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ABSTRACT: Ischemic stroke, which is the second highest cause of death and the leading cause of disability, 

represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of 

stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, 

the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 

types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype 

after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial 

polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial 

polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed 

into the M2 polarized phenotype. 
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1. Introduction 

 

Stroke is the second leading cause of death and the highest 

disabling disease in the world, with an increasing 

incidence in developing countries [1-3]. China suffers the 

greatest burden of stroke globally, with about 2.4 million 

new cases and 1.1 million stroke-related deaths annually 

[4]. Ischemic stroke induced by arterial occlusion is the 

major cause of strokes and account for ~71% of all strokes 

in the world. The standard treatment for acute ischemic 

stroke is intravenous thrombolysis with tissue-type 

plasminogen activator (t-PA) and endovascular treatment 

which are time-critical [5]. A nationwide population-

based study reported that only approximately 20% of 

stroke patients received thrombolytic therapy within 3 

hours in China [6]. Therefore, it is urgently needed to 

establish other potential therapies.   

Immunity and inflammation play an important role in 

the pathophysiology of stroke [7]. Being the key innate 

immune cells, microglia act as guardians responding to 

various acute brain injuries, including ischemic stroke[8, 

9]. As the resident macrophages of the central nervous 

system (CNS), the morphology and gene expression of 

microglia change while responding to brain injury, such is 
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called microglial activation [10]. Activated microglia is 

one of the most important cellular components of 

poststroke neuroinflammation, which occurs within an 

hour to more than a month, developing four 

morphological states: ramified, intermediate, amoeboid 

and round [11-13]. Age is a critical co-factor for CNS 

diseases. Interestingly, the function of microglial cells 

changed with aging and the morphology of the microglia 

is more de-ramified [14]. Compared with young 

microglial cells, aged microglia activation is amplified 

and prolonged [15]. The existence of an aging-related 

microglial phenotype in the aged human brain is verified 

and it is involved in pathological processes of CNS 

diseases [16].  

Microglia could present different phenotypes in 

accordance with the stimulus, the environment, and the 

period, which is called microglial polarization [17, 18]. 

Similar to macrophages, microglial polarization is divided 

into classically activated (M1, pro-inflammatory) 

phenotype and alternatively activated (M2, anti-

inflammatory) phenotype. Many differences of the 

polarization of these two cell types have been noted [19]. 

Polarized microglia differ from polarized macrophages in 

protein expression, phagocytosis, and injury response. In 

response to inflammatory factor, M2 microglia are more 

protective and tend to maintain the M2 phenotype status 

[20]. The phenotype of microglial cells also changed with 

aging. Aged microglia demonstrated a propensity for the 

development of a pro-inflammatory phenotype with 

increased pro-inflammatory cytokines and inflammatory 

receptors, which is referred to as primed, reactive or 

sensitized [15]. Microglia play an important role in 

various neurological diseases, involving in multiple 

aspects of neuroinflammation, such as cytotoxicity, 

repair, immunosuppression and regeneration at the basis 

of different polarization states [21]. Thus, we make a 

review to discuss the process of microglial polarization 

and summarize the alternation of signaling pathways and 

epigenetic modifications that control microglial 

polarization in ischemic stroke, aiming to find the 

potential mechanisms and drugs by which microglia can 

be shifted from M1 into the M2 polarized type after 

ischemic stroke. 

 
Table 1. Characteristics of M1 and M2 microglia. 

 
 Stimulus Phenotypic markers Substances produce Function 

M1 IFN-γ, LPS 

 

iNOS, TNF-α, MHCII, 

CD86 

 

IL-23, IL-18, IL-12, 

IL-1β, IL-6, TNF-α, NO, 

CCL2, CXCL10, ROS, 

MMP9, MMP3 

Proinflammatory, Phagocytosis, 

Cytotoxicity, Present antigens, 

Kill intracellular pathogens 

M2a IL-4, IL-13 Arg-1, Fizz-1,  

Chitinase3-like 3,  

Chemokines   

IGF-1, CD206,  

Extracellular matrix proteins 

 

Tissue repair; Remodeling of 

extracellular matrix; Phagocytosis 

 

 

M2b Immune 

complex, 

TLRs agonists 

 

IL-10, Cyclooxyge- 

nase 2, Sphingosine 

kinase, suppressor of 

cytokine signaling 3 

IL-1β, IL-6, IL-10, TNF-a 

 

Phagocytosis  

Removal of tissue debris 

M2c IL-10, TGF-β, 

glucocorticoid 

CD163 

 

IL-10, TGF-β 

 

Anti-inflammatory 

Phagocytosis 
 

2. Microglial Polarization 

 

Microglia act as a ‘double-edged sword’ in the CNS by 

representing neurotoxic or neuroprotective functions 

according to phenotypic polarization [22]. M1 polarized 

microglia secrete inflammatory cytokines that lead to 

tissue damage. In contrast, M2 microglia have a 

neuroprotective effect by producing anti-inflammatory 

cytokines, inhibiting nerve injury, and promoting tissue 

repair [23]. M1 microglia are characterized by its 

amoeboid shape, high mobility, producing various pro-

inflammatory cytokines. Interferon γ (IFN γ) secreted by 

T helper 1 cells activates signal transducer and activator 

of transcription 1 (STAT1) factor through Janus kinase 

(JAK)1/JAK2 signaling, inducing M1 microglia to 

produce pro-inflammatory cytokines [24]. Another 

pathway is activited by lipopolysaccharide (LPS) or 

damage-associated molecular pattern (DAMP) 

stimulation accompanied with Toll-like receptor 4 

(TLR4) [25, 26]. Along with producing various pro-

inflammatory cytokines (IL-23, IL-18, IL-12, IL-1β, IL-

6, TNF-α, CCL2, and CXCL10), ROS, NO, and 

proteolytic enzymes matrix metalloproteinase-9 (MMP9) 

and matrix metalloproteinase-3(MMP3) [27-30], M1 

microglia serve as antigen presentation to avoid 

pathogens invasion [31].  

Alternatively, activated M2 microglia are composed 

of three subtypes with unique markers and biological 

function: M2a, M2b and M2c [32]. With the stimulation 

of IL-4, IL-13, M2a microglia display enhanced 
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expression of Arginase-1, Ym1, Insulin-Like growth 

Factor-1 (IGF-1), CD206, chitinase 3-like 3 and found in 

the inflammatory zone1 (Fizz1) [33, 34], mainly 

contributing to cell regeneration. Induced by immune 

complexes and TLRs agonists, M2b phenotype produce 

increased expression of IL- 1β, CD86, suppressor of 

cytokine signaling 3 (SOCS3), IL-1β, IL-6, IL-10, 

involving in phagocytosis and removal of tissue debris 

[35, 36]. When the response of inflammatory shows 

weakened, transforming growth factor β (TGF-β), IL-10, 

and glucocorticoids induce M2c phenotype to help tissue 

regeneration [37] (see Table 1). 

In response to an immune challenge, the process of 

microglial polarization shift towards priming with aging 

[38]. Under the stimulation of LPS, aged microglia 

showed hyperactive response with higher induction of 

inflammatory IL-1 and anti-inflammatory IL-10. And 

aged microglia prolonged the downregulation of the 

fractalkine receptor and failed to up-regulation of IL-4 

receptor[39]. Taken together, the ability of microglia to 

lower inflammation in the brain is impaired. The 

understanding of the aged microglia phenotype and 

function in humans is limited, particularly in the process 

of microglial polarization. Mounting evidence is needed 

to confirm the role of aged microglia polarization in 

ischemia stroke. 

 

3. Microglial Polarization in Neurological Disorders 

 

Although it is oversimplified to divide microglia into the 

M1 and M2 phenotypes, the classification has important 

implications for comprehending the role of microglia in 

CNS diseases [40]. The role of microglial polarization in 

a variety of neurological disorders has been illuminated. 

Targeting M2 phenotype polarization has been proved to 

be a potential therapeutic strategy. In Alzheimer’s disease 

(AD), studies have shown that the dysfunction of M2 

microglia and the excessive activation of M1 microglia 

promote inflammatory pathological injury. Through 

polarization moderation, microglia could induce tissue 

repair and phagocytosis to reduce Aβ levels, alleviating 

AD pathological damage [22]. In AD mouse models, 

DSP-8658 and Bexarotene have proved to enhance 

microglial Aβ phagocytosis[41, 42]. In Parkinson’s 

disease (PD), the dopaminergic degeneration is involved 

in microglial polarization, Rosiglitazone boosts the M2 

phenotype over the pro-inflammatory phenotype 

modulating microglia polarization [43]. Although the 

pathology of amyotrophic lateral sclerosis (ALS) has still 

not been completely understood [44], hirsutella sinensis 

prolongs the lifespan of ALS mice by promoting 

transition of microglial polarization from M1 to M2 

phenotype[45]. In Huntington’s disease, microglial 

polarization affects striatal neuronal dysfunction [46]. In 

multiple sclerosis (MS), M1 microglia have a greater 

ability to present antigens, leading to demyelination and 

neurodegeneration, while M2 microglia protect 

oligodendrocytes and neurons from damage and 

ameliorate disease severity[26]. A recent clinical trial 

showed that anti-pathogenic human endogenous 

retrovirus type W (pHERVW) envelope protein (ENV)-

mediated microglial polarization exerts neuroprotective 

effects in MS[47] (see Table 2). 

 
 

 

  Table 2. Summary of microglial polarization in neurological disorders. 

 
Neurological disorders The function of polarized microglia Model Drugs (M2→M1) 

Alzheimer’s disease (AD) M1 phenotypic inhibits Aβ clearance, while 

M2 phenotypic enhances Aβ clearance. 

Mouse 

model 

DSP-8658 

Bexarotene 

Parkinson’s disease (PD) Dopaminergic degeneration is associated 

with microglial polarization. 

Mouse 

model 

Rosiglitazone 

 

Amyotrophic lateral 

sclerosis (ALS) 

Elimination of apoptotic cells, production of 

growth factors, maintenance of synapse 

structure and function are the main function 

of microglia. 

Mouse 

model 

Minocycline 

Rho kinase 

inhibitor[114] 

Hirsutella sinensis 

Huntington’s disease (HD) Microglial polarization affects striatal 

neuronal dysfunction. 

Mouse 

model 

Minocycline 

 

Multiple Sclerosis (MS)  

 

M1 microglia have a greater antigen 

presenting ability, leading to demyelination 

and neurodegeneration. While M2 microglia 

protect oligodendrocytes and neurons from 

damage and ameliorate disease severity.  

Clinical 

phase  

IIb 

 

Anti-pathogenic 

human endogenous 

retrovirus type W 

envelope protein 

(pHERV-W ENV) 

Neurological disorders The function of polarized microglia Model Drugs (M2→M1) 
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4. Polarized Microglia-based Therapy in Ischemic 

Stroke 

 

While ischemic stroke occurs, the microenvironment of 

microglia has changed and classic (M1) or alternative 

(M2) microglia are polarized responding to peripheral 

inflammation. At the early stage of ischemic stroke, 

microglia tend to assume the M2 phenotype responding to 

acute injury, and then microglia transform into the M1 

phenotype that induces an inflammatory response [48]. 

The mechanism of microglial polarization during 

ischemic stroke involves multiple pathways that have not 

been entirely clear. Present studies showed that the type 

of microglial polarization was decided by signaling 

pathways. Understanding the accurate mechanism of 

microglial polarization, we can find a breakthrough in the 

treatment. In the following, we discuss the transcription 

factors and epigenetic regulation associated with 

ischemia-induced microglial polarization to find out the 

mechanism of microglial M1 to M2 transition (see Table 

3). 

 
  Table 3. Studies of polarized microglia-based therapy in ischemic stroke. 

 
Drug/agent Model Mechanism Effect Reference 

 TWS119 MCAO mice  Wnt/β-catenin 

pathway 

activator 

Modulate microglia to anti-inflammatory 

phenotype 

[115] 

Melatonin MCAO mice 

BV2 microglia 

STAT3 

pathway 

activator 

Decrease expression of pro-inflammatory 

markers and increased expression of anti-

inflammatory markers 

[116] 

HAMI3379 Rat CysLTR 

antagonist 

NF-κB 

pathway 

Inhibit microglia M1 polarization and promote 

microglia polarization toward M2 phenotype 

[117] 

 

β-caryophyllene (BCP) MCAO 

Mice 

TLR4 

pathway 

antagonist 

Decrease the secretion of pro-inflammatory 

cytokines (IL-1β, TNF-α) and polarize 

microglia towards the M2 phenotype 

[118] 

Suberoylanilide 

hydroxamic acid  

MCAO mouse  Histone 

deacetylase 

inhibitors  

Suppresse M1 cytokine expression (IL-6, 

TNF-α, and iNOS) while promoted the 

transcription of M2 cytokines (Arg-1 and IL-

10)  

[119] 

Isosteviol Sodium (STV-

Na) 

MCAO mouse  

BV2 microglia 

miR-146a-5p  Promote M2 polarization and inhibit M1 

response 

[120] 

Baicalein MCAO rat  NF-κB 

antagonist 

 

Reduced expression of the M1 marker (CD 16 

and CD86), and increase expression of the M2 

marker, (CD 163 and CD206) 

[121] 

Berberine 

 

MCAO mice  AMPK 

activator 

Inhibit M1 polarization and promote M2 

polarization 

[122] 

CKLF1 MCAO mice NF-κB 

activator 

Modulated primary microglia skew toward 

M1 phenotype 

[123] 

Exosomes from LPS-

stimulated macrophages 

Rat  Skew the microglial functional polarity from 

M1 toward an anti-inflammatory M2 

phenotype. 

[124] 

Nicotinamide 

phosphoribosyltransferase 

(NAMPT) 

MCAO mice  Inhibite pro-inflammatory microglia, 

promoted microglia polarization toward the 

anti-inflammatory phenotype, 

[125] 

Propagermanium  MCAO mice CCR2 

inhibitor 

Inhibite inflammatory cytokines releasing, 

such as TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-

17, and IL-23, inhibite CD16 expressed in 

microglia. 

[126] 

Glycine  SpragueDawley 

rats BV-2 cells 

NF-κB p65  

inhibitor 

 Inhibite M1 microglial polarization  [127] 

Xuesaitong MCAO mice STAT3 

inhibitor 

Promote the polarization of microglia to an 

M2 phenotype  

[128] 

Sphingosine 1-phosphate 

receptor  

subtype 3 (S1P) 

MCAO mice MAPK and 

Akt 

activator 

Involve its modulation of microglial activation 

and M1 polarization 

[129] 

L-3-n-Butylphthalide MCAO mice  Skewing M1 microglia polarization towards 

M2 

[130] 



Xue Y., et al                                                                                                   Microglial Polarization in ischemic stroke 

Aging and Disease • Volume 12, Number 2, April 2021                                                                              470 

 

α-Lipoic acid  MCAO rat  NF-κB 

inhibitor 

Induced the polarization of microglia to the 

M2 phenotype, modulated the expression of 

IL-1β, IL-6, TNF-α and IL-10, 

[131] 

Hypothermia MCAO mice  Reduce the number of CD16-positive M1 

microglia and increase the numbers of 

CD206-positive M2 microglia 

[132] 

Ischemic 

postconditioning 

Rat  Polarize to a ramified morphology with higher 

expression of M2-like markers 

[133] 

XQ-1H MCAO mice 

BV2  

microglia 

PPARγ 

pathway 

activator 

Regulate microglia polarized from pro-

inflammatory into anti-inflammatory 

phenotype 

[134] 

Salidroside  MCAO mice  Reduce the expression of M1 microglia 

markers and increased the expression of M2 

microglia 

[135] 

Anisalcohol  BV2  

microglia 

NF-κB  

inhibitor 

MAPK 

activation 

Down-regulated the expression of the M1 

marker CD16/32 and up-regulated that of the 

M2 marker CD206.  

[136] 

Fas ligand incapacitation Mouse NF-κB  

pathway 

Alleviate CD4 T cells-induced inflammation 

induce M1 microglia polarization 

[137] 

CD8 receptor MCAO rat  CD8 signaling Repolarize IL4-treated M2 cells to an M1 

phenotype 

[138] 

Hyperforin Mice  Shift from M1 to M2 phenotypes [139] 

Apoptosis signal-

regulating kinase 1  

BV2 microglia   Control the polarization of M1/M2 [140] 

Erythropoietin MCAO mice  Reduce M1 microglia and increase M2 

microglia 

[141] 

Curcumin  MCAO mice  Promot M2 microglial polarization and 

inhibite microglia-mediated pro-inflammatory 

responses 

[142] 

Hydrogen sulfide MCAO mice AMPK 

Pathway 

activation 

Promoted a shift from pro-inflammatory 

phenotypes toward anti-inflammatory 

phenotypes in microglial polarization. 

[143] 

HP-1c Mice AMPK-Nrf2 

pathway 

activation 

 Shift the M1/M2 polarization [144] 

Progesterone Rat  Modulate polarized microglia  [145] 

Long noncoding RNA 

H19 

MCAO mice 

BV2 microglia 

 HDAC -dependent M1 microglial polarization [110] 

Lipoxin A MCAO rat  Increase anti-inflammatory M2 microglia [146] 

Thiamet G  MCAO mice 

BV2 microglia 

NF-κB  

inhibitor 

Decrease expression of the M1 markers, and 

increase expression of the M2 markers  

[147] 

 

4.1 Transcription Factor 

 

Two important transcription factors, c-AMP response 

element binding protein (CREB) and nuclear factor-κB 

(NF-κB), are involved in the mechanism of microglial 

polarization[49]. NF-κB is a traditional transcription 

factor activated by LPS and expressed in many cell types 

in the nervous system [50, 51]. There are five members of 

the NF-κB family, including NF-κB1 (p50), NF-κB2 

(p52), RelA (p65), RelB and c-Rel. More pieces of 

evidence suggest that NF-κB signaling plays an important 

role in inflammatory diseases and has biphasic functions 

in ischemic stroke [51-53]. NF-κB signal pathway is 

related to the expression of M1 phenotype genes (IL-1, 

IL-2, IL-6, IL-12, TNF-α, inducible nitric oxide synthase 

(iNOS), and cyclooxygenase-2 (COX-2)), playing a 

detrimental role in ischemic stroke[50, 54]. The 

expression of matrix metalloproteinases (MMPs) is 

mediated by NF-κB signaling, leading to blood brain 

barrier damage and brain inflammatory cell infiltration 

[55, 56]. CD147 (cluster of differentiation 147) could 

induce extracellular MMP, being a promising therapeutic 

target for ischemic stroke [56]. In contrast, NF-κB p50 is 

a key redox signaling mechanism regulating the M1/M2 

balance in microglia. NF-κB p50 homodimers could play 

a negative role in STAT1 activity and M1 phenotype gene 

transcription, increasing M2 polarized mediators (Arg-1, 

Ym1 and Fizz1) [57]. Lower NF-κB p65 expression has 

potential protective effect by promoting M2 phenotype 

microglial polarization and alleviating inflammation[58]. 

Other transcription factors may regulate microglial 

polarization by influencing the activity of NF-κB. Notch 

signaling promote production of IFN-γ through 

recruitment of p50 and c-Rel, in response to LPS. With 
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NF-κB activation, inflammation and neurotoxicity 

exacerbate ischemic brain damage [59]. The crosstalk 

between Notch and NF-κB inhibits the expression of 

PPARγ which is necessary for the induction of the M2 

phenotype [60, 61]. STAT1 and STAT3 are able to 

increase the expression of NF-κB p65. Inhibiting the 

activation of STAT1 and STAT3 prevents the 

inflammatory reaction caused by brain ischemia, thereby 

reducing the occurrence of infarction and edema. 

In contrast, CREB cooperated with C/EBPβ promote 

tissue repair by amplification of M2-specific gene [62]. 

Confoundingly, the expression of M1-specific genes 

associated with inflammation is also affected by C/EBPβ 

[63]. The role of C/EBPβ in regulating microglial 

phenotypes depends on the competitiveness of CREB and 

NF-κB[64]. CREB-binding protein (CBP) is another 

competition site. The increase of CREB activity has a 

negative effect on the combination of CBP and NF-κB 

[65, 66]. With the activation of TLRs, interferon 

regulatory factor-3 (IRF-3) is phosphorylated and 

interacts with CBP promoting the M2 polarization. The 

RelA/CBP/p300 complex is formed at the same time [67-

69]. In summary, the balance of NF-κB and CREB plays 

a crucial role in the microglial polarization in cerebral 

ischemia [49]. 

In addition, nuclear factor erythroid 2-related factor 2 

(Nrf2) is activated and involved in the anti-inflammatory 

effect of the M2 phenotype microglia, which is a key 

factor of brain endogenous defense system, in response to 

oxidative stress [70, 71]. After the activation of Nrf2, 

neuro-inflammation induced by LPS was inhibited both in 

vivo and in vitro [72, 73]. A study concluded that 

achyranthes bidentata polypeptidek's could inhibit neuro-

inflammation in BV2 microglia through Nrf2 dependent 

mechanism[74]. Through the activation of the Nrf2 

pathway and the inhibition of the NF-κB pathway, 

Biochanin A may contribute to the neuro-protection 

against ischemic injury in rats by anti-oxidative and anti-

inflammatory actions [75]. Other studies conclude that the 

disruption of mTORC1 pathway could shift microglial 

phenotype to decrease brain inflammation [76]. 

  

4.2 Epigenetic Modifications 

 

Besides the transcription factors above, the polarization 

and functional status of microglia require precise 

regulation of target gene expression, which can be 

achieved by epigenetic modifications. Epigenetics refers 

to modifications that do not alter the genetic code but 

control how information is encoded in DNA in a tissue- 

and context-specific manner developmentally or 

environmentally [77]. The mechanisms of epigenetic 

modifications are usually mediated by modifications of 

histones and other chromatin proteins (such as 

methylation, acetylation, and phosphorylation), 

methylation of CpG DNA motifs, hydroxymethylation, 

and non-coding RNA [78, 79]. The epigenetic markers 

histone modification and miRNA involved in microglial 

polarization and activation processes are reportedly more 

than the others [80]. The following summarizes the recent 

findings on the role of epigenetic modifications regulating 

microglial polarization. 

  

4.2.1 MiRNA 

 

MicroRNAs (miRNAs) are small non-coding RNA 

molecules that regulate gene expression post-

transcriptionally. MiRNAs repress gene expression by 

combining with the 3’-untranslated region, coding 

sequence, or 5’UTR of target genes [81, 82]. A total of 

30%–90% of human genes are regulated by miRNAs that 

modulate cell growth, activation, and differentiation [83]. 

M1- and M2-polarized microglia exhibit distinct miRNA 

profiles. Recent research has also defined a role for 

miRNA in microglial polarization [84]. With the 

development of miRNA research, more and more 

miRNAs are related to microglial polarization 

phenotypes. 

It is well accepted that miRNA-155 expression 

promotes M1 polarization by suppressing M2-signature 

genes and that miRNA-124 enhances the M2 phenotype 

by targeting M1 genes [85-87]. In MACO mice, miR-124 

proved to increase the survival of neuron and M2 

microglial polarization [81]. In IL-4 stimulated microglia, 

miR-145 was the most increased miRNA, facilitating the 

M2 phenotype in microglia[88]. Overexpression of miR-

146a contributed to polarization transitions from M1 to 

M2 phenotype in microglia [89]. Isosteviol sodium can 

downregulate miRNA-181b to protect mouse brain with 

ischemia stroke by repressing NF-κB signaling pathways, 

providing a novel therapy for ischemic stroke [90]. 

MiRNA-128 could reduce the M1 phenotypic markers 

and increase the M2 phenotypic markers, promoting the 

viability of microglia [91]. Overall, targeting pro-

inflammatory or anti-inflammatory miRNAs to regulate 

the microglial polarization provides new direction in the 

treatment of ischemic stroke. However, further studies are 

badly in need to clarify the function of miRNAs in the 

switch of microglial phenotype. Additionally, how to 

deliver miRNAs to the central nervous system (CNS) 

through the blood brain barrier (BBB) and prevent the 

degradation of miRNAs are also unsolved. With 

mechanisms of microglial polarization unveiled, targeting 

specific miRNAs may provide major restorative therapies 

and microglial polarization-based therapy will be 

potential future research field of the treatment of ischemia 

stroke [92].  
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4.2.2 DNA Methylation 

 

DNA methylation is an epigenetic process catalyzed by 

DNA methyltransferases (DNMTs). Methyl groups are 

added to DNA nucleotides, which leads to chromatin 

condensation and alteration of gene expression [93]. 

DNMT maintains cytosine methylation through mitotic 

and meiotic cell divisions and is widely expressed in brain 

tissue. The whole DNA methylation in brain is up-

regulated after cerebral ischemia, which may control gene 

expression profile in cerebral ischemia injury [94, 95]. 

Aberrant DNA methylation patterns have been proved in 

cerebral ischemia. Reduced DNA methylation play a 

neuroprotective role in ischemic stroke. Inhibition of 

DNMT1 expression affects chromatin structure and 

increases expression and combination of transcription 

factors (such as hypoxia-inducible factor-1 (HIF-1)) with 

neuroprotective genes [96, 97]. It has been reported that 

there is an intrinsic link between DNA methylation in 

microglia and aging-mediated cognitive deficits [98]. 

However, the role of DNA methylation has remained to 

be further elucidated in microglial polarization in 

ischemic stroke. DNA methylation is a modifiable 

regulation and it is possible that in the future methylated 

or unmethylated genes could be a drug target for stroke 

treatment.  

  

4.2.3 Histone Modifications 

 

The electrostatic interaction of positive charges on 

histones and negative charges on DNA inhibits tightly 

packed chromatin structures[96]. The acetylation of 

histones on lysine residues can neutralize the positive 

charge, thereby disrupting the stability of the histone-

DNA interaction, and subsequently changing the 

concentrated chromatin into an open, loosely packed 

chromatin structure, allowing gene recruitment activators 

or inhibitors of transcription and it can be reversed by 

histone deacetylases (HDACs) activity [99, 100]. It has 

been reported that HDAC inhibitors (HDACi) have anti-

inflammatory effects in neuroprotection [101]. The 

protection of HDACi on microglia polarization is 

involved in its anti-inflammatory effect in the early phase 

of cerebral ischemia, reducing the activation of microglia 

and promote activated microglia to protective phenotype, 

providing a promising therapeutic intervention [102, 103]. 

It has been reported that the inhibition of HDAC1 and 

HDAC2 activity after transient cerebral ischemia 

promotes microglia polarization towards M2 

Phenotype[104]. Valproic acid treatment attenuated the 

inflammatory response by modulating microglia 

polarization through STAT1-mediated acetylation of the 

NF-κB pathway, dependent of HDAC3 activity [105]. 

Enhancer of zeste homolog-2 (EZH2), a histone 

methyltransferase, has been recognized to promote M1 

microglial polarization but repress M2 microglial 

polarization probably via activating STAT3[106]. On the 

contrary, histone 3 lysine 27 (H3K27) demethylase 

Jumonji d3 (Jmjd3) promotes M2 microglial polarization 

but represses M1 microglia polarization [107, 108]. 

Dehydroepiandrosterone (DHEA) is the most abundant 

circulating steroid hormone in humans, TrkA signaling 

activated by DHEA is an effective regulator of 

inflammation through Jmjd3-dependent pathway, 

providing potential treatments for neuroinflammatory 

diseases (Fig. 1) [109].   

Besides above, there are other epigenetic regulations 

contributing to the polarization of microglia in the 

ischemic stroke. Long noncoding RNA H19 promotes 

neuroinflammation by driving HDAC1-dependent M1 

microglial polarization, suggesting a novel H19-based 

diagnosis and therapy for ischemic stroke [110]. MiR-

30d-5p- enhanced adipose-derived stem cells (ADSC) 

derived exosomes prevent cerebral injury by inhibiting 

microglial polarization to M1 [111]. Investigation of 

epigenetic regulation of microglia polarization and 

function is at an early stage and there are many unknown 

areas for future research. Finally, recent breakthroughs 

have opened a new door to epigenetic therapy of ischemic 

stroke. 

More and more evidence has revealed that modulators 

of microglial phenotypes may be a promising therapeutic 

approach for the treatment of ischemic stroke. However, 

fundamental differences of the cellular environment and 

damage-response between macrophages and microglia 

exist, the M1/M2 oversimple classification may not be 

applicable to microglia. Unbiased methods such as 

genome-wide transcriptomics, epigenomics and 

proteomics are urgent needed to aid research progress 

[112]. 

Comprehensive single-cell RNA analysis of CNS 

immune cells identified disease-associated microglia 

(DAM), which is a kind of microglia with specifically 

transcription and function. The emergence of DAM may 

provide a new explanation for the contradictory views on 

the detrimental or beneficial effects of microglia in recent 

years [113]. 

  

5. Conclusion 

 

In cerebral ischemia, the neuroprotective effects of M2-

polarized microglia cells include clearing debris as well 

as promoting tissue repair. Increasing evidence indicates 

that shifting microglial phenotype from the pro-

inflammatory M1 state toward the anti-inflammatory M2 

phenotype may be an effective therapeutic strategy for 

ischemic stroke. Importantly, several signalling 

pathways—such as NF-κB, and Wnt/β-catenin—may be 
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critically involved in microglial polarization in ischemic 

stroke. The underlying mechanisms of microglial 

polarization in ischemic stroke are still not well 

understood and need to be further elucidated. 

 

 
 
Figure 1. Microglia polarization after ischemic stroke. M1 microglia produce pro-inflammatory cytokines to exacerbate neural 

death, astrocyte apoptosis, and blood brain barrier (BBB) disruption. Conversely, M2 microglia produce anti-inflammatory 

cytokines to maintain BBB integrity, promote the proliferation and differentiation of neural cells and tissue repair. 
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