
      

      
                                                                                                 http://dx.doi.org/10.14336/AD.2019.0521      

 

*Correspondence should be addressed to: Dr. Lina Ma, Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China 

National Clinical Research Center for Geriatric Medicine, Beijing 100053, China, E-mail: malina0883@126.com. 
 

Copyright: © 2019 Ma L et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
 

ISSN: 2152-5250                                                                                                                                                                                       405 
                  

 

  

Review 

 

Understanding the Physiological Links Between Physical 

Frailty and Cognitive Decline 
 

Lina Ma1,2, Piu Chan1,2,3,4 

 
1Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing Institute of Geriatrics, Beijing, 

China 
2China National Clinical Research Center for Geriatric Medicine, Beijing, China 
3Department of Neurology and Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China 
4Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for 

Parkinson’s Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China 
 

  [Received April 9, 2019; Revised May 20, 2019; Accepted May 21, 2019] 

 
ABSTRACT: Declines in both physical and cognitive function are associated with increasing age. Understanding 

the physiological link between physical frailty and cognitive decline may allow us to develop interventions that 

prevent and treat both conditions. Although there is significant epidemiological evidence linking physical frailty 

to cognitive decline, a complete understanding of the underpinning biological basis of the two disorders remains 

fragmented. This narrative review discusses insights into the potential roles of chronic inflammation, impaired 

hypothalamic-pituitary axis stress response, imbalanced energy metabolism, mitochondrial dysfunction, 

oxidative stress, and neuroendocrine dysfunction linking physical frailty with cognitive decline. We highlight the 

importance of easier identification of strategic approaches delaying the progression and onset of physical frailty 

and cognitive decline as well as preventing disability in the older population. 
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Declines in both physical and cognitive function are 

associated with increasing age. Frailty is characterized by 

failure of homeostatic mechanisms and vulnerability to 

adverse outcomes [1]. The prevalence of frailty is 3.5-

51.4% across different geographical regions [2–6]. 

However, there is no consensus regarding the single 

definition of frailty for clinical application. There are two 

major operational definitions for frailty. The most widely 

used concept is the Fried physical frailty phenotype, 

which defines frailty based on three or more of the 

following five symptoms: unintentional weight loss, 

slowness, weakness, exhaustion, and low physical activity 

[7]. Sarcopenia, a condition of loss of muscle mass and 

function, increases the risk of physical frailty and is 

associated with cognitive impairment [8]. The second 

widely used concept is Rockwood frailty index composes 

many clinical conditions and diseases[9] and is a marker 

of deficits accumulation based on comprehensive geriatric 

assessment [10]. Both physical frailty and frailty index are 

associated with late-life cognitive impairment [11,12]. 

Cognitive frailty was defined as the simultaneous 

presence of physical frailty operationalized based on the 
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Fried phenotypic model and mild cognitive impairment 

(MCI) without dementia by an international consensus 

group from the International Academy of Nutrition and 

Aging (IANA) and the International Association of 

Gerontology and Geriatrics (IAGG) [13]. Recently, two 

subtypes of the new construct were proposed: reversible 

cognitive frailty and potentially reversible cognitive 

frailty [14]. An updated version of cognitive frailty model 

is presented in Figure 1. The prevalence of cognitive 

frailty ranges from 10.7% to 22.0% in clinical-based 

setting and from 1.0% to 4.4% in population-based setting 

[15]. Cognitive frailty is associated with increased risk of 

functional disability, poor quality of life, and mortality.  

 

 

 
Figure 1. The model of cognitive frailty. Physical frailty and cognitive impairment have the same 

etiology, and might share the same mechanisms, which lead to adverse health outcomes. The 

decline in physical reserve and cognitive function contribute to frailty and cognitive impairment 

separately. Cognitive frailty is the combination of frailty and cognitive impairment in absence of 

dementia, which is further divided into reversible cognitive frailty (prefrailty and subjective 

cognitive decline) and potentially reversible cognitive frailty (physical frailty and mild cognitive 

impairment).Abbreviations: CF, cognitive frailty; SCD, subjective cognitive decline; MCI, mild 

cognitive impairment; AD, Alzheimer's disease. 
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Understanding the physiological link between 

physical frailty and cognitive decline may allow us to 

develop interventions that prevent and treat both 

conditions and thus, improve independent function and 

quality of life in older individuals. Although there is 

significant epidemiological evidence linking physical 

frailty to cognitive decline [11,12,16], a complete 

understanding of the underpinning biological basis of the 

two conditions remains fragmented. The mechanisms 

underlying cognitive-frailty link are multifactorial since 

inflammatory, nutritional, vascular, and metabolic factors 

may be involved [17]. Sarcopenia may also explain this 

link [15]. Aging is associated with immunosenescence, 

which is characterized by declines in adaptive and innate 

immunity [18]. The central nervous system and the 

immune system are constantly interacting [19]. In 

addition, impaired hypothalamic-pituitary axis (HPA) 

stress responses, imbalanced energy metabolism, 

mitochondrial dysfunction, oxidative stress, and 

neuroendocrine dysfunction may be associated with both 

physical and cognitive decline, and thus may be involved 

in mechanisms underlying the link between physical 

frailty and cognitive decline (Fig. 2). 

 

 

 
 
Figure 2. Overview of the underlying mechanisms linking physical frailty to cognitive decline. 

Chronic inflammation, impaired HPA stress response, imbalanced energy metabolism, endocrine 

dysregulation, mitochondrial dysfunction, oxidative stress, genomic markers and metabolomic markers 

are major underlying mechanisms between physical frailty (muscle) and cognitive decline (brain). 

Chronic inflammation 

 

Inflammaging refers to the low-grade systemic pro-

inflammatory state resulting from the upregulation of the 

inflammatory response driven by multiple factors in old 
age [20,21]. It is characterized by high susceptibility to 

morbidity, frailty, disability, and mortality [22]. Chronic 

inflammation is associated with poor physical 
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performance [23]. Pro-inflammatory cytokines include 

interleukin 6 (IL-6), IL-1β, IL-12, and tissue necrosis 

factor alpha (TNF-α) as well as C-reactive protein (CRP). 

Chronic inflammation contributes to the increased risk of 

frailty, potentially mediated via neurodegeneration [24]. 

TNF-α and IL-6 influence the onset of frailty and 

cognitive decline [25], and CRP levels link muscle quality 

with cognitive function [26]. Anti-inflammatory 

cytokines include IL-10, IL-4, IL-13, and IL-1Ra [27]. 

The deregulated balance between the pro- and anti-

inflammatory status may induce lower physical function, 

thus affecting the central nervous system, and is involved 

in the pathophysiological mechanisms of frailty and 

dementia.  

Frailty is associated with chronic inflammation [28]. 

High levels of IL-6, TNF-α, and CRP were found to be 

associated with poor function and mobility status [29,30], 

lower muscle strength and muscle mass, and frailty in 

older individuals [31–35]. Systemic inflammation 

enhanced inflammatory responses within the central 

nervous system, contributing to cognitive decline [36,37]. 

Peripheral cytokines showed a direct influence on the 

central nervous system [19]. High levels of IL-1, IL-6, 

CRP, and TNF-α were also found to be potentially 

predictive markers for the development of Alzheimer's 

disease (AD) or cognitive decline [38–42]. Some studies 

showed that high levels of CRP were found in senile 

plaques and neurofibrillary tangles in the brain of AD 

patients [43,44]. However, other studies have failed to 

show the relationship between chronic inflammation and 

cognitive decline [45,46].  

IL-6 is the most important cytokine in inflammaging. 

Serum IL-6 levels increase with age, independent of other 

comorbid disease processes [47,48], and are associated 

with poor physical performance (slower gait velocity and 

muscle weakness) and worse cognitive function. Rise in 

serum IL-6 levels are predictive of poor physical and 

cognitive performance, disability, and mortality in the 

older population [30,34,49–55]. IL-6 and the IL-6 

receptor (IL-6R) promote chronic inflammation in the 

central nervous system and contribute to the development 

of AD [56]. Higher IL-6 levels are associated with muscle 

atrophy [57] and global and hippocampal atrophy [58], 

and may account for the association between AD 

pathology and frailty, independent of a dementia 

diagnosis [59]. TNF-α and its soluble receptor had the 

strongest association with muscle mass and strength 

decline in older persons [60]. Moreover, they were 

associated with both functional and cognitive decline 

[61]. Elevated TNF-α levels in the cerebrospinal fluid 

(CSF)[62], serum [63], and brain [64] have been observed 

in AD patients. High plasma TNF-α levels are predictive 

of muscle strength and cognitive declines [60,65]. Soluble 

TNF receptor 1 (sTNFR1) can differentiate between MCI 

and AD and may be helpful in determining the degree of 

cognitive impairment [66]. As an anti-inflammatory 

cytokine, lack of IL-10 leads to increased expression of 

nuclear factor-B (NF-B)-induced inflammatory 

mediators [67], reduced skeletal muscle energy 

metabolism, and reduced release of free energy [68]. 

Moreover, IL-10 was negatively associated with 

executive function and processing speed. Higher 

neutrophil and monocyte counts, as well as lower 

lymphocyte counts, were associated with low physical 

activity [69] and frailty [70]. Elevated fibrinogen levels 

were associated with frailty[28], and decline in cognition 

[71,72], and predicted the onset of cognition deficits [46]. 

Recently, multivariable measures of inflammation 

provided an easier approach to track the progression of 

frailty over time. For instance, the inflammatory index 

score based on IL-6 and sTNFR1 has been shown to best 

describe age-associated chronic inflammation as well as 

predict mortality; moreover, the score was higher in frail 

older adults than in robust participants [73]. An index 

based on seven circulating inflammatory molecules was 

independently associated with deteriorating mobility 

function and frailty risk [74]. The above indexes were not 

studied in cognition. 

 

Hypothalamic-pituitary axis stress response 

dysfunction 

 

The HPA axis dysfunction is a pathway that contributes 

to both physical frailty and cognitive decline. The levels 

of dehydroepiandrosterone sulfate (DHEA-S), 

testosterone and growth hormone (GH) decrease, while 

cortisol levels increase with age [75–77]. Multiple 

hormonal changes play a major role in the development of 

frailty, sarcopenia, cognitive decline and mortality in 

older adults [77,78].  

Cortisol, a lipophilic steroid hormone produced in the 

cortex of the adrenal glands, contributes to vulnerability 

to stressors in frail patients. Frail older adults display 

higher levels and blunted diurnal variation of cortisol 

[76,79,80]. Increased basal cortisol levels contribute to 

cognitive decline and may be associated with decreased 

hippocampal volume in AD patients [81]. Higher levels of 

cortisol were associated with lower brain volume and 

impaired memory in asymptomatic younger to middle-

aged adults [82] and worse performance in cognitive 

domains in adults aged 50 to 70 years [81].  

Reduced testosterone levels may mediate the 

relationship between physical frailty and cognitive 

decline. Age-related depletion of testosterone was 

associated with muscle mass decline [83]. Grip strength 

and physical activity were associated with total 

testosterone levels [84]. Testosterone had protective 

effects on cognition by promoting synaptic plasticity in 
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the hippocampus and regulating the accumulation of Aβ 

protein [77]. Reduced androgen hormone levels may be 

related with both frailty and cognitive decline, and some 

hormonal changes have been shown to directly influence 

skeletal muscle decline and cognition [77,83]. DHEA-S 

was also lower in frail people [85].  

GH levels decrease with age and are related to both 

frailty and cognitive impairment [86]. Learning and 

memory are induced by GH, and GH therapy could 

improve cognition, especially in behavioral disorders of 

the central nervous system [87]. GH-releasing hormone 

therapy has a positive effect on cognition in MCI 

participants [88].  

 

Energy homeostasis dysfunction 

 

Energy homeostasis dysfunction may provide another link 

between physical frailty and cognition. Decreased serum 

levels of the anabolic hormone insulin-like growth factor 

-1 (IGF-1), were found in both frail older adults [89,90] 

and AD patients [91]. Elevated serum IGF-1 levels are 

positively correlated with physical performance [92], 

thigh muscle area and density [93], knee extensor 

strength, and difficulty in mobility-related tasks [94], and 

negatively associated with muscle cell apoptosis [95] and 

poor health outcomes [96]. Both the secretion and 

biological actions of IGF-1 are modulated by pro-

inflammatory cytokines. The negative effect of IL-6 on 

muscle function is exerted through IGF-1[97], while the 

effect of IGF-1 on muscle function depends on IL-6 levels 

[98]. A pro-inflammatory state had a significant 

detrimental effect on frailty; only under normal endocrine 

function, in cognitively impaired older adults [24]. Hence, 

the combined influence in frailty and cognitive decline 

requires greater in-depth exploration. 

Silent mating-type information regulation 2 homolog 

1 (SIRT1) is a key regulator of aging-related metabolic 

changes. Serum SIRT1 levels declined with age [99], and 

low SIRT1 levels were found in both patients with AD 

and MCI [100] and frail participants [101]. Other studies 

showed that increased SIRT1 activity was associated with 

both delayed aging [102] and cognitive decline [103]. 

There is a paradoxical association between low serum 

SIRT1 levels and robustness [104]. A recent study showed 

that higher serum SIRT1 levels in frail older adults were 

associated with slow walking speed [105]. SIRT1 single-

nucleotide polymorphisms (SNPs) and serum SIRT1 

levels in older men were possibly more closely associated 

with nutrition and body composition than with aging and 

age-related conditions [106]. Another study found no 

association between frailty and serum SIRT1 levels [104]. 

Ghrelin contributes significantly to the development of 

both physical frailty and cognitive impairment by 

stimulating gastric acid secretion, regulating glucose 

metabolism and energy homeostasis, and improving 

learning and memory [107]. Frail women had lower levels 

of fasting and 120 min ghrelin [108]. Ghrelin deletion 

prevented the decline in muscle strength and endurance 

by attenuating the decrease in phosphorylated adenosine 

monophosphate-activated protein kinase and increasing 

the number of type IIa muscle fibers [109]. Ghrelin was 

also involved in the neuro-modulation, neuro-protection 

and memory and learning processes [110]. Reduced 

ghrelin levels were associated with MCI in type 2 diabetes 

(T2DM) populations [111] and with metabolic changes in 

AD patients [112]. However, a recent study found that 

ghrelin modulated encoding-related brain function 

without enhancing memory formation in humans [113].  

 

Endocrine dysregulation 

 

Endocrine dysregulation is involved in the progression of 

physical frailty and cognitive decline by accelerating 

immunosenescence, attenuating neuroprotective and 

neurotrophic effects, and promoting muscle catabolism 

[114]. Clegg reviewed evidence on the association 

between frailty and the endocrine system [115]. However, 

the role of endocrine alterations in the etiology of frailty 

and cognitive decline is still poorly understood. 

Circulating adiponectin and leptin have been interrogated 

in many studies with conflicting results.  

Insulin resistance (IR) was associated with incident 

frailty and poor cognitive function [116–119]. Higher 

Homoeostatic Model Assessment for IR index values 

were associated with a higher risk of frailty[120]. AD is 

considered as type 3 diabetes mellitus [121]; IR is an 

important risk factor for cognitive impairment in older 

adults [119,122]. Furthermore, rosiglitazone could 

improve learning and memory ability by normalizing the 

impaired insulin signaling pathway in diabetic rats [123]. 

Vaspin is a visceral adipose tissue-derived serine protease 

inhibitor with insulin-sensitizing effects associated with 

IR. Circulating vaspin levels increased with aging and 

were associated with parasympathetic activity even in the 

absence of metabolic syndrome [124]. Frail older adults 

showed higher levels of vaspin compared to participants 

who did not show frailty [125]. 

Adiponectin is a pleiotropic adipokine inversely 

correlated with adipose tissue dysfunction. 

Epidemiological findings indicate a paradoxical 

involvement of adiponectin in the health status. High 

levels of adiponectin were associated with decreased 

muscle strength [126], grip strength [125], frailty [125], 

increased number of frailty components [127], higher 

incidence of cardiovascular diseases and disability, and 

high mortality rate [128], but a low risk of T2DM [129]. 

Adiponectin levels have been associated with MCI and 

AD, while higher plasma adiponectin was associated with 
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poor cognitive performance, neuroimaging and cognitive 

outcomes in women [130]; in addition, another study 

showed that serum adiponectin was positively associated 

with better cognition in the postmenopausal period [131]. 

The adipocyte-derived hormone leptin regulates body 

weight and metabolism. Its secretion links food intake and 

energy reserves with energy expenditure, growth, and 

reproduction. Higher leptin levels were associated with 

higher risk of frailty, which was modestly explained by IR 

and chronic inflammation [132]. Circulating leptin was 

inversely correlated with gait speed [125]. Increasing 

leptin levels with increasing muscle mass showed positive 

effects on the skeleton mas s[133]. Leptin receptors 

impact cognitive function by affecting hippocampal 

synaptic plasticity[134]. Leptin resistance was linked with 

the development of AD [135]. High levels of leptin were 

associated with improved cognition in T2DM patients 

[136], while other studies found no association with 

function or global cognition [61], and blood leptin levels 

were not correlated with cognition in AD patients [137].  

 

Mitochondrial dysfunction 

 

Mitochondria contribute to the dynamics of cellular 

metabolism and reactive oxygen species (ROS) 

production. Thus, their role in aging has drawn much 

attention over the years. Increased levels of free radicals 

activate the NF-κB pathway. Mitochondrial function has 

been associated with physical function and vulnerability 

to disease in older adults [138–140]. The accumulation of 

mitochondrial and nuclear DNA damage leads to the loss 

of myocytes and muscle wasting [141]. Recent studies 

found that improving mitochondrial function reduced 

metabolic, visual, motor, and cognitive decline in aged 

Drosophila melanogaster [142]. 

Mitochondria are important sources of endogenous 

damage-associated molecular patterns and activate an 

innate immune response [143,144]. Mitochondrial DNA 

(mtDNA) is a known surrogate marker of whole-body 

mitochondrial function [145]. Low mtDNA levels were 

associated with frailty, poor physical strength and 

mortality, while high mtDNA levels were associated with 

better health and longevity [138,139]. Some studies have 

found that mtDNA levels in plasma increased with age 

[146]. Increased plasma mtDNA is a marker of ongoing 

inflammation and better neurocognitive function in 

virologically suppressed HIV-infected individuals [147]. 

However, further investigation is required to elucidate 

how mtDNA activates inflammation during the 

development and progression of physical frailty and 

cognitive decline. 

 
 

Table 1. The potential biomarkers between physical frailty and cognitive decline. 

 
Physiological links Potential biomarkers 

Chronic inflammation  IL-6, IL-1β, IL-12, TNF-α, CRP, IL-10, IL-4, IL-13, IL-1Ra, sTNFR1 

Impaired HPA stress response DHEA-S, GH, Cortisol, testosterone 

Imbalanced energy metabolism IGF-1, SIRT1, Ghrelin 

Endocrine dysregulation IR, vaspin, adiponectin, leptin 

Mitochondrial dysfunction mtDNA 

Oxidative stress ROS 

Genomic markers APOEε4, APOEε3, IL-6 rs1800796, TNF rs1800629, IL-18 rs360722, IL1-beta 

rs16944, COMT rs4680, COMT rs4646316, BDNF, CRP rs1205, IL-10 1082CC, IL-

1α rs1800587, IL-1β rs1143634  

Metabolomic markers LPC 18:2, LPC 18:1 

 
 

Abbreviations: IL, interleukin; TNF-α, tissue necrosis factor alpha; CRP, C-reactive protein; sTNFR1, Soluble TNF receptor 1; HPA, 

hypothalamic-pituitary axis; DHEA-S, dehydroepiandrosterone sulfate; GH, growth hormone; IGF-1, insulin-like growth factor -1; 

SIRT1, Silent mating-type information regulation 2 homolog 1; IR, Insulin resistance; ROS, reactive oxygen species; mtDNA, 

mitochondrial DNA; ApoE, Apolipoprotein E; BDNF, Brain-derived neurotrophic factor; LPC, lysophosphatidylcholine. 

Oxidative stress  

 

Frailty and cognitive decline are associated with oxidative 

stress (OS). OS was associated with accelerated aging, 

normal brain aging, and neurodegenerative diseases 

[148]. Oxidative damage accumulated with age and 

impaired cellular and organ function [149]. ROS 
contributed to skeletal muscle damage [150,151]. A recent 

review showed that frailty was associated with higher OS 

[152]. In the process of frailty, attenuated response of 

skeletal muscle to an increase in ROS levels contributed 

to a loss of ROS homeostasis and increased oxidative 

damage and age-related dysfunction in skeletal muscle 

[153]. Recently, Viña proposed a free-radical theory of 

frailty, postulating that oxidative damage is associated 

with frailty, but not with chronological age itself; their 

research on animals revealed that overexpression of 
antioxidant enzymes could delay the onset of frailty [154]. 

OS is associated with cognitive decline [155]. 

Chronic inflammation possibly alters immunological 
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responses in the brain and further enhanced damage 

progression [156]. A pro-inflammatory environment with 

increased OS leads to endothelial dysfunction, which 

links cognitive impairment and frailty [148]. Thus, OS 

may serve as a common biological pathway that explains 

how physical frailty and cognitive decline are interrelated.  

 

Genomic markers 

 

Genetic background can interact with inflammation and 

other mechanisms involved in the process of physical 

frailty and cognitive decline. Apolipoprotein E (ApoE) 

was associated with lifespan and cognitive function [157]. 

Carriers of the APOEε4 allele had reduced CRP levels 

[158,159], and the association between increased CRP 

level and better cognition was observed only in older 

patients without the APOEε4 allele [160,161]. When the 

aMCI group was stratified by the APOEε4 status, 

significant differences were found in the levels of IL-6 

and IFN-γ between the low- and high-risk groups and the 

control group [162], suggesting that some genetic factors 

are important. The loss of the APOEε4 allele may be a 

vulnerability factor that contributes to the adverse effects 

of HPA axis dysregulation on cognition and has been 

suggested as the main risk factor for late-onset AD, while 

the APOEε3 allele was associated with a more adaptive 

HPA axis response [163]. 

Six genes were associated with frailty and cognitive 

decline in Sargent’s recent review [164]: IL-6 rs1800796, 

TNF rs1800629, IL-18 rs360722, IL1-beta rs16944, and 

COMT rs4680 for cognitive decline and COMT 

rs4646316 for frailty. Brain-derived neurotrophic factor 

(BDNF) is involved in neuronal survival/proliferation 

processes. Decreased BDNF levels were associated with 

cognitive impairment, AD [165] and frailty [166,167]. 

The inhibition or degradation of BDNF antisense RNA 

has been reported to upregulate BDNF mRNA, increase 

BDNF protein levels, and induce neuronal growth and 

differentiation [168]. Thus, the SNP associated with 

BDNF may be related to the decreased plasma BDNF 

levels in frail people [166]. TNF rs1800629 and CRP 

rs1205 have been found to be associated with frailty 

[169,170]. IL-10 1082CC, associated with high serum 

levels of IL-10, was over-represented in centenarians 

[171]. IL-1α rs1800587 and IL-1β rs1143634 were 

significantly associated with AD onset [172]. IL-6 gene 

variation was not associated with increased serum IL-6 

levels or frailty [173,174] and the IL-6 rs1800795 gene 

was not associated with sporadic AD [175].  

 

Metabolomic markers 

 

Metabolomic markers may also contribute to the link 

between physical frailty and cognitive decline. 

Dysregulation of lipid metabolisms, such as higher 

phosphatidylcholine (PC) and lysophosphatidylcholine 

(LPC) levels, play a prominent role in age-related diseases 

such as dementia [176,177]. Many important 

physiological and pathophysiological processes are 

regulated by lysophospholipids and LPC was involved in 

inflammation [178]. Low levels of LPC species, such as 

LPC 18:2 and LPC 18:1, were associated with 

inflammation [179], IR [179], and AD [176]. Recently, a 

longitudinal study found that lower levels of blood LPC 

18:2 were an independent predictor of physical function 

decline in older adults [180]. 

 

Conclusion 

 

Available evidence of the physiological links between 

physical frailty and cognitive decline from the 

observational studies is limited. The above findings 

provided initial insight into the potential roles of chronic 

inflammation, impaired HPA stress response, imbalanced 

energy metabolism, mitochondrial dysfunction, oxidative 

stress, and neuroendocrine dysfunction in the etiology of 

physical frailty and cognitive decline (Table 1). This 

provides important clinical implications for the easier 

identification of strategic approaches delaying the 

progression and onset of physical frailty and cognitive 

decline as well as preventing disability in the older 

population. Reversible functional and cognitive declines 

as defined in the construct of reversible cognitive frailty 

may be a target for secondary prevention for functional 

and cognitive impairment (Fig. 1), future clinical trials on 

biomarker-positive reversible cognitive frailty might be a 

promising direction [15,181]. While many biomarkers 

across multiple physiological systems are strongly 

associated with physical frailty and cognitive decline, it is 

notable that some results tend to be inconsistent between 

different studies, which poses a challenge and urgent need 

for future work on the physiological changes and 

identification of biomarkers for cognitive frailty.  
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