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol, 139: 244-56
[13] Liu X, Zhou Y, Wang Z, Yang J, Gao C, Su Q (2014). Effect of VEGF and CX43 on the promotion of neurological recovery by hyperbaric oxygen treatment in spinal cord-injured rats. Spine J, 14: 119-27
[14] Basso DM, Beattie MS, Bresnahan JC (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 12: 1-21
[15] Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014). Clinical applications of diffusion tensor imaging. World Neurosurg, 82: 96-109
[16] Basser PJ, Mattiello J, LeBihan D (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 103: 247-54
[17] Pierpaoli C, Basser PJ (1996). Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 36: 893-906
[18] Mondragon-Lozano R, Diaz-Ruiz A, Rios C, Olayo Gonzalez R, Favila R, Salgado-Ceballos H, et al. (2013). Feasibility of in vivo quantitative magnetic resonance imaging with diffusion weighted imaging, T2-weighted relaxometry, and diffusion tensor imaging in a clinical 3 tesla magnetic resonance scanner for the acute traumatic spinal cord injury of rats: technical note. Spine (Phila Pa 1976), 38: E1242-9
[19] Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K (2003). Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology, 45: 90-4
[20] Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17: 1429-36
[21] Yang J, Wang G, Gao C, Shao G, Kang N (2013). Effects of hyperbaric oxygen on MMP-2 and MMP-9 expression and spinal cord edema after spinal cord injury. Life Sci, 93: 1033-8
[22] Wang YC, Zhang S, Du TY, Wang B, Sun XQ (2010). Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by stimulating autophagy in neurocyte. Brain Res, 1323: 149-51
[23] Yang J, Liu X, Zhou Y, Wang G, Gao C, Su Q (2013). Hyperbaric oxygen alleviates experimental (spinal cord) injury by downregulating HMGB1/NF-kappaB expression. Spine (Phila Pa 1976), 38: E1641-8
[24] Mohamed FB, Hunter LN, Barakat N, Liu CS, Sair H, Samdani AF, et al. (2011). Diffusion tensor imaging of the pediatric spinal cord at 1.5T: preliminary results. AJNR Am J Neuroradiol, 32: 339-45
[25] Kim JH, Song SK, Burke DA, Magnuson DS (2012). Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat. Exp Neurol, 235: 188-96
[26] Sundberg LM, Herrera JJ, Narayana PA (2010). In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury. J Neurotrauma, 27: 1753-67
[27] Mori S, Zhang J (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51: 527-39
[28] Takano M, Komaki Y, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, et al. (2013). In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography. Spine (Phila Pa 1976), 38: E66-72
[29] Xiangshui M, Xiangjun C, Xiaoming Z, Qingshi Z, Yi C, Chuanqiang Q, et al. (2010). 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. Clin Radiol, 65: 465-73
[30] Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L, et al. (2011). The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI. Neuroradiology, 53: 609-16
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared