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ABSTRACT: Aging can lead to changes in the cellular milieu of the brain. These changes may exacerbate, resulting 

in pathological phenomena (including impaired bioenergetics, aberrant neurotransmission, compromised resilience 

and neuroplasticity, mitochondrial dysfunction, and the generation of free radicals) and the onset of 

neurodegenerative diseases. Furthermore, alterations in the energy-sensing pathways can accelerate neuronal aging 

but the exact mechanism of neural aging is still elusive. In recent decades, the use of plant-derived compounds, 

including astragaloside IV, to treat neuronal aging and its associated diseases has been extensively investigated. This 

article presents the current understanding of the roles and mechanisms of astragaloside IV in combating neuronal 

aging. The ability of the agent to suppress oxidative stress, to attenuate inflammatory responses and to maintain 

mitochondrial integrity will be discussed. Important challenges to be tacked for further development of astragaloside 

IV-based pharmacophores will be highlighted for future research. 
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1. Introduction 

 

Neurons endure various stresses led by the accumulation 

of structurally or functionally impaired proteins, resulting 

in disruption of the integrity of the plasma membrane and 

genome. These stresses subsequently deteriorate the 

functions of neurons, induce apoptosis, and promote 

neuronal aging and its associated hallmarks [1], including 

mitochondrial impairments [2], synaptic degeneration [3], 

dysregulated Ca2+ levels [4], changes in energy-sensing 

pathways [5], and enhanced oxidative stress [6]. Because 

neural senescence promotes anatomical pathologies (e.g., 

white matter lesions and brain atrophy) [7-9], neuronal 

aging at the end compromises the functional capacity of 

brain and various physiological processes (including 

blood supply) to escalate brain aging [10]. Right now, our 

understanding of the process of neuronal aging is still 

limited, but recent efforts devoted to exploring 

pathophysiological processes underlying neurological 

diseases have enabled the identification of various 

potential therapeutic strategies to combat neuronal aging 

[11, 12]. For example, the activation of the antioxidant 

response element (ARE) cascade has been found to lead 

to the up-regulation of the expression of Nrf2 and other 
ARE-associated genes, including the oxygenase-1 (HO-1) 

gene, to mitigate the neural damage [13, 14]. This paves 

the way for combating neuronal aging in practice.  
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Figure 1. Chemical structure of astragaloside IV. 

 

Among different strategies exploited, the use of 

medicinal herbs to treat neurological aging and its 

associated diseases has gained increasing attention from 

the scientific community (Table 1) [15-31]. Astragaloside 

IV is one of the botanical compounds possessing multi-

target therapeutic properties. Astragaloside IV (also 

known as 3-O-β-D-xylopyranosyl-6-O-β-D-gluco-

pyranosyl-cycloastragenol) has the molecular formula of 

C14H68O14. It is a highly polar tetracyclic triterpenoid 

saponin (Fig. 1) [32] and has been characterized as a 

potential therapeutic agent to tackle different 

neurodegenerative disorders (including motor deficits and 

aberrant neurotransmission) due to its strong capability to 

counteract oxidative stress and inflammatory responses 

[33]. Despite its therapeutic potential, poor oral 

bioavailability [34] and poor aqueous solubility [35] are 

some of the major hurdles to be overcome during the 

development of astragaloside IV-based therapeutic 

agents. The focus of this review is to provide an overview 

of recent research on the roles and mechanisms of 

astragaloside IV as a pharmacologic agent to tackle 

neuronal aging (Fig. 2). Research gaps and potential 

challenges for the development of astragaloside IV- based 

interventions will also be discussed for future research.  

 
Table 1. Examples of plant-derived compounds that have been reported to ameliorate neuronal aging.  

 
Compound Source Effects Ref. 

Epigallocatechin-3-gallate Camellia sinensis Protecting mitochondria in the brain against oxidative 

damage 

15 

Suppressing cognitive decline, brain atrophy and 

oxidative damage 

16 

Eliciting antioxidative and anti-inflammatory effects  17 

Astragaloside IV Astragalus membranaceus Restoring the telomere length in neurons 18 

Gastrodin Gastrodia elata Suppressing microglial activation and restoring 

neurotransmission 

19 

Trolox Punica granatum L. Protecting hippocampal neurons and improving memory 20 

Taxifolin Taxus sumatrana Inhibiting the development of β-amyloid 21 

Kaempferol Mespilus germanica L. Reducing neuroinflammation 22 

Piceatannol Vitis vinifera Ameliorating neuronal hippocampal pathology 23 

Ligstroside Olive cultivars Improving the bioenergetics of mitochondria  24 

Plumbagin Juglans regia Improving cognitive function 25 

Arctigenin Arctium lappa L. Promoting neuronal survival and function 26 

Tyrosine Sesamum indicum Rescuing fronto-striatal activation in an age-dependent 

manner 

27 

Myricetin Vaccinium subg. 

oxycoccus 

Attenuating brain injury and neurological deficits 28 

Tannins Schinopsis balansae Eliciting antioxidative and anti-inflammatory effects 29 

Quercetin Allium cepa Alleviating neuroinflammation 30 

Butein Rhus lancea Alleviating neuroinflammation and oxidative stress 31 
 

2. Effects of astragaloside IV on amelioration of 

neuronal aging 

 

Astragaloside IV has played multiple roles in combating 

neuronal aging. For instance, along with notoginsenoside 

R1, ginsenoside Rb1 and ginsenoside Rg1, it has been 

reported to enhance nerve cell survival by decreasing the 

levels of nitric oxide and malondialdehyde (MDA) while 

promoting the expression of superoxide dismutase (SOD) 

[36]. It has also been shown to inhibit brain damage 

caused by subarachnoid hemorrhage (SAH) [37], which 

leads to a decline in the activity of glutathione peroxidase 

(GSH-Px) and superoxide dismutase and accelerates 

apoptosis in neurons. Astragaloside IV can alleviate 

oxidative stress and improve the neurobehavioral 

outcome in mice suffering from SAH by inhibiting the 
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expression of IL-1β, IL-6, and TNF-α and by promoting 

the up-regulation of GSH-Px, catalase (CAT) and SOD 

[38]. Apart from this, by promoting the density of the 

myelinated fibre and by elevating the level of glutathione 

peroxidase [39], astragaloside IV can enhance the motor 

nerve conduction velocity (MNCV) in rats. It can also 

improve the learning and memory in rats suffering from 

chronic cerebral hypoperfusion by increasing the level of 

SOD and by attenuating lipid peroxidation, DNA damage, 

and apoptosis in the hippocampus [40].  

More recently, astragaloside IV has been reported to 

inhibit apoptosis and alleviate the reactive oxygen species 

(ROS) generation in human neuronal cells by up-

regulating the expression of tyrosine hydroxylase and α-

synuclein and by inhibiting Bax expression [41]. It has 

also promoted the mitochondrial membrane potential and 

has attenuated oxidative stress in retinal neurons by down-

regulating CASP3 expression [42]. Astragaloside IV, 

therefore, shows the capability of regenerating 

intercellular connections and inhibiting ROS generation 

via its effect on oxidative stress [43]. Apart from 

alleviating oxidative stress, astragaloside IV can help 

combat neuronal aging via multiple mechanisms, ranging 

from modulation of neuroinflammation to enhancement 

of mitochondrial integrity. This will be discussed in the 

following parts of this section.  

 
Figure 2. A schematic diagram illustrating the use of astragaloside IV to combat neuronal aging and related disorders. Red 

lines represent inhibition; whereas green lines represent promotion. 

2.1. Combating neuroinflammation and glial cell 

activation 

 

Different inflammatory factors have previously been 

identified in activated microglial cells obtained from aged 

mice [44]. The levels of these factors (including CD44, 

CD14, CD86, CD11c, MHC-II, and programming ligand 

of death 1 marker (PD1) proteins change considerably 

during inflammation. These alterations collectively 

distressed the intracellular homeostasis mainly through 

downregulating the expression of MerTK, Siglec-H and 

CX3CR1, which induce changes and activate the 

microglia cells and positioning them as a hallmark of 
neural aging [44]. These changes further accompanied by 

an age-dependent increase in production of pro-

inflammatory cytokines such as IL-6, TNF-α, and IL-1β 

which collectively promote the microglia cells senescence 

[45]. The activation of microglia both in vivo and in vitro 

has been reported to be significantly suppressed by 

astragaloside IV, mainly through promoting the activity 

of the glucocorticoid receptor-luciferase and enabling the 

translocation of the nuclear GR in microglial cells. 

Despite the relatively low affinity, astragaloside IV can 

bind to the GR and regulate the GR-mediated signalling 

pathways. The establishment of astragaloside IV-GR 

complex governs the dephosphorylation of various 

proteins (including Akt and PI3K), leading to a decrease 

in the production of pro-inflammatory mediators (Fig. 3) 

[46]. Astragaloside IV can also inhibit the activity of p16 
protein and β-galactosidase to attenuate the premature 

senescence of astrocytes in the substantia nigra compacta 

region and to rehabilitate the dopaminergic neurons. 
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Astragaloside IV mechanistically stimulates mitophagy 

that decreases the accumulation of damaged 

mitochondrial products and inhibits ROS generation to 

enhance astrocyte viability [47]. 

Apart from the mechanisms mentioned above, 

astragaloside IV enhances the extracellular receptors 

kinase (ERK) activation, triggering the NRF2/HO-1 

cascade to lead to the anti-neuroinflammatory response in 

microglial cells [48]. It inhibits the expression of various 

genes (including CASP3, COX-2, and Bax) while up-

regulating the expression of Bcl-Xl, HO-1 and Nrf2 to 

attenuate the neural inflammation and to promote the cell 

viability [49]. Furthermore, astragaloside IV can inhibit 

brain infiltration via modulating various intracellular 

mechanisms, such as the production of interferon-γ, 

deactivation of natural killer group 2D (NKG2D) 

receptors and histone deacetylases (HDAC), and by 

elevation of the level of acetylated p65 in astrocytes [50]. 

The bacterial endotoxin (lipopolysaccharide, LPS) is 

capable of triggering the activation of microglial cells 

[51]. Astragaloside IV attenuates the LPS-induced 

activation of microglial cells via down-regulating the pro-

inflammatory (M1) mediators including nitric oxide 

(NO), interleukin 6 (IL-6), necrosis factor α (TNF-α), and 

interleukin (IL)-1β. It also increases the expression levels 

of diverse M2 mediators, including arginase 1 (ARG1), 

Toll-like receptors 4 (TLR4), and nuclear factor κB (NF-

κB) in microglia [52]. Astragaloside IV alleviates LPS-

induced ROS production in vitro and in vivo by inhibiting 

the expression of NLRP3 and Nrf2. [53]. The 

phosphorylated-mitogen-activated protein kinase 

(p-MAPK) family is reported to be inhibited by 

astragaloside IV, which subsequently inhibits the 

inflammatory response in astrocytes [54]. Moreover, 

astragaloside IV strongly interacts with the immune 

system and protects astrocytes from damage through 

activation of the TLR3/NF-κB pathway [55]. 

 
Figure 3. A schematic diagram illustrating the molecular mechanism underlying astragaloside IV-mediated protection 

of neurons against neuroinflammation. Astragaloside IV (denoted as AST-IV) reduces the migratory capability of microglia 

cells during inflammation to minimize neuronal loss. It also inhibits the activation of astrocytes, dephosphorylates Akt and 

PI3K proteins, activates the HRF1/Ho-1 cascade, and inhibits the generation of inflammasomes. Red lines represent inhibition; 

whereas green lines represent promotion. 

2.2. Enhancing genomic and mitochondrial integrity 

 

Astragaloside IV plays multiple roles to maintain 

genomic integrity. It can ameliorate DNA damage and 

neurotoxicity by declining the level of glutaminase (GA), 

glutamine (Gln), glutamate (Glu) and glutamine 

synthetase (GS) while enhancing the amount of NO in the 

brain [56]. Astragaloside IV triggers the activation of the 

Nrf2/Keap1 cascade to inhibit inflammation and to 

hinders ROS production and apoptosis. This helps further 

maintain the genomic and morphological integrity of HK-

2 cells [43]. Despite this, one study has found that 

astragaloside IV possesses anti-proliferative effects to 

inhibit the mitotic pathway and down-regulate DNA 

replication [57]. Moreover, astragaloside IV induces 

intrinsic/extrinsic apoptosis by triggering G1 arrest in 

HCC cells [58]. The exact mechanisms governing the 

effect of astragaloside IV on DNA replication and on the 
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maintenance of genomic integrity are poorly elucidated at 

the moment and is an area that requires further 

investigation in future research.  

Apart from maintaining the genomic integrity, 

astragaloside IV modulates various cellular cascades to 

maintain the integrity of mitochondria. The permeability 

barrier of the inner mitochondrial membrane (IMM) 

sustains mitochondrial homeostasis and the binding of 

hexokinase-II (HK-II) to mitochondria [59]. 

Astragaloside IV enhances the survival of neurons by 

conserving HK-II in mitochondria and by increasing the 

expression of Akt protein. All these rescue the 

mitochondrial membrane potential and attenuate the 

production of apoptosis-inducing factors (AIF) [60]. 

Astragaloside IV can also sustain the mitochondrial 

membrane potential and the activity of the electron 

transport chain by down-regulating the expression of 

various genes (including Drp1 and BAX/BCL-2) (Fig. 4) 

[61]. Mitochondria can crosstalk the endoplasmic 

reticulum (ER) via Ca2+ transport. This process is 

important to the maintenance of cellular homeostasis [62]. 

To combat the ER stress, astragaloside IV attenuates the 

expression of phosphor-protein kinase R-like ER kinase 

(p-PERK) and inositol-requiring ER-to-nucleus signal 

kinase 1 (IRE1), while promoting the phosphorylation of 

GSK-3β to protect the neurons [63]. Protein kinase 

A (PKA) triggers the activation of the cyclic AMP 

response element-binding protein (CREB) to shield the 

mitochondria from damage. The deprivation of glucose 

and oxygen in neurons impedes the activation of PKA and 

diminishes the phosphorylation of CREB to induce 

apoptosis in neurons. Astragaloside IV significantly 

enhances the PKA level and stimulates the 

phosphorylation of CREB to restore the mitochondrial 

activity [64]. It also attenuates various mitochondrial 

intrinsic cascades and increases the level of the FasL 

protein to ensure neural survival [65]. 

 

 
Figure 4. A schematic diagram depicting the protective effect of astragaloside IV on neuronal 

mitochondria. Red lines represent inhibition; whereas green lines represent promotion. 

Amyloid-β (Aβ)-induced mitochondrial dysfunction 

plays a key role in the development of neurodegenerative 

disorders. The opening of the mitochondrial permeability 

transition pore (mPTP) is associated with Aβ-induced 

ROS production and neuronal cell senescence. 

Astragaloside IV is known to counteract the Aβ-induced 

changes in neurons by decreasing the superoxide level, 

inhibiting ROS generation, and by promoting the 

expression of B-cell lymphoma 2 (Bcl-2) [66]. Besides the 

opening of the mitochondrial permeability transition pore, 

Aβ triggers the phosphorylation c-Jun N-terminal kinase 

(JNK) through Toll-like receptor 4 (TLR4) protein [67]. 

Astragaloside IV shows a strong inhibitory effect on the 

phosphorylation of JNK in various organs [68], but the 
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effect of JNK inhibition on neural cell surveillance has yet 

to be fully elucidated. Astragaloside IV also enhances the 

level of lamin B1 and promotes mitophagy to minimize 

mitochondrial damage [47]. The methionine sulfoxide 

reductase is an anti-oxidative enzyme that helps repair 

proteins damaged by oxidative stress. Through 

upregulation of sulfoxide reductase, astragaloside IV 

shows a protective effect on neurons against oxidative 

damage by recruiting the SIRT1/FOXO3 cascade [69]. 

All these enable astragaloside IV to serve as a potential 

therapeutic agent to overcome the metabolic disturbance 

led by neuronal aging.  

 

2.3. Tackling calcium dysregulation and aberrant 

neurotransmission  

 

The calcium ion (Ca2+) controls neuronal activities 

including long-term memory [70]. During aging, the 

capacity of neurons to regulate Ca2+ dynamics 

deteriorates, causing an increase in the Ca2+ influx from 

the ER through L-type voltage-dependent Ca2+ channels. 

This results in an abnormal rise in the cytoplasmic Ca2+ 

concentration, leading to changes in the cytoskeletal 

architecture, in gene expression and in the release of 

neurotransmitters [71-75]. Astragaloside IV not only 

decreases the magnitude of the current flow in voltage-

gated K+ and Na+ channels but can also reduce the 

frequency of synchronized spontaneous oscillations of 

Ca2+ [76]. Moreover, activation of the mitochondrial Ca2+ 

uniporter (MCU) facilitates cytochrome C release, causes 

ATP depletion, and increases mitochondrial ROS 

generation. All these collectively lead to the death of 

neurons. By attenuating the excessive release of 

cytochrome C and by rescuing the mitochondrial Ca2+ 

overload, astragaloside IV decreases the aberrant MCU 

activation to maintain calcium homeostasis and neural 

viability [77]. Structural damage to neurons also 

influences neurotransmission in the brain. Heat, for 

example, reduces the level of acetylcholine. Astragaloside 

IV, however, can re-establish the acetylcholine level and 

has demonstrated the potential to treat central nervous 

system damage [78]. 

Astragaloside IV can improve the neural synaptic 

plasticity and cognitive function in mice, too, by 

suppressing the hippocampal transcription of GAD65, 

EGR-1, TrkB and BDNF [79]. This reverses 

neurobehavior deficit after ischemic stroke through 

BNDF/TrkB cascade [79]. Imbalanced release of 

neurotransmitters may lead to the occurrence of 

neuropsychiatric disorders (e.g., depressive-like 

behaviour and social interaction deficit). Astragaloside IV 

reverses neuropsychiatric symptoms and enhances 

cognitive functions by restoring the levels of various 

neurotransmitters, including monoamine oxidase (MAO-

A), serotonin (5-HT), dopamine (DA), and tryptophan 

hydroxylase 2 (Tph2) [80]. Astragaloside IV can, 

therefore, be a candidate that warrants further exploitation 

as a therapeutic agent to stabilize the cellular level of 

calcium.  

 

2.4. Stimulating stem cell renewal and neurogenesis 

 

The pool of neural stem cells (NSCs) in the brain is 

exhausted with advanced age, leading to a gradual 

decrease in neurogenesis [81]. Telomere shortening is one 

of the possible causes of this [82] and may increase the 

risk of acquiring neurodegenerative diseases such as 

Alzheimer's disease [83]. Telomerase activity is mostly 

restricted to NSCs in the hippocampus dentate gyrus, 

subventricular zone, and few other parts of the brain [84]. 

Astragaloside VI can promote the self-renewal and 

proliferation of NSCs without altering their 

differentiation. In the in vivo context, it enhances the 

expression of p-MAPK and nestin and facilitates the 

activation of EGFR/MAPK pathway in the dentate gyrus 

zone, subventricular zone, and the cortex of the brain [85]. 

In addition, astragaloside IV shows positive effects on the 

differentiation and proliferation of engrafted NSCs. It 

stimulates the transition of NSCs into GFAP+ and tubulin 

III+ cells to increase the hippocampal density of tubulin 

III+ cells and hence toimprove cognitive abilities [86]. In 

addition, astragaloside IV potentially regulates IL-17 

expression. It also modulates the activity of the Akt/GSK-

3 cascade to hinder neural apoptosis and to promote 

neurogenesis [87]. 

Furthermore, astragaloside IV can activate 

telomerase in a variety of cell types, particularly 

embryonic fibroblasts (MEFs, G3 Terc+/−) and 

hematopoietic progenitor cells. Astragaloside IV 

supplementation boosts TERT activation in the brain, 

liver, heart, lungs, and bone marrow to rescue telomere 

shorting in elderly mice [88, 89]. Astragaloside IV, in 

combination with cycloastragenol, promotes the 

activation of the Src/MEK/ERK pathway to enhance 

telomerase activity [90]. It upregulates the expression 

various genes such as pituitary homeobox 3 (Ptx3), 

dopamine transporter (Dat), Orphan nuclear hormone 1 

(Nurr1), tyrosine hydroxylase (Th), Sonic hedgehog 

(Shh), to aid the proliferation and differentiation of 

dopaminergic neurons from NSCs [91]. Astragaloside IV 

also promotes neural regeneration by sustaining the 

elevated levels of growth-associated protein-43 (GAP-43) 

mRNA [92] and by activating the Wnt pathway [93]. 

Moreover, it reduces the build-up of advanced glycation 

end products and enhances glutathione peroxidase activity 

in nerves to promote regional demyelination and 

neurogenesis [39], while encouraging the regeneration of 

the neural wide gap and increasing the density of 
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myelinated axons to hinder synaptic and neural loss and 

reduce cognitive impairment [94, 95]. 

 

3. Molecular mechanisms underlying the effects of 

astragaloside IV 

 

3.1. Mammalian target of rapamycin (mTOR) pathway 

 

mTOR kinase is an important regulator of various vital 

cellular events such as cell division, growth, and 

metabolism [96-100]. The correlation between mTOR 

and lifespan was initially demonstrated by Fabrizio and 

coworkers in invertebrates using gene-editing techniques 

[101]. mTOR can act as a both negative and positive 

regulator in the process of neural aging. For instance, 

autophagy and microglia M2 polarization maintain cell 

viability and homeostasis to protect neurons from 

apoptosis [102-104]. mTORC1 inhibits microglial M2 

polarization and neuronal autophagy [105, 106], thereby 

promoting the mortality of neurons and escalating neural 

aging. On the other hand, mTOR helps sustain 

neurotransmission, synaptic plasticity, and neuronal 

viability to maintain neural development and function 

[107, 108]. Normally, mTOR expression is 

downregulated in an age-dependent manner [109], yet the 

mTOR pathway is hyperactive in both animal models and 

humans with Alzheimer's disease [110]. Treatment with 

rapamycin or rapalogs in mice with Alzheimer's disease 

reduces cognitive deterioration [111, 112], suggesting that 

inhibitors of mTOR can potentially heal age-related 

disorders though adverse effects (such as immune system 

suppression) are inevitable.  

Astragaloside IV inhibits the mTORC1 signalling in 

microglial and neuronal cells. Administration of 

astragaloside IV to mice induces autophagy and promotes 

M2 polarization in neural cells, thereby inhibiting 

neuroinflammation [113]. Autophagy and interleukin 6 

are key determents of neural aging [114, 115]. 

Lipopolysaccharides (LPS) inhibit autophagy and 

increase IL-6 production via the Akt/mTOR pathway in 

activated macrophages. Astragaloside IV suppresses the 

LPS-induced cellular autophagy and decreases the IL-6 

level by triggering the activation of AMP-activated 

protein kinase (AMPK) to attenuate the mTOR cascade 

[116]. It also attenuates the apoptosis of neural cells by 

activating protein kinase B and phosphoinositide 3-kinase 

(PI3K), while markedly inhibiting the nuclear factor-κB 

(NF-κB) signalling cascade [117]. Here it is worth 

mentioning that there are limited or no data available yet 

to indicate the effect of astragaloside IV in promoting 

mTOR activity in the brain. In Caco-2 cell lines, 

astragaloside II has been found to improve L-arginine 

absorption and to activate the mTOR cascade to promote 

wound closure and cell proliferation. This suggests that 

astragaloside IV may have the capability of triggering the 

activation of mTOR. However, more investigations are 

needed to verify the association between astragaloside IV 

and its role in modulating the mTOR cascade during 

neural aging. Overall, mTOR plays a critical role in brain 

development (particularly in the formation of axons and 

dendrites, neural differentiation, and gliogenesis) and acts 

as a nutrition and growth factor sensor [118], it could be a 

potential target for the astragaloside IV-mediated 

treatment of neural aging. 

 

3.2. Silent information regulator 1 (SIRT1) pathway 

 

SIRT1 is a nicotinamide adenine dinucleotide (NAD+) 

dependent histone deacetylase. It is distributed all over the 

body and governs cellular metabolism by deacetylating 

histones and non-histone polypeptides in response to 

stress [119]. When genotoxic stress appears, SIRT1 

migrates to DNA damage hotspots to lead to the 

upregulation of gene expression for DNA repair [120]. It 

also deacetylates the mitochondrial complexes I and III to 

increase electron transport capacity of mitochondria and 

to inhibit ROS generation [121].  

Astragaloside IV modulates the activity of the SIRT1 

pathway to regulate various cellular mechanisms. An 

intraperitoneal injection of astragaloside IV substantially 

increases SIRT1 expression, inactivates intracellular 

metalloproteinase-9, supresses the levels of pro-

inflammatory cytokines (IL-1 and TNF-α), and hinders 

the nuclear translocation of NF-κB. All these lead to a 

decrease in the brain infarct volume, inhibit neuronal 

apoptosis, and reduces the rate of degradation of protected 

tight junctions [122]. Administration of astragaloside IV 

to mice promotes the expression of SIRT1 and activates 

the SIRT1/Mapt pathway, thereby inhibiting aberrant 

hyperphosphorylation and hyperacetylation of the 

microtubule-associated protein Tau, reducing cerebral 

infarction and rescuing neurological deficits [123]. In 

addition, astragaloside IV can up-regulate the level of 

glutathione (GSH) directly to maintain the structural and 

functional integrity of neurons [61].  

Astragaloside IV recruits the SIRT1/FGF21/PPARα 

intracellular signalling pathway to overcome chronic 

inflammation, insulin resistance and aberrant glycolipid 

metabolism in the liver [124]. Interestingly, two of the 

important proteins of this pathway, namely FGF21 and 

SIRT1, have been reported to have a vital role in neurons. 

For example, FGF21 triggers the activation of PGC-1 

through SIRT1, which promotes a rise in the nicotinamide 

phosphoribosyl transferase level and enhances 

mitochondrial respiratory capacity in the brain [125]. This 

suggests that the SIRT1/FGF21/PPARα pathway may 

have a similar function in the brain as reported in the liver 

to tackle metabolic abnormalities. Further research is 
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needed to validate the association between the 

SIRT1/FGF21/PPARα pathway and neuronal survival so 

as to seek insights into the mechanisms underlying the 

onset and progression of neural diseases and aging at the 

molecular level.   

 

3.3. Glucose metabolic pathway 

 

Insulin plays an essential role in maintaining normal brain 

physiology [126, 127]. The disturbance in insulin/glucose 

metabolism promotes the production of advanced 

glycation products [128] and elevates the cytosolic 

glutamate level in neurons [129], resulting in neuro-

inflammation and an increase in neural mortality. An 

excess of glutamate not only causes aberrant Ca2+ influx 

through NMDA receptors and induces neuronal injury 

[130], but can also trigger ROS production and promote 

neuronal cell senescence [131, 132]. Administration of 

astragaloside IV to glucose- and oxygen-deprived PC12 

cells rescues mitochondria malfunction and ER stress, 

attenuates ROS generation, inhibits the activity of lactate 

dehydrogenase, and hinders apoptosis by activating of the 

p38 MAPK signalling cascade [133]. Astragaloside IV 

improves the levels of insulin, HbA1C, and glucose in 

blood and promotes the activity of glutathione peroxidase. 

Moreover, it inhibits the activity of aldose reductase in 

nerves to suppress the accumulation of advanced 

glycation end products in diabetic mice [39] and triggers 

the activation of the Raf/MEK/ERK pathway to attenuate 

the toxicity of PC12 cells [134].  

More investigations are required to explore the role 

of different glucose metabolism-related signalling 

cascades in determining neuronal aging. For instance, 

while the sterol element regulatory binding protein-1c 

(SREBP-1c) cascade and the protein tyrosine phosphatase 

1B (PTP1B) cascade can negatively affect glucose 

metabolism in hepatic cells [135], the functional role 

played by the SREBP-1c/PTP1B pathway in affecting 

glucose metabolism and hence the process of neuronal 

aging in the brain is not fully understood. This is one of 

the directions that warrant further studies. In addition, in 

muscle cells, astragaloside IV promotes the translocation 

of insulin-mediated glucose transporter 4 (GLUT4) to the 

plasma membrane and activates the IRS-l/PI 3-k/Akt 

signalling pathway to attenuate insulin resistance [136]. 

As IRS-l phosphorylation promotes glucose consumption, 

it is possible that this pathway may play a role in glucose 

consumption in neurons too. Yet, experimental 

verification is required to get an answer.  

 
Figure 5. A schematic diagram illustrating astragaloside IV-mediated regulation of AMPK, SIRT1 and 

mTOR. The green lines represent promotion whereas the red lines represent inhibition. Blue circles represent 

leucine. Red circles represent arginine. Green triangles represent insulin. The diagram shows three distinct areas in 

the cell: the cytoplasm, lysosome, and the nucleus. Reproduced from ref. 145 with permission from Springer Nature. 
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3.4.  AMPK pathway 

 

AMPK is a cellular energy indicator, and crucial to 

cellular homeostasis. Upon activation, AMPK blocks the 

anabolic pathway to conserve cellular ATP [137, 138]. 

Till now, insulin-sensitizing compounds targeting the 

activity of AMPK have been discovered to treat 

hyperglycaemia [139]. Astragaloside IV also shows the 

ability to activate AMPK [140], leading to the down-

regulation of the mTOR/Akt cascade to mitigate the 

effects of neural inflammation [116]. Moreover, AMPK 

enhances not only the viability of stem cells but also 

neurogenesis in the hippocampus [141]. For this, as an 

activator of AMPK, astragaloside IV may potentially 

enhance neurogenesis in specific parts of brain. 

Macrophage polarization shifts from the anti-

inflammatory state to the pro-inflammatory one in an age-

dependent manner, promoting inflammation and inducing 

apoptosis in neurons [142]. Astragaloside IV hinders this 

polarization process and inhibits the transcription of pro-

inflammatory genes such as CD206 to increase the 

proportion of M2 macrophages by activating the AMPK 

pathway [143]. Besides activating AMPK, astragaloside 

IV facilitates the transition of microglia/macrophages 

from M1 to M2 phenotypes to improve neuroplasticity 

and to restore the neurological function [144]. All the 

energy-sensing pathways are interconnected to manifest 

combined effects (Fig. 5) [145]. 

Similar to other energy-sensing pathways, the AMPK 

pathway necessitates further investigation to elucidate its 

role in neural aging. For example, functional deficiency 

of SREBP-1c has been reported to enhance lateral 

ventricle hypertrophy and to lead to impaired 

transmission of GABAnergic neurons [146]. In the brain, 

AMPK-dependent phosphorylation of SREBP-1c is 

known to reduce insulin resistance [140]. Astragaloside 

IV enhances the stability and phosphorylation of SREBP-

1c in hepatic cells to attenuate the ER stress [147], 

suggesting that astragaloside IV has a similar effect in 

promoting the phosphorylation of SREBP-1c and the 

inhibition of SREBP-1 neurons. More studies are needed 

to explore the role played by astragaloside IV in 

modulating the activity of SREBP-1c/PTP1B in the brain 

and the subsequent effects on neural aging. 

 

4. Effects of astragaloside IV on diseases associated 

with neuronal aging  

 

AD is by far the most prevalent neurological disease 

associated with neuronal aging [148]. The hyper-

phosphorylation of the Tau protein, the accumulation of 

Aβ and the formation of neurofibrillary tangles induce not 

only cognitive impairment but also the degradation of 

neurons to lead to the onset and progression of AD [149, 

150]. Astragaloside IV combats various deleterious 

effects of AD by activating the PI3K/AKT and MAPK (or 

ERK) pathways. It also promotes the expression of 

synaptophysins and microtubule-associated protein 2 

(MAP-2) to stimulate dendritic formation and to 

ameliorate cortical cell degeneration and memory loss in 

rats [151]. By activating the PPAR/BDNF signalling 

cascade, astragaloside IV can inhibit the Aβ-induced 

decrease in the BDNF level in the hippocampus and can 

mitigate AD-mediated neuronal anomalies [152]. 

Moreover, it acts as a preferential PPAR natural agonist in 

nerve cells and boosts BACE1 expression to counteract 

the formation of neuritic plaques [153]. More recently, the 

association between microtubule associated protein tau 

(MAPT) and AD has been explored [154]. The hyper-

phosphorylation of MAPT results in the formation of 

neurofibrillary tangles and promotes neural senescence. 

The acetylation of MAPT can reverse these pathogenic 

effects by decreasing neurofibrillary tangle formation 

[155]. Astragaloside IV up-regulates the activity of SIRT1 

to reduce aberrant hyper-phosphorylation of MAPT and 

to modulate the downstream events of MAPT to halt the 

production of neurofibrillary tangles in rats [123]. Finally, 

by attenuating intracellular ROS generation, astragaloside 

IV can inhibit mPTP opening and can reduce the 

mitochondrial superoxide level in SK-N-SH cells to 

increase the neuronal viability [66]. 

Apart from the onset and progression of AD, those of 

Parkinson's disease (PD) (which is characterized by the 

atrophy of dopaminergic neurons in the substantia nigra 

pars compacta and by the reduction in the dopamine level 

in the striatum [156]) can be modulated by using 

astragaloside IV. The possible use of astragaloside IV to 

tackle behavioural deficits caused by 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP)-induced parkin-

sonism has been investigated by Xia and coworkers [157]. 

Astragaloside IV has been found to substantially combat 

the behavioural deficits and to restore cell viability by 

enhancing the expression of caspase 3 protein, by 

increasing the level of p-JNK, and by boosting the 

Bax/Bcl-2 ratio. Astragaloside IV also promotes the lamin 

B1 level and reduces the level of pro-inflammatory 

proteins, thereby protecting dopamine neurons in the 

substantia nigra compact and ameliorating behavioural 

impairments in mice [47]. By activating the 

NFκB/NLRP3 signalling pathway, astragaloside IV 

triggers antioxidant and anti-inflammatory effects against 

MPTP-induced dopamine neurons degradation in mice 

[53]. It also protects nerve cells by reducing the level of 

C/EBP-homologous protein (CHOP) and by inhibiting 

lincRNA-p21 expression to ameliorate the ER stress 

[158]. 
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5. Challenges and future prospects 

 

Toxicity is one of the issues to be considered before 

astragaloside IV is used practically for treatment 

development. This need is partially demonstrated by a 

recent study [159], in which rats have received daily 

intravenous administration of astragaloside IV from day 6 

after gestation to day 15. An increase in the proportion of 

visible dead foetuses has been observed in the treatment 

group. A similar observation has been made in rabbits 

which have been injected intravenously with astragaloside 

IV from day 6 after gestation to day 18 [159]. More 

recently, Wan and co-workers have also reported that 

when Sprague-Dawley rats have been fed with 

astragaloside IV at a dose of 1.0 mg/kg for 28 days, fur 

development, eye opening, and cliff parry reflex of their 

pups are delayed [160]. Astragaloside IV should, 

therefore, be administered cautiously to children and 

perinatal women. Moreover, the altered expression of 

Notch1 is associated with the morbidity of AD [161]. A 

low dose of astragaloside IV up-regulates the expression 

of Notch1; whereas a high dose of it not only does the 

other way round [86] but also impedes nerve regeneration 

[94]. In fact, proper evaluation of the toxicity of 

astragaloside IV is challenging. For instance, 

astragaloside IV triggers the immune system and may 

increase the risk of getting autoimmune diseases in 

patients [162]. It may also induce symptoms (e.g., an 

increase in the nerve conduction velocity and the 

mechanical withdrawal threshold) of neurotoxicity in rats 

[38]. Administration of astragaloside IV has also been 

found to promote the expression of telomerase via 

modulation of the MAPK, JAK/STAT, and CREB 

cascades [163], and to promote the angiogenesis by 

activating the AKT/GSK-3β/β catenin signalling pathway 

[164]. More research is needed to explore the possible 

effect of astragaloside IV on the onset and metastasis of 

cancer because cancer is associated with abnormal 

telomerase activity and angiogenesis. All these suggest 

that administration of astragaloside IV at an improper 

dose may adversely affect the treatment outcome. 

Bioavailability is another factor to be considered 

when astragaloside IV is used as a therapeutic agent. The 

oral bioavailability of astragaloside IV is around 7% in 

dogs and less than 5% in rats [34]. In Caco-2 cells, 

antagonists of P-glycoprotein have shown no effect on the 

cellular uptake of astragaloside IV, suggesting that the 

low bioavailability of astragaloside IV is not caused by 

this efflux protein [165]. Lack of target specificity is 

another factor that may reduce the therapeutic effect of 

astragaloside IV upon administration to a living body. The 

development of nanotechnologies is one possible 

approach to enhance the bioavailability and 

biocompatibility of bioactive compounds [166-171]. This 

is demonstrated by the case of Fe3O4-astragaloside IV 

nanoparticles, which show enhanced stability, high 

aqueous solubility and low toxicity for treatment of 

anaemia [172]. More studies on the design and 

engineering of astragaloside IV-loaded nanoparticles can 

bring a vista of new opportunities for the development of 

new interventions against neural aging. 

Finally, herbal medicines have been widely known as 

a key source of bioactive agents to treat neurological 

disorders and malignancies [173]. They may give a 

synergistic effect when used in combination with 

chemical drugs. For instance, comparing with the rat 

models treated with either astragaloside IV or 

ligustrazine, those treated with both agents concomitantly 

show a more significant size reduction in the cerebral 

lesion area. This is because the combined use of both 

agents can more strongly modulate the activity of 

intracellular regulatory factors of T cells to ameliorate 

neuroinflammation [174]. Using astragaloside IV and 

polyurethane concurrently also dramatically increases the 

levels of neuronal regeneration indicators and promotes 

the proliferation of Schwann cells in mice [175]. Along 

with the observation that the combined use of atorvastatin 

and astragaloside IV can more effectively reduce the 

inflammatory response in mice than either of the two 

agents does [176], integrating astragaloside IV into the 

regimen of chemical drugs is a possible strategy to 

enhance the therapeutic efficiency when treatment is 

developed to tackle neuronal aging. Nevertheless, 

possible interactions of co-delivered agents is a 

complicated problem when multi-drug therapy is applied 

[177-181]. Efforts should be put to evaluate the safety and 

efficiency of astragaloside IV-containing multi-drug 

regimens on a case-by-case basis.  

 

6. Conclusion 

 

Astragaloside IV has a wide spectrum of pharmacological 

activities on the central nervous system [182]. It can 

ameliorate a range of neurological aging hallmarks 

including mitochondrial dysfunction, alterations in 

energy-sensing pathways, abnormal release of Ca+ and 

neurotransmitters, and a decline in cognitive function. 

Astragaloside IV shows the capacity of suppressing 

microglial activation, combating ROS generation and 

inflammation, and enhancing the level of neurotrophins. 

The safety, bioavailability and target specificity are some 

of the factors to be considered when astragaloside IV-

based regimens are adopted to tackle neuronal aging. 

Nevertheless, with the advances in nanotechnologies 

[167, 168, 183], some of the problems (including the low 

bioavailability and lack of target specificity) associated 

with the therapeutic use of astragaloside IV should be able 

to be addressed. Last but not least, till now most of the 
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studies on the biological activity of astragaloside IV are 

performed in vitro or in vivo, studies examining the 

therapeutic effect of the agent in the clinical context is 

lacking. More efforts are needed in the future to not only 

validate the clinical potential of astragaloside IV but also 

to extend the knowledge of the toxicity and 

pharmacokinetics of that agent in a human body.  
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