Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited

ISSN 2152-5250
Since 2010
2019 impact factor: 5.402
  About the Journal
    » About Journal
    » Editorial Board
    » Indexed in
  Authors
    » Online Submission
    » Guidelines for Authors
    » Download Templates
    » Copyright Agreement
  Reviewers
    » Guidelines for Reviewers
    » Online Peer Review
    » Online Editor Work
  Editorial Office
30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
For Selected: Toggle Thumbnails
Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia
Zikuan Leng, Rongjia Zhu, Wei Hou, Yingmei Feng, Yanlei Yang, Qin Han, Guangliang Shan, Fanyan Meng, Dongshu Du, Shihua Wang, Junfen Fan, Wenjing Wang, Luchan Deng, Hongbo Shi, Hongjun Li, Zhongjie Hu, Fengchun Zhang, Jinming Gao, Hongjian Liu, Xiaoxia Li, Yangyang Zhao, Kan Yin, Xijing He, Zhengchao Gao, Yibin Wang, Bo Yang, Ronghua Jin, Ilia Stambler, Lee Wei Lim, Huanxing Su, Alexey Moskalev, Antonio Cano, Sasanka Chakrabarti, Kyung-Jin Min, Georgina Ellison-Hughes, Calogero Caruso, Kunlin Jin, Robert Chunhua Zhao
Aging and disease    2020, 11 (2): 216-228.   DOI: 10.14336/AD.2020.0228
Accepted: 29 February 2020

Abstract41486)   HTML9)    PDF(pc) (1473KB)(17985)       Save

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia
Ashok K Shetty
Aging and disease    2020, 11 (2): 462-464.   DOI: 10.14336/AD.2020.0301
Accepted: 01 March 2020

Abstract3750)   HTML1)    PDF(pc) (212KB)(3428)       Save

A new study published by the journal Aging & Disease reported that intravenous administration of clinical-grade human mesenchymal stem cells (MSCs) into patients with coronavirus disease 2019 (COVID-19) resulted in improved functional outcomes (Leng et al., Aging Dis, 11:216-228, 2020). This study demonstrated that intravenous infusion of MSCs is a safe and effective approach for treating patients with COVID-19 pneumonia, including elderly patients displaying severe pneumonia. COVID-19 is a severe acute respiratory illness caused by a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, treating COVID-19 patients, particularly those afflicted with severe pneumonia, is challenging as no specific drugs or vaccines against SARS-CoV-2 are available. Therefore, MSC therapy inhibiting the overactivation of the immune system and promoting endogenous repair by improving the lung microenvironment after the SARS-CoV-2 infection found in this study is striking. Additional studies in a larger cohort of patients are needed to validate this therapeutic intervention further, however.

Reference | Related Articles | Metrics
A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly
Wongrakpanich Supakanya, Wongrakpanich Amaraporn, Melhado Katie, Rangaswami Janani
Aging and disease    2018, 9 (1): 143-150.   DOI: 10.14336/AD.2017.0306
Abstract3754)   HTML21)    PDF(pc) (874KB)(2777)       Save

NSAIDs, non-steroidal anti-inflammatory drugs, are one of the most commonly prescribed pain medications. It is a highly effective drug class for pain and inflammation; however, NSAIDs are known for multiple adverse effects, including gastrointestinal bleeding, cardiovascular side effects, and NSAID induced nephrotoxicity. As our society ages, it is crucial to have comprehensive knowledge of this class of medication in the elderly population. Therefore, we reviewed the pharmacodynamics and pharmacokinetics, current guidelines for NSAIDs use, adverse effect profile, and drug interaction of NSAIDs and commonly used medications in the elderly.

Table and Figures | Reference | Related Articles | Metrics
Emerging Anti-Aging Strategies - Scientific Basis and Efficacy
Ashok K. Shetty, Maheedhar Kodali, Raghavendra Upadhya, Leelavathi N. Madhu
Aging and disease    2018, 9 (6): 1165-1184.   DOI: 10.14336/AD.2018.1026
Accepted: 21 November 2018

Abstract1724)   HTML1)    PDF(pc) (481KB)(2745)       Save

The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer’s disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer’s disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
REST rs3796529 Genotype and Rate of Functional Deterioration in Alzheimer’s Disease
Poyin Huang,Cheng-Sheng Chen,Yuan-Han Yang,Mei-Chuan Chou,Ya-Hsuan Chang,Chiou-Lian Lai,Hsuan-Yu Chen,Ching-Kuan Liu
Aging and disease    2019, 10 (1): 94-101.   DOI: 10.14336/AD.2018.0116
Abstract431)   HTML1)    PDF(pc) (537KB)(2520)       Save

Recently, REST (RE1-silencing transcription factor) gene has been shown to be lost in Alzheimer’s disease (AD), and a missense minor REST allele rs3796529-T has been shown to reduce the rate of hippocampal volume loss. However, whether the REST rs3796529 genotype is associated with the rate of functional deterioration in AD is unknown. A total of 584 blood samples from Taiwanese patients with AD were collected from January 2002 to December 2013. The diagnosis of AD was based on the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria. The allele frequency of rs3796529-T was compared between the AD cohort and 993 individuals from the general population in Taiwan. Kaplan-Meier analysis, the log rank test and a multivariate Cox model were then used to evaluate the association between rs3796529-T and functional deterioration in the AD cohort. The allele frequency of rs3796529-T was significantly lower in the AD cohort compared to the general population cohort (36.82% vs. 40.73%, p=0.029). Kaplan-Meier analysis and the log rank test showed that the AD patients carrying the rs3796529 T/T genotype had a longer progression-free survival than those with the C/C genotype (p=0.012). In multivariate analysis, the rs3796529 T/T genotype (adjusted HR=0.593, 95% CI: 0.401-0.877, p=0.009) was an independent protective factor for functional deterioration. The rs3796529 T/T genotype was associated with slower functional deterioration in patients with AD. This finding may lead to a to better understanding of the molecular pathways involved, and prompt further development of novel biomarkers to monitor AD.

Table and Figures | Reference | Related Articles | Metrics
MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF-β/SMAD2 Signaling Pathway
Hongling Li, Junfen Fan, Linyuan Fan, Tangping Li, Yanlei Yang, Haoying Xu, Luchan Deng, Jing Li, Tao Li, Xisheng Weng, Shihua Wang, Robert Chunhua Zhao
Aging and disease    2018, 9 (6): 1058-1073.   DOI: 10.14336/AD.2018.0214
Abstract709)   HTML5)    PDF(pc) (1848KB)(2425)       Save

As the population ages, the medical and socioeconomic impact of age-related bone disorders will further increase. An imbalance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) can lead to various bone and metabolic diseases such as osteoporosis. Thus, understanding the molecular mechanisms underlying MSC osteogenic and adipogenic differentiation is important for the discovery of novel therapeutic paradigms for these diseases. miR-10b has been widely reported in tumorigenesis, cancer invasion and metastasis. However, the effects and potential mechanisms of miR-10b in the regulation of MSC adipogenic and osteogenic differentiation have not been explored. In this study, we found that the expression of miR-10b was positively correlated with bone formation marker genes ALP, RUNX2 and OPN, and negatively correlated with adipogenic markers CEBPα, PPARγ and AP2 in clinical osteoporosis samples. Overexpression of miR-10b enhanced osteogenic differentiation and inhibited adipogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro, whereas downregulation of miR-10b reversed these effects. Furthermore, miR-10b promoted ectopic bone formation in vivo. Target prediction and dual luciferase reporter assays identified SMAD2 as a potential target of miR-10b. Silencing endogenous SMAD2 expression in hADSCs enhanced osteogenesis but repressed adipogenesis. Pathway analysis indicated that miR-10b promotes osteogenic differentiation and bone formation via the TGF-β signaling pathway, while suppressing adipogenic differentiation may be primarily mediated by other pathways. Taken together, our findings imply that miR-10b acts as a critical regulator for balancing osteogenic and adipogenic differentiation of hADSCs by repressing SMAD2 and partly through the TGF-β pathway. Our study suggests that miR-10b is a novel target for controlling bone and metabolic diseases.

Table and Figures | Reference | Related Articles | Metrics
Novel Insights on Systemic and Brain Aging, Stroke, Amyotrophic Lateral Sclerosis, and Alzheimer’s Disease
Ashok K. Shetty, Raghavendra Upadhya, Leelavathi N. Madhu, Maheedhar Kodali
Aging and disease    2019, 10 (2): 470-482.   DOI: 10.14336/AD.2019.0330
Abstract259)   HTML1)    PDF(pc) (445KB)(2390)       Save

The mechanisms that underlie the pathophysiology of aging, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and stroke are not fully understood and have been the focus of intense and constant investigation worldwide. Studies that provide insights on aging and age-related disease mechanisms are critical for advancing novel therapies that promote successful aging and prevent or cure multiple age-related diseases. The April 2019 issue of the journal, "Aging & Disease" published a series of articles that confer fresh insights on numerous age-related conditions and diseases. The age-related topics include the detrimental effect of overweight on energy metabolism and muscle integrity, senoinflammation as the cause of neuroinflammation, the link between systemic C-reactive protein and brain white matter loss, the role of miR-34a in promoting healthy heart and brain, the potential of sirtuin 3 for reducing cardiac and pulmonary fibrosis, and the promise of statin therapy for ameliorating asymptomatic intracranial atherosclerotic stenosis. Additional aging-related articles highlighted the involvement of miR-181b-5p and high mobility group box-1 in hypertension, Yes-associated protein in cataract formation, multiple miRs and long noncoding RNAs in coronary artery disease development, the role of higher meat consumption on sleep problems, and the link between glycated hemoglobin and depression. The topics related to ALS suggested that individuals with higher education and living in a rural environment have a higher risk for developing ALS, and collagen XIX alpha 1 is a prognostic biomarker of ALS. The topics discussed on AD implied that extracellular amyloid β42 is likely the cause of intraneuronal neurofibrillary tangle accumulation in familial AD and traditional oriental concoctions may be useful for slowing down the progression of AD. The article on stroke suggested that inhibition of the complement system is likely helpful in promoting brain repair after ischemic stroke. The significance of the above findings for understanding the pathogenesis in aging, ALS, AD, and stroke, slowing down the progression of aging, ALS and AD, and promoting brain repair after stroke are discussed.

Reference | Related Articles | Metrics
The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases
Wenjun Tu, Hong Wang, Song Li, Qiang Liu, Hong Sha
Aging and disease    2019, 10 (3): 637-651.   DOI: 10.14336/AD.2018.0513
Abstract1099)   HTML1)    PDF(pc) (478KB)(2226)       Save

Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.

Table and Figures | Reference | Related Articles | Metrics
Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic
Liu Ping, Zhao Haiping, Luo Yumin
Aging and disease    2017, 8 (6): 868-886.   DOI: 10.14336/AD.2017.0816
Abstract1924)   HTML3)    PDF(pc) (1198KB)(2208)       Save

Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.

Reference | Related Articles | Metrics
Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer’s Disease Involves Nrf2/HO-1 Pathway
Morroni Fabiana, Sita Giulia, Graziosi Agnese, Turrini Eleonora, Fimognari Carmela, Tarozzi Andrea, Hrelia Patrizia
Aging and disease    2018, 9 (4): 605-622.   DOI: 10.14336/AD.2017.0903
Abstract1037)   HTML9)    PDF(pc) (1035KB)(2130)       Save

Alzheimer’s disease (AD) is a progressive pathology, where dementia symptoms gradually worsen over a number of years. The hallmarks of AD, such as amyloid β-peptide (Aβ) in senile plaque and neurofibrillary tangles, are strongly intertwined with oxidative stress, which is considered one of the common effectors of the cascade of degenerative events. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) is the "master regulator" of the antioxidant response and it is known as an indicator and regulator of oxidative stress. The present study aimed to determine the potential neuroprotective activity of caffeic acid phenethyl ester (CAPE), a polyphenolic compound abundant in honeybee, against the neurotoxicity of Aβ1-42 oligomers (AβO) in mice. An intracerebroventricular (i.c.v.) injection of AβO into the mouse brain triggered increased reactive oxygen species levels, neurodegeneration, neuroinflammation, and memory impairment. In contrast, the intraperitoneal administration of CAPE (10 mg/kg) after i.c.v. AβO-injection counteracted oxidative stress accompanied by an induction of Nrf2 and heme oxygenase-1 via the modulation of glycogen synthase kinase 3β in the hippocampus of mice. Additionally, CAPE treatment decreased AβO-induced neuronal apoptosis and neuroinflammation, and improved learning and memory, protecting mice against the decline in spatial cognition. Our findings demonstrate that CAPE could potentially be considered as a promising neuroprotective agent against progressive neurodegenerative diseases such as AD.

Table and Figures | Reference | Related Articles | Metrics
The Potential Markers of Circulating microRNAs and long non-coding RNAs in Alzheimer's Disease
Yanfang Zhao, Yuan Zhang, Lei Zhang, Yanhan Dong, Hongfang Ji, Liang Shen
Aging and disease    2019, 10 (6): 1293-1301.   DOI: 10.14336/AD.2018.1105
Accepted: 13 November 2018

Abstract316)   HTML0)    PDF(pc) (628KB)(2073)       Save

Alzheimer’s disease (AD) is a neurodegenerative disorder and one of the leading causes of disability and mortality in the late life with no curative treatment currently. Thus, it is urgently to establish sensitive and non-invasive biomarkers for AD diagnosis, particularly in the early stage. Recently, emerging number of microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) are considered as effective biomarkers in various diseases as they possess characteristics of stable, resistant to RNAase digestion and many extreme conditions in circulatory fluid. This review highlights recent advances in the identification of the aberrantly expressed miRNAs and lncRNAs in circulatory network for detection of AD. We summarized the abnormal expressed miRNAs in blood and cerebrospinal fluid (CSF), and detailed discussed the functions and molecular mechanism of serum or plasma miRNAs-miR-195, miR-155, miR-34a, miR-9, miR-206, miR-125b and miR-29 in the regulation of AD progression. In addition, we also elaborated the role of circulating lncRNA major including beta-site APP cleaving enzyme 1 (BACE1) and its antisense lncRNA BACE1-AS in AD pathological advancement. In brief, confirming the aberrantly expressed circulating miRNAs and lncRNAs will provide an effective testing tools for treatment of AD in the future.

Table and Figures | Reference | Related Articles | Metrics
COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile
Sadanand Fulzele, Bikash Sahay, Ibrahim Yusufu, Tae Jin Lee, Ashok Sharma, Ravindra Kolhe, Carlos M Isales
Aging and disease    2020, 11 (3): 509-522.   DOI: 10.14336/AD.2020.0428
Accepted: 29 April 2020

Abstract4352)   HTML5)    PDF(pc) (793KB)(2028)       Save

The World health organization (WHO) declared Coronavirus disease 2019 (COVID-19) a global pandemic and a severe public health crisis. Drastic measures to combat COVID-19 are warranted due to its contagiousness and higher mortality rates, specifically in the aged patient population. At the current stage, due to the lack of effective treatment strategies for COVID-19 innovative approaches need to be considered. It is well known that host cellular miRNAs can directly target both viral 3'UTR and coding region of the viral genome to induce the antiviral effect. In this study, we did in silico analysis of human miRNAs targeting SARS (4 isolates) and COVID-19 (29 recent isolates from different regions) genome and correlated our findings with aging and underlying conditions. We found 848 common miRNAs targeting the SARS genome and 873 common microRNAs targeting the COVID-19 genome. Out of a total of 848 miRNAs from SARS, only 558 commonly present in all COVID-19 isolates. Interestingly, 315 miRNAs are unique for COVID-19 isolates and 290 miRNAs unique to SARS. We also noted that out of 29 COVID-19 isolates, 19 isolates have identical miRNA targets. The COVID-19 isolates, Netherland (EPI_ISL_422601), Australia (EPI_ISL_413214), and Wuhan (EPI_ISL_403931) showed six, four, and four unique miRNAs targets, respectively. Furthermore, GO, and KEGG pathway analysis showed that COVID-19 targeting human miRNAs involved in various age-related signaling and diseases. Recent studies also suggested that some of the human miRNAs targeting COVID-19 decreased with aging and underlying conditions. GO and KEGG identified impaired signaling pathway may be due to low abundance miRNA which might be one of the contributing factors for the increasing severity and mortality in aged individuals and with other underlying conditions. Further, in vitro and in vivo studies are needed to validate some of these targets and identify potential therapeutic targets.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept
Hae Young Chung, Dae Hyun Kim, Eun Kyeong Lee, Ki Wung Chung, Sangwoon Chung, Bonggi Lee, Arnold Y. Seo, Jae Heun Chung, Young Suk Jung, Eunok Im, Jaewon Lee, Nam Deuk Kim, Yeon Ja Choi, Dong Soon Im, Byung Pal Yu
Aging and disease    2019, 10 (2): 367-382.   DOI: 10.14336/AD.2018.0324
Abstract1271)   HTML2)    PDF(pc) (607KB)(2024)       Save

Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term “senoinflammation”, that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.

Table and Figures | Reference | Related Articles | Metrics
Pyroptosis in Liver Disease: New Insights into Disease Mechanisms
Jiali Wu, Su Lin, Bo Wan, Bharat Velani, Yueyong Zhu
Aging and disease    2019, 10 (5): 1094-1108.   DOI: 10.14336/AD.2019.0116
Abstract167)   HTML1)    PDF(pc) (565KB)(1851)       Save

There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of caspase enzymes—caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.

Table and Figures | Reference | Related Articles | Metrics
SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway
Zhang Meng, Deng Yong-Ning, Zhang Jing-Yi, Liu Jie, Li Yan-Bo, Su Hua, Qu Qiu-Min
Aging and disease    2018, 9 (2): 273-286.   DOI: 10.14336/AD.2017.0517
Abstract1397)   HTML5)    PDF(pc) (2888KB)(1806)       Save

SIRT3 is a class III histone deacetylase that modulates energy metabolism, genomic stability and stress resistance. It has been implicated as a potential therapeutic target in a variety of neurodegenerative diseases, including Parkinson’s disease (PD). Our previous study demonstrates that SIRT3 had a neuroprotective effect on a rotenone-induced PD cell model, however, the exact mechanism is unknown. In this study, we investigated the underlying mechanism. We established a SIRT3 stable overexpression cell line using lentivirus infection in SH-SY5Y cells. Then, a PD cell model was established using rotenone. Our data demonstrate that overexpression of SIRT3 increased the level of the autophagy markers LC3 II and Beclin 1. After addition of the autophagy inhibitor 3-MA, the protective effect of SIRT3 diminished: the cell viability decreased, while the apoptosis rate increased; α-synuclein accumulation enhanced; ROS production increased; antioxidants levels, including SOD and GSH, decreased; and MMP collapsed. These results reveal that SIRT3 has neuroprotective effects on a PD cell model by up-regulating autophagy. Furthermore, SIRT3 overexpression also promoted LKB1 phosphorylation, followed by activation of AMPK and decreased phosphorylation of mTOR. These results suggest that the LKB1-AMPK-mTOR pathway has a role in induction of autophagy. Together, our findings indicate a novel mechanism by which SIRT3 protects a rotenone-induced PD cell model through the regulation of autophagy, which, in part, is mediated by activation of the LKB1-AMPK-mTOR pathway.

Table and Figures | Reference | Related Articles | Metrics
Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent
Gao Yanjie, Wei Yifo, Wang Yuqing, Gao Fang, Chen Zhigang
Aging and disease    2017, 8 (6): 778-791.   DOI: 10.14336/AD.2017.0725
Abstract1067)   HTML4)    PDF(pc) (905KB)(1786)       Save

Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine.

Reference | Related Articles | Metrics
TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia
Han Ziping, Zhao Haiping, Tao Zhen, Wang Rongliang, Fan Zhibin, Luo Yumin, Luo Yinghao, Ji Xunming
Aging and disease    2018, 9 (2): 235-248.   DOI: 10.14336/AD.2017.0328
Abstract817)   HTML8)    PDF(pc) (1521KB)(1770)       Save

T-LAK-cell-originated protein kinase (TOPK) is a newly identified member of the mitogen-activated protein kinase family. Our previous study has showed that TOPK has neuroprotective effects against cerebral ischemia-reperfusion injury. Here, we investigated the involvement of TOPK in microglia/ macrophage M1/M2 polarization and the underlying epigenetic mechanism. The expression profiles, co-localization and in vivo interaction of TOPK, M1/M2 surface markers, and HDAC1/HDAC2 were detected after middle cerebral artery occlusion models (MCAO). We demonstrated that TOPK, the M2 surface markers CD206 and Arg1, p-HDAC1, and p-HDAC2 showed a similar pattern of in vivo expression over time after MCAO. TOPK co-localized with CD206, p-HDAC1, and p-HDAC2 positive cells, and was shown to bind to HDAC1 and HDAC2. In vitro study showed that TOPK overexpression in BV2 cells up-regulated CD206 and Arg1, and promoted the phosphorylation of HDAC1 and HDAC2. In addition, TOPK overexpression also prevented LPS plus IFN-γ-induced M1 transformation through reducing release of inflammatory factor of M1 phenotype TNF-α, IL-6 and IL-1β, and increasing TGF-β release and the mRNA levels of TGF-β and SOCS3, cytokine of M2 phenotype and its regulator. Moreover, the increased TNF-α induced by TOPK siRNA could be reversed by HDAC1/HDAC2 inhibitor, FK228. TOPK overexpression increased M2 marker expression in vivo concomitant with the amelioration of cerebral injury, neurological functions deficits, whereas TOPK silencing had the opposite effects, which were completely reversed by the FK228 and partially by the SAHA. These findings suggest that TOPK positively regulates microglia/macrophage M2 polarization by inhibiting HDAC1/HDAC2 activity, which may contribute to its neuroprotective effects against cerebral ischemia-reperfusion injury.

Table and Figures | Reference | Related Articles | Metrics
Parkinson Disease and Orthostatic Hypotension in the Elderly: Recognition and Management of Risk Factors for Falls
Peter A LeWitt, Steve Kymes, Robert A Hauser
Aging and disease    2020, 11 (3): 679-691.   DOI: 10.14336/AD.2019.0805
Accepted: 03 October 2019

Abstract321)   HTML0)    PDF(pc) (512KB)(1768)       Save

Parkinson disease (PD) is often associated with postural instability and gait dysfunction that can increase the risk for falls and associated consequences, including injuries, increased burden on healthcare resources, and reduced quality of life. Patients with PD have nearly twice the risk for falls and associated bone fractures compared with their general population counterparts of similar age. Although the cause of falls in patients with PD may be multifactorial, an often under-recognized factor is neurogenic orthostatic hypotension (nOH). nOH is a sustained decrease in blood pressure upon standing whose symptomology can include dizziness/lightheadedness, weakness, fatigue, and syncope. nOH is due to dysfunction of the autonomic nervous system compensatory response to standing and is a consequence of the neurodegenerative processes of PD. The symptoms associated with orthostatic hypotension (OH)/nOH can increase the risk of falls, and healthcare professionals may not be aware of the real-world clinical effect of nOH, the need for routine screening, or the value of early diagnosis of nOH when treating elderly patients with PD. nOH is easily missed and, importantly, healthcare providers may not realize that there are effective treatments for nOH symptoms that could help lessen the fall risk resulting from the condition. This review discusses the burden of, and key risk factors for, falls among patients with PD, with a focus on practical approaches for the recognition, assessment, and successful management of OH/nOH. In addition, insights are provided as to how fall patterns can suggest fall etiology, thereby influencing the choice of intervention.

Table and Figures | Reference | Related Articles | Metrics
Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis
Hong Liu, Shiyan Chen, Min Liu, Hao Nie, Hongyun Lu
Aging and disease    2020, 11 (3): 668-678.   DOI: 10.14336/AD.2020.0502
Accepted: 07 May 2020

Abstract739)   HTML0)    PDF(pc) (983KB)(1741)       Save

Coronavirus disease 2019 (COVID-19) has resulted in considerable morbidity and mortality worldwide since December 2019. In order to explore the effects of comorbid chronic diseases on clinical outcomes of COVID-19, a search was conducted in PubMed, Ovid MEDLINE, EMBASE, CDC, and NIH databases to April 25, 2020. A total of 24 peer-reviewed articles, including 10948 COVID-19 cases were selected. We found diabetes was present in 10.0%, coronary artery disease/cardiovascular disease (CAD/CVD) was in 8.0%, and hypertension was in 20.0%, which were much higher than that of chronic pulmonary disease (3.0%). Specifically, preexisting chronic conditions are strongly correlated with disease severity [Odds ratio (OR) 3.50, 95% CI 1.78 to 6.90], and being admitted to intensive care unit (ICU) (OR 3.36, 95% CI 1.67 to 6.76); in addition, compared to COVID-19 patients with no preexisting chronic diseases, COVID-19 patients who present with either diabetes, hypertension, CAD/CVD, or chronic pulmonary disease have a higher risk of developing severe disease, with an OR of 2.61 (95% CI 1.93 to 3.52), 2.84 (95% CI 2.22 to 3.63), 4.18 (95% CI 2.87 to 6.09) and 3.83 (95% CI 2.15 to 6.80), respectively. Surprisingly, we found no correlation between chronic conditions and increased risk of mortality (OR 2.09, 95% CI 0.26 to16.67). Taken together, cardio-metabolic diseases, such as diabetes, hypertension and CAD/CVD were more common than chronic pulmonary disease in COVID-19 patients, however, each comorbid disease was correlated with increased disease severity. After active treatment, increased risk of mortality in patients with preexisting chronic diseases may reduce.

Table and Figures | Reference | Related Articles | Metrics
Role of Dietary Protein and Muscular Fitness on Longevity and Aging
Strasser Barbara, Volaklis Konstantinos, Fuchs Dietmar, Burtscher Martin
Aging and disease    2018, 9 (1): 119-132.   DOI: 10.14336/AD.2017.0202
Abstract2058)   HTML13)    PDF(pc) (936KB)(1712)       Save

Muscle atrophy is an unfortunate effect of aging and many diseases and can compromise physical function and impair vital metabolic processes. Low levels of muscular fitness together with insufficient dietary intake are major risk factors for illness and mortality from all causes. Ultimately, muscle wasting contributes significantly to weakness, disability, increased hospitalization, immobility, and loss of independence. However, the extent of muscle wasting differs greatly between individuals due to differences in the aging process per se as well as physical activity levels. Interventions for sarcopenia include exercise and nutrition because both have a positive impact on protein anabolism but also enhance other aspects that contribute to well-being in sarcopenic older adults, such as physical function, quality of life, and anti-inflammatory state. The process of aging is accompanied by chronic immune activation, and sarcopenia may represent a consequence of a counter-regulatory strategy of the immune system. Thereby, the kynurenine pathway is induced, and elevation in the ratio of kynurenine to tryptophan concentrations, which estimates the tryptophan breakdown rate, is often linked with inflammatory conditions and neuropsychiatric symptoms. A combined exercise program consisting of both resistance-type and endurance-type exercise may best help to ameliorate the loss of skeletal muscle mass and function, to prevent muscle aging comorbidities, and to improve physical performance and quality of life. In addition, the use of dietary protein supplementation can further augment protein anabolism but can also contribute to a more active lifestyle, thereby supporting well-being and active aging in the older population.

Table and Figures | Reference | Related Articles | Metrics
Mitochondria in Ischemic Stroke: New Insight and Implications
Fan Liu, Jianfei Lu, Anatol Manaenko, Junjia Tang, Qin Hu
Aging and disease    2018, 9 (5): 924-937.   DOI: 10.14336/AD.2017.1126
Abstract940)   HTML6)    PDF(pc) (705KB)(1697)       Save

Stroke is the leading cause of death and adult disability worldwide. Mitochondrial dysfunction has been regarded as one of the hallmarks of ischemia/reperfusion (I/R) induced neuronal death. Maintaining the function of mitochondria is crucial in promoting neuron survival and neurological improvement. In this article, we review current progress regarding the roles of mitochondria in the pathological process of cerebral I/R injury. In particular, we emphasize on the most critical mechanisms responsible for mitochondrial quality control, as well as the recent findings on mitochondrial transfer in acute stroke. We highlight the potential of mitochondria as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.

Table and Figures | Reference | Related Articles | Metrics
Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging
Maxime Fournet, Frederic Bonte, Alexis Desmouliere
Aging and disease    2018, 9 (5): 880-900.   DOI: 10.14336/AD.2017.1121
Abstract725)   HTML4)    PDF(pc) (764KB)(1655)       Save

Glycation is both a physiological and pathological process which mainly affects proteins, nucleic acids and lipids. Exogenous and endogenous glycation produces deleterious reactions that take place principally in the extracellular matrix environment or within the cell cytosol and organelles. Advanced glycation end product (AGE) formation begins by the non-enzymatic glycation of free amino groups by sugars and aldehydes which leads to a succession of rearrangements of intermediate compounds and ultimately to irreversibly bound products known as AGEs. Epigenetic factors, oxidative stress, UV and nutrition are important causes of the accumulation of chemically and structurally different AGEs with various biological reactivities. Cross-linked proteins, deriving from the glycation process, present both an altered structure and function. Nucleotides and lipids are particularly vulnerable targets which can in turn favor DNA mutation or a decrease in cell membrane integrity and associated biological pathways respectively. In mitochondria, the consequences of glycation can alter bioenergy production. Under physiological conditions, anti-glycation defenses are sufficient, with proteasomes preventing accumulation of glycated proteins, while lipid turnover clears glycated products and nucleotide excision repair removes glycated nucleotides. If this does not occur, glycation damage accumulates, and pathologies may develop. Glycation-induced biological products are known to be mainly associated with aging, neurodegenerative disorders, diabetes and its complications, atherosclerosis, renal failure, immunological changes, retinopathy, skin photoaging, osteoporosis, and progression of some tumors.

Table and Figures | Reference | Related Articles | Metrics
Emerging Roles of Ganoderma Lucidum in Anti-Aging
Wang Jue, Cao Bin, Zhao Haiping, Feng Juan
Aging and disease    2017, 8 (6): 691-707.   DOI: 10.14336/AD.2017.0410
Abstract830)   HTML3)    PDF(pc) (1574KB)(1632)       Save

Ganoderma lucidum is a white-rot fungus that has been viewed as a traditional Chinese tonic for promoting health and longevity. It has been revealed that several extractions from Ganoderma lucidum, such as Ethanol extract, aqueous extract, mycelia extract, water soluble extract of the culture medium of Ganoderma lucidum mycelia, Ganodermasides A, B, C, D, and some bioactive components of Ganoderma lucidum, including Reishi Polysaccharide Fraction 3, Ganoderma lucidum polysaccharides I, II, III, IV, Ganoderma lucidum peptide, Ganoderma polysaccharide peptide, total G. lucidum triterpenes and Ganoderic acid C1 could exert lifespan elongation or related activities. Although the use of Ganoderma lucidum as an elixir has been around for thousands of years, studies revealing its effect of lifespan extension are only the tip of the iceberg. Besides which, the kinds of extractions or components being comfrimed to be anti-aging are too few compared with the large amounts of Ganoderma lucidum extractions or constituients being discovered. This review aims to lay the ground for fully elucidating the potential mechanisms of Ganoderma lucidum underlying anti-aging effect and its clinical application.

Table and Figures | Reference | Related Articles | Metrics
Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia
Yuxiao Liao,Zhao Peng,Liangkai Chen,Yan Zhang,Qian Cheng,Andreas K. Nüssler,Wei Bao,Liegang Liu,Wei Yang
Aging and disease    2019, 10 (1): 157-173.   DOI: 10.14336/AD.2018.0325
Abstract706)   HTML3)    PDF(pc) (776KB)(1594)       Save

Skeletal muscle aging is characterized by decline in skeletal muscle mass and function along with growing age, which consequently leads to age-related sarcopenia, if without any preventive timely treatment. Moreover, age-related sarcopenia in elder people would contribute to falls and fractures, disability, poor quality of life, increased use of hospital services and even mortality. Whey protein (WP) and/or resistance training (RT) has shown promise in preventing and treating age-related sarcopenia. It seems that sex hormones could be potential contributors for gender differences in skeletal muscle and age-related sarcopenia. In addition, skeletal muscle and the development of sarcopenia are influenced by gut microbiota, which in turn is affected by WP or RT. Gut microbiota may be a key factor for WP and/or RT against age-related sarcopenia. Therefore, focusing on sex hormones and gut microbiota may do great help for preventing, treating and better understanding age-related sarcopenia.

Table and Figures | Reference | Related Articles | Metrics
The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases
Huachen Huang, Shanshan Song, Suneel Banerjee, Tong Jiang, Jinwei Zhang, Kristopher T. Kahle, Dandan Sun, Zhongling Zhang
Aging and disease    2019, 10 (3): 626-636.   DOI: 10.14336/AD.2018.0928
Accepted: 02 October 2018

Abstract535)   HTML0)    PDF(pc) (848KB)(1594)       Save

In recent years, cation-chloride cotransporters (CCCs) have drawn attention in the medical neuroscience research. CCCs include the family of Na+-coupled Cl- importers (NCC, NKCC1, and NKCC2), K+-coupled Cl- exporters (KCCs), and possibly polyamine transporters (CCC9) and CCC interacting protein (CIP1). For decades, CCCs have been the targets of several commonly used diuretic drugs, including hydrochlorothiazide, furosemide, and bumetanide. Genetic mutations of NCC and NKCC2 cause congenital renal tubular disorders and lead to renal salt-losing hypotension, secondary hyperreninemia, and hypokalemic metabolic alkalosis. New studies reveal that CCCs along with their regulatory WNK (Kinase with no lysine (K)), and SPAK (Ste20-related proline-alanine-rich kinase)/OSR1(oxidative stress-responsive kinase-1) are essential for regulating cell volume and maintaining ionic homeostasis in the nervous system, especially roles of the WNK-SPAK-NKCC1 signaling pathway in ischemic brain injury and hypersecretion of cerebrospinal fluid in post-hemorrhagic hydrocephalus. In addition, disruption of Cl- exporter KCC2 has an effect on synaptic inhibition, which may be involved in developing pain, epilepsy, and possibly some neuropsychiatric disorders. Interference with KCC3 leads to peripheral nervous system neuropathy as well as axon and nerve fiber swelling and psychosis. The WNK-SPAK/OSR1-CCCs complex emerges as therapeutic targets for multiple neurological diseases. This review will highlight these new findings.

Table and Figures | Reference | Related Articles | Metrics
Effects of Elastic Therapeutic Taping on Knee Osteoarthritis: A Systematic Review and Meta-analysis
Li Xin, Zhou Xuan, Liu Howe, Chen Nan, Liang Juping, Yang Xiaoyan, Zhao Guoyun, Song Yanping, Du Qing
Aging and disease    2018, 9 (2): 296-308.   DOI: 10.14336/AD.2017.0309
Abstract1074)   HTML14)    PDF(pc) (2401KB)(1564)       Save

Elastic therapeutic taping (ET) has been widely used for a series of musculoskeletal diseases in recent years. However, there remains clinical uncertainty over its efficiency for knee osteoarthritis (knee OA) management. To assess the effects of ET on patients with knee OA, we investigated outcomes including self-reported pain, knee flexibility, knee-related health status, adverse events, muscle strength, and proprioceptive sensibility. Ten databases including PubMed, EMBASE, Cochrane Library, CINAHL, Web of Science, PEDro, Research Gate, CNKI, CBM, and Wanfang were systematically searched. Eleven randomized controlled trials (RCTs) with 168 participants with knee OA provided data for the meta-analysis. Statistical significance was reported in four from five outcomes, such as self-related pain (during activity, MD -0.85, 95% CI, -1.55 to -0.14; P =0.02), knee flexibility (MD 7.59, 95% CI, 0.61 to 14.57; P =0.03), knee-related health status (WOMAC scale, MD -4.10, 95% CI, -7.75 to -0.45; P =0.03), and proprioceptive sensibility (MD -4.69, 95% CI, -7.75 to -1.63; P =0.003), while no significant enhancement was reported regarding knee muscle strength (MD 1.25, 95% CI, -0.03 to 2.53; P =0.06). Adverse events were not reported in any of the included trials. The overall quality of evidence was from moderate to very low. In conclusion, there is underpowered evidence to suggest that ET is effective in the treatment of knee OA. Large, well-designed RCTs with better designs are needed.

Table and Figures | Reference | Related Articles | Metrics
Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade
Navneet Kumar Dubey, Hong-Jian Wei, Sung-Hsun Yu, David F. Williams, Joseph R. Wang, Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng
Aging and disease    2019, 10 (3): 483-496.   DOI: 10.14336/AD.2018.0616
Abstract788)   HTML1)    PDF(pc) (1507KB)(1559)       Save

Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway
Rongrong Han, Zeyue Liu, Nannan Sun, Shu Liu, Lanlan Li, Yan Shen, Jianbo Xiu, Qi Xu
Aging and disease    2019, 10 (3): 611-625.   DOI: 10.14336/AD.2018.0707
Abstract425)   HTML1)    PDF(pc) (1758KB)(1554)       Save

Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.

Table and Figures | Reference | Related Articles | Metrics
A Review of Exercise as Medicine in Cardiovascular Disease: Pathology and Mechanism
Piotr Gronek, Dariusz Wielinski, Piotr Cyganski, Andrzej Rynkiewicz, Adam Zając, Adam Maszczyk, Joanna Gronek, Robert Podstawski, Wojciech Czarny, Stefan Balko, Cain CT. Clark, Roman Celka
Aging and disease    2020, 11 (2): 327-340.   DOI: 10.14336/AD.2019.0516
Accepted: 02 July 2019

Abstract858)   HTML0)    PDF(pc) (491KB)(1528)       Save
Background

Physical inactivity and resultant lower energy expenditure contribute unequivocally to cardiovascular diseases, such as coronary artery disease and stroke, which are considered major causes of disability and mortality worldwide.

Aim

The aim of the study was to investigate the influence of physical activity (PA) and exercise on different aspects of health - genetics, endothelium function, blood pressure, lipid concentrations, glucose intolerance, thrombosis, and self - satisfaction. Materials and

Methods

In this article, we conducted a narrative review of the influence PA and exercise have on the cardiovascular system, risk factors of cardiovascular diseases, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action.

Results and Discussion

Based on our narrative review of literature, discussed the effects of PA on telomere length, nitric oxide synthesis, thrombosis risk, blood pressure, serum glucose, cholesterol and triglycerides levels, and indicated possible mechanisms by which physical training may lead to improvement in chronic cardiovascular diseases.

Conclusion

PA is effective for the improvement of exercise tolerance, lipid concentrations, blood pressure, it may also reduce the serum glucose level and risk of thrombosis, thus should be advocated concomitant to, or in some cases instead of, traditional drug-therapy.

Table and Figures | Reference | Related Articles | Metrics
Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis
Ting Wu,Zhihong Zuo,Shuntong Kang,Liping Jiang,Xuan Luo,Zanxian Xia,Jing Liu,Xiaojuan Xiao,Mao Ye,Meichun Deng
Aging and disease    2020, 11 (4): 874-894.   DOI: 10.14336/AD.2020.0520
Accepted: 30 May 2020

Abstract207)   HTML0)    PDF(pc) (3152KB)(1527)       Save

This study aimed to provide systematic evidence for the association between multiorgan dysfunction and COVID-19 development. Several online databases were searched for articles published until May 13, 2020. Two investigators independently selected trials, extracted data, and evaluated the quality of individual trials. Single-arm meta-analysis was performed to summarize the clinical features of confirmed COVID-19 patients. Fixed effects meta-analysis was performed for clinically relevant parameters that were closely related to the patients’ various organ functions. A total of 73 studies, including 171,108 patients, were included in this analysis. The overall incidence of severe COVID-19 and mortality were 24% (95% confidence interval [CI], 20%-28%) and 2% (95% CI, 1%-3%), respectively. Patients with hypertension (odds ratio [OR] = 2.40; 95% CI, 2.08-2.78), cardiovascular disease (CVD) (OR = 3.54; 95% CI, 2.68-4.68), chronic obstructive pulmonary disease (COPD) (OR=3.70; 95% CI, 2.93-4.68), chronic liver disease (CLD) (OR=1.48; 95% CI, 1.09-2.01), chronic kidney disease (CKD) (OR = 1.84; 95% CI, 1.47-2.30), chronic cerebrovascular diseases (OR = 2.53; 95% CI, 1.84-3.49) and chronic gastrointestinal (GI) disease (OR = 2.13; 95% CI, 1.12-4.05) were more likely to develop severe COVID-19. Increased levels of lactate dehydrogenase (LDH), creatine kinase (CK), high-sensitivity cardiac troponin I (hs-cTnI), myoglobin, creatinine, urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin were highly associated with severe COVID-19. The incidence of acute organ injuries, including acute cardiac injury (ACI); (OR = 11.87; 95% CI, 7.64-18.46), acute kidney injury (AKI); (OR=10.25; 95% CI, 7.60-13.84), acute respiratory distress syndrome (ARDS); (OR=27.66; 95% CI, 18.58-41.18), and acute cerebrovascular diseases (OR=9.22; 95% CI, 1.61-52.72) was more common in patients with severe COVID-19 than in patients with non-severe COVID-19. Patients with a history of organ dysfunction are more susceptible to severe conditions. COVID-19 can aggravate an acute multiorgan injury.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application
Jinfan Tian, Sharif Popal Mohammad, Yingke Zhao, Yanfei Liu, Keji Chen, Yue Liu
Aging and disease    2019, 10 (6): 1302-1310.   DOI: 10.14336/AD.2018.1020
Accepted: 20 November 2018

Abstract390)   HTML0)    PDF(pc) (361KB)(1525)       Save

Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.

Table and Figures | Reference | Related Articles | Metrics
Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation
Xu Zhifang, Feng Wei, Shen Qian, Yu Nannan, Yu Kun, Wang Shenjun, Chen Zhigang, Shioda Seiji, Guo Yi
Aging and disease    2017, 8 (6): 760-777.   DOI: 10.14336/AD.2016.0620
Abstract1208)   HTML4)    PDF(pc) (1431KB)(1501)       Save

Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.

Table and Figures | Reference | Related Articles | Metrics
Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link?
Tatiana Rafaela Lemos Lima, Vívian Pinto Almeida, Arthur Sá Ferreira, Fernando Silva Guimarães, Agnaldo José Lopes
Aging and disease    2019, 10 (5): 1109-1129.   DOI: 10.14336/AD.2018.1226
Accepted: 31 December 2018

Abstract737)   HTML0)    PDF(pc) (1124KB)(1499)       Save

Societies in developed countries are aging at an unprecedented rate. Considering that aging is the most significant risk factor for many chronic lung diseases (CLDs), understanding this process may facilitate the development of new interventionist approaches. Skeletal muscle dysfunction is a serious problem in older adults with CLDs, reducing their quality of life and survival. In this study, we reviewed the possible links between handgrip strength (HGS)—a simple, noninvasive, low-cost measure of muscle function—and CLDs in the elderly. Different mechanisms appear to be involved in this association, including systemic inflammation, chronic hypoxemia, physical inactivity, malnutrition, and corticosteroid use. Respiratory and peripheral myopathy, associated with muscle atrophy and a shift in muscle fiber type, also seem to be major etiological contributors to CLDs. Moreover, sarcopenic obesity, which occurs in older adults with CLDs, impairs common inflammatory pathways that can potentiate each other and further accelerate the functional decline of HGS. Our findings support the concept that the systemic effects of CLDs may be determined by HGS, and HGS is a relevant measurement that should be considered in the clinical assessment of the elderly with CLDs. These reasons make HGS a useful practical tool for indirectly evaluating functional status in the elderly. At present, early muscle reconditioning and optimal nutrition appear to be the most effective approaches to reduce the impact of CLDs and low muscle strength on the quality of life of these individuals. Nonetheless, larger in-depth studies are needed to evaluate the link between HGS and CLDs.

Table and Figures | Reference | Related Articles | Metrics
Muscle Fatigue Does Not Change the Effects on Lower Limbs Strength Caused by Aging and Parkinson’s Disease
Vinicius Alota Ignacio Pereira, Fabio Augusto Barbieri, Alessandro Moura Zagatto, Paulo Cezar Rocha dos Santos, Lucas Simieli, Ricardo Augusto Barbieri, Felipe Pivetta Carpes, Lilian Teresa Bucken Gobbi
Aging and disease    2018, 9 (6): 988-998.   DOI: 10.14336/AD.2018.0203
Abstract369)   HTML0)    PDF(pc) (642KB)(1483)       Save

The aim of this study was to determine the impact of aging and Parkinson’s disease (PD) on lower limb muscle strength before and after muscle fatigue. One hundred thirty-five individuals were distributed over seven groups according to their age (20, 30, 40, 50, 60, 70 years old) and disease. Participants performed maximum voluntary isometric contractions (MVIC) in a leg press device followed by the muscle fatigue protocol (repeated sit-to-stand task). Immediately after muscle fatigue (less than 2 min), the MVIC were repeated. The peak force, peak rate of force development (first 50, 100, 200 ms), and root mean square and peak values of the vastus lateralis and vastus medialis muscle activity during MVIC were calculated before and after muscle fatigue. We found more pronounced reductions in lower limb muscle strength parameters (lower limb force, RFD-100 and RFD-200 - p<0.05) in individuals over 50 years of age and with PD. In addition, there was an inverse relation between aging and lower limb muscle strength parameters. The main findings were the lack of changes in peak force, RFDs and muscle activity of the vastus lateralis and vastus medialis after muscle fatigue according to aging and PD, and similar lower limb muscle strength parameters (before and after muscle fatigue) and effect of muscle fatigue in PD compared to the aged groups (60 and 70 years old groups).

Table and Figures | Reference | Related Articles | Metrics
Epigenetic Regulation of Bone Marrow Stem Cell Aging: Revealing Epigenetic Signatures associated with Hematopoietic and Mesenchymal Stem Cell Aging
Dimitrios Cakouros,Stan Gronthos
Aging and disease    2019, 10 (1): 174-189.   DOI: 10.14336/AD.2017.1213
Abstract705)   HTML3)    PDF(pc) (708KB)(1471)       Save

In this review we explore the importance of epigenetics as a contributing factor for aging adult stem cells. We summarize the latest findings of epigenetic factors deregulated as adult stem cells age and the consequence on stem cell self-renewal and differentiation, with a focus on adult stem cells in the bone marrow. With the latest whole genome bisulphite sequencing and chromatin immunoprecipitations we are able to decipher an emerging pattern common for adult stem cells in the bone marrow niche and how this might correlate to epigenetic enzymes deregulated during aging. We begin by briefly discussing the initial observations in yeast, drosophila and Caenorhabditis elegans (C. elegans) that led to the breakthrough research that identified the role of epigenetic changes associated with lifespan and aging. We then focus on adult stem cells, specifically in the bone marrow, which lends strong support for the deregulation of DNA methyltransferases, histone deacetylases, acetylates, methyltransferases and demethylases in aging stem cells, and how their corresponding epigenetic modifications influence gene expression and the aging phenotype. Given the reversible nature of epigenetic modifications we envisage “epi” targeted therapy as a means to reprogram aged stem cells into their younger counterparts.

Table and Figures | Reference | Related Articles | Metrics
Relationship between Hypothyroidism and Endometrial Cancer
Yiqin Wang,Rong Zhou,Jianliu Wang
Aging and disease    2019, 10 (1): 190-196.   DOI: 10.14336/AD.2018.0224
Abstract2180)   HTML2)    PDF(pc) (317KB)(1464)       Save

Thyroid dysfunction is involved in several types of carcinoma. Hypothyroidism is one of the most common medical morbidities among patients with endometrial cancer; however, the related mechanism is unclear. Among the risk factors related to endometrial cancer, hypothyroidism interacts with metabolic syndrome, polycystic ovarian syndrome and infertility or directly acts on the endometrium itself, which may influence the development and progression of endometrial cancer. We summarize recent studies on the relationship between hypothyroidism and endometrial cancer and its risk factors to provide references for basic research as well as for clinical treatment and prognostic evaluation.

Table and Figures | Reference | Related Articles | Metrics
Alteration in the Function and Expression of SLC and ABC Transporters in the Neurovascular Unit in Alzheimer’s Disease and the Clinical Significance
Yongming Jia, Na Wang, Yingbo Zhang, Di Xue, Haoming Lou, Xuewei Liu
Aging and disease    2020, 11 (2): 390-404.   DOI: 10.14336/AD.2019.0519
Accepted: 05 June 2019

Abstract411)   HTML0)    PDF(pc) (621KB)(1440)       Save

The neurovascular unit (NVU) plays an important role in maintaining the function of the central nervous system (CNS). Emerging evidence has indicated that the NVU changes function and molecules at the early stage of Alzheimer’s disease (AD), which initiates multiple pathways of neurodegeneration. Cell types in the NVU have become attractive targets in the interventional treatment of AD. The NVU transportation system contains a variety of proteins involved in compound transport and neurotransmission. Brain transporters can be classified as members of the solute carrier (SLC) and ATP-binding cassette (ABC) families in the NVU. Moreover, the transporters can regulate both endogenous toxins, including amyloid-beta (Aβ) and xenobiotic homeostasis, in the brains of AD patients. Genome-wide association studies (GWAS) have identified some transporter gene variants as susceptibility loci for late-onset AD. Therefore, the present study summarizes changes in blood-brain barrier (BBB) permeability in AD, identifies the location of SLC and ABC transporters in the brain and focuses on major SLC and ABC transporters that contribute to AD pathology.

Table and Figures | Reference | Related Articles | Metrics
Reactive Astrocytes in Neurodegenerative Diseases
Kunyu Li, Jiatong Li, Jialin Zheng, Song Qin
Aging and disease    2019, 10 (3): 664-675.   DOI: 10.14336/AD.2018.0720
Abstract805)   HTML0)    PDF(pc) (730KB)(1432)       Save

Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.

Table and Figures | Reference | Related Articles | Metrics
Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling
Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun
Aging and disease    2019, 10 (4): 807-817.   DOI: 10.14336/AD.2018.0728
Accepted: 04 September 2018

Abstract628)   HTML0)    PDF(pc) (828KB)(1426)       Save

Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.

Table and Figures | Reference | Related Articles | Metrics
The role of CD2AP in the Pathogenesis of Alzheimer's Disease
Qing-Qing Tao, Yu-Chao Chen, Zhi-Ying Wu
Aging and disease    2019, 10 (4): 901-907.   DOI: 10.14336/AD.2018.1025
Accepted: 08 December 2018

Abstract720)   HTML1)    PDF(pc) (514KB)(1420)       Save

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd