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ABSTRACT: White matter lesion (WML), also known as white matter hyperintensities or leukoaraiosis, was first 

termed in 1986 to describe the hyperintense signals on T2-weighted imaging (T2WI) and fluid-attenuated 

inversion recovery (FLAIR) maps. Over the past decades, a growing body of pathophysiological findings 

regarding WMLs have been discovered and discussed. Currently, the generally accepted WML pathogeneses 

mainly include hypoxia-ischemia, endothelial dysfunction, blood-brain barrier disruption, and infiltration of 

inflammatory mediators or cytokines. However, none of them can explain the whole dynamics of WML 

formation. Herein, we primarily focus on the pathogeneses and neuroimaging features of vascular WMLs. To 

achieve this goal, we searched papers with any type published in PubMed from 1950 to 2020 and cross-referenced 

the keywords including “leukoencephalopathy”, “leukoaraiosis”, “white matter hyperintensity”, “white matter 

lesion”, “pathogenesis”, “pathology”, “pathophysiology”, and “neuroimaging”. Moreover, references of the 

selected articles were browsed and searched for additional pertinent articles. We believe this work will supply 

the robust references for clinicians to further understand the different WML patterns of varying vascular 

etiologies and thus make customized treatment. 

 

Key words: cerebral white matter lesion, neuroimaging, pathomechanism, cerebral vascular disease 

 

 

 

 

 
The term of white matter lesion (WML), also known as 

“leukoaraiosis (LA)” or white matter hyperintensity 

(WMH), was originally reported by Hachinski et al. in 

1986 to define the hyperintense signals of cerebral white 

matter (WM) on T2-weighted imaging (T2WI) and fluid-

attenuated inversion recovery (FLAIR) maps [1]. 

Typically, the patterns of WML may present as multifocal 

or diffuse lesions with different sizes, shapes and 

locations. Through decades of unremitting efforts, 

numerous theories and models have been developed to 

unravel the pathophysiological alterations of WML. 

Current findings reveal that WML is a broad concept 

involved multiple origins, such as genetic predisposition, 

age-related susceptibility, vascular anomalies, infection 

and toxication. Among them, the ischemia is assumed to 

be the most predominant cause of WMLs [2], and 

cerebrovenous disorder related WML, as a newly 

recognized WML subtype, is still under research to date. 

Literatures describing significant insights into the 

pathophysiological underpinnings of WML are also 
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available, such as hypoxia-ischemia, endothelial 

dysfunction, blood-brain barrier disruption and 

infiltration of inflammatory mediators or cytokines [3, 4]. 

However, none of them can entirely explain the whole 

dynamic process of WML formation, posing a challenge 

to conduct more intensive research in this field. In 

addition, evidence indicates that WMLs are closely linked 

to clinical deficits, such as headache, mobility disorder 

and even cognitive impairment [5, 6]. Notably, the 

association of vascular WMLs and intellectual 

impairment is currently a concerning territory in 

neurodegenerative disorders and aging.  

Given the facts above, this review aims to improve 

the understanding of pathogeneses and imaging features 

of WMLs in cerebrovascular diseases. Despite the arterial 

WMLs are reported widely, this review mainly focuses on 

the cerebrovenous anomaly related WMLs. For this 

purpose, we firstly present current knowledge across the 

anatomic features, neuroimaging characteristics and 

clinical relevance of vascular WMLs. Then, we discuss 

the potential pathomechanisms that involved in vascular 

WML formation and progression. Moreover, the potential 

association between vascular WMLs and cognitive 

decline is also briefly reviewed in this study. We outline 

some future investigational directions as well and hope 

this review will spark more studies in the future. 

 

1. Normal white matter 

 

1.1 Anatomic structure  

 

Both neurons and glial cells are components of the central 

nervous system, in which, oligodendrocytes, a subtype of 

myelin-producing glial cells, form the myeline sheath to 

surround and protect axons [7, 8]. Anatomically, as 

displayed in Figure 1, the myelinated axons and glial cells 

(astrocytes, oligodendrocytes, pericytes and microglia) 

are morphological and functional coupled, constituting 

jointly as the cerebral white matter (WM) and holding 

accountable for the normal appearance of WM. Any kind 

of damage in WM composition (for example, myelin 

pallor, demyelination, axonal loss, gliosis, 

oligodendrocyte apoptosis and edema) may change the 

normal structures of WM and result in WM 

hyperintensities on magnetic resonance scans [9].  

 

 

 

 

 

 

 

 

Figure 1. A sketch drawing of central 

nervous system. Top: The myelinated 

neurons coupled with various glial cells 

composed of the NAWM. Bottom: The 

neuron damage, demyelination, 

oligodendrocyte edema, and microglial 

activation all may contribute to the WML 

formation. Note: NAWM indicates 

normal-appearing white matter; WML 

indicates white matter lesion. 
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1.2 Blood supply  

 

WMLs are typically divided into periventricular white 

matter (PVWM) and deep subcortical white matter 

(DWM) lesions [10], as the vascular anatomy and 

pathogenic mechanisms are different in these two areas. 

In detail, the blood supply in PVWM area primarily 

comes from the ventriculopetal medullary and/or 

penetrating branches, which are terminal arteries almost 

devoid of collaterals. In this regard, PVWM is believed to 

be the most vulnerable area to circulatory under-perfusion 

[10-12]. Prior evidence showing that carotid 

atherosclerosis, a major contributor to cerebral 

hypoperfusion, preferentially predisposed to PVWMLs 

but not to DWMLs was consistent with such a blood 

supply feature [13]. Conversely, the blood supply in 

DWM area includes many short branches arising from the 

long penetrating arteries and harbors anastomoses among 

the feeders [11, 14], which on the one hand confers some 

protection to the DWM area against hemodynamical 

insults; on the other hand, renders the DWM more 

vulnerable to small vessel diseases, since these small-

sized branches and anastomoses are the core substrates for 

fibrohyalinotic changes with wall thickening and luminal 

narrowing [10].  

The differing vascular supply and lesion pre-

disposition between PVWM and DWM further suggest 

that the WMLs are vessel-related events. Particularly, it is 

noteworthy that U-fibers, the strips of juxtacortical WM 

connecting the adjacent cortex, are nourished by dual 

blood supply: the long penetrating medullary branches 

and the shorter cortical arterioles, and are thus mostly 

escape from the hypoperfusion-related injuries [11], 

which further portends the potential correlation between 

inadequate perfusion and WML occurrence. 

 

2. White matter lesion 

 

2.1 The imaging modality     

 

The good performance of FLAIR in WML detection was 

introduced by former studies [15-17]. In details, the 

FLAIR sequence can suppress the cerebrospinal fluid 

(CSF) as dark signals, while preserve the WM edema or 

lesions as brighter signals than those of normal WM, 

whereby providing insight into WM structural changes. 

However, the FLAIR technique may overestimate the 

WML extent due to the partial volume effects and/or the 

fuzzy WML boundaries [16], and be prone to false 

positives for the hypertense artifacts (i.e., WM edema) 

[15]. In contrast, the T2WI enables the simultaneous 

enhancement of both CSF and WMLs, co-presenting as 

hyperintensities [15]. Hence, using the T2WI alone is 

unable to differentiate WMLs from some misleading 

signals, such as the enlarged perivascular (Virchow-

Robin) spaces, which contain CSF and appear as 

hyperintensities on T2WI as well [15, 18]. As described 

above, although both FLAIR and T2WI can exhibit the 

hyperintense WMLs, the extent of WM hyperintensities 

may not be the same on such two sequences. And the 

complementary usage of FLAIR and T2WI will optimize 

the WML detection and reduce false positives [19]. 

However, accumulating evidence claimed that subtle 

WM tract disintegrates might have developed in a step-

wise manner preceding the visible WMLs on MRI maps, 

and novel imaging sequence, such as diffusion tensor 

imaging (DTI), could shed light for such tiny WML 

research [20]. Briefly, DTI studies can map the 

microstructural WM that is unable to be imaged by 

conventional MRI technique, through measuring the 

directionality and rate of the water mobility that typically 

enabled by the fractional anisotropy (FA) and mean 

diffusivity (MD) [21]. The status of WM integrity can be 

inferred from DTI-assisted measures, since the water 

molecules tend to move more rapidly along the axonal 

orientation and the aligned tracts on DTI-based scanning 

mostly represent the primary direction of axons in the 

brain [22, 23]. Therefore, DTI maps are able to provide 

details regarding the integrity of WM tracts at the 

microscopic level, as the diffusion signals may be 

imprinted once the displacement of water molecules is 

interrupted [24]. Of note, the earlier WM changes 

reflected on DTI maps may be reversible, which occur 

prior to but may progress into demyelination and axonal 

damage if not treated timely [21]. Besides, the altered 

microstructures identified in the normal-appearing WM 

(NAWM) areas may be the causes of memory decline, 

cognitive impairment, late-life depression and so on [25, 

26]. It is hence of particular significance to recognize the 

invisible WM changes earlier aided by the DTI 

techniques, to thwart or reverse further WM damage in the 

sense of its clinical impacts. 

 

2.2 Fazekas scale for WML evaluation  

 

WML is a group of heterogeneous diseases with diverse 

pathologies, clinical course and therapy options that are 

considered highly related to the severity and location of 

lesions, and more specifically, to the lesion patterns [27]. 

Several visual rating scales have been devised to assess 

the severity of WMLs based on MRI maps [28]; among 

which, the Fazekas scale, first brought forward in 1987, is 

the most widely used one in clinical settings due to its 

convenience. A graphic illustration of Fazekas scale is 

shown in Figure 2. According to Fazekas scale, the 

PVWM and DWM are scored separately on two 3-point 

criteria. PVWML assessment: no lesions (score 0), caps 

or pencil-thin linings (score 1), smooth halos (score 2) and 
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irregular signals extending into the DWM (score 3); 

DWML assessment: no lesions (score 0), punctate foci 

(score 1), early confluences (score 2) and large confluent 

lesions (score 3). The overall degrees of WML are equal 

to the sum of PVWML and DWML scores (score range 

0–6) [29]. 

In fact, the heterogeneity in WML patterns may partly 

indicate different etiologies and histopathologic 

correlates. Concretely, the periventricular caps or pencil-

thin linings and smooth halos may evolve from a similar 

histopathological pattern that associates with 

demyelination, myelin pallor, discontinuity of the 

ependymal lining and subependymal gliosis [10, 30]. 

Intracranial hypertension and other systemic diseases may 

possibly induce hypoperfusion and hypoxia of the entire 

brain, instead of local cerebral ischemia, and are usually 

responsible for their formation [10, 30]. In contrast, 

irregular periventricular hyperintensities and DWM 

abnormalities are prone to associate with patchy myelin 

rarefaction and tissue necrosis around the perivascular 

spaces, in which the local vascular ischemia appears to 

play a dominant role. Specifically, irregular peri-

ventricular lesions are more likely to result from chronic 

hemodynamic ischemia, whereas microangiopathy is 

more pronounced in DWMLs [10]. Besides, punctate 

lesions are more likely characterized with mildly ischemic 

tissue damage caused by thickened arteriolar walls, while 

early confluent and confluent lesions in DWM are 

frequently determined by more extensive and complete 

tissue damage attested to the ischemic insults [30]. 

 

 
Figure 2. The schematic diagram of Fazekas scale to semi-quantitatively quantify the WML severity. For PVWM: no 

lesions, score 0; caps or pencil-thin linings, score 1; smooth halos, score 2; irregular lesions extending into the DWM, score 3. 

For DWM: no lesions, score 0; punctate foci, score 1; early confluences, score 2; confluences, score 3.  Note: PVWM indicates 

periventricular white matter; DWM indicates deep subcortical white matter. 

2.3 Risk factors and clinical significance of WML  

 

A plethora of observations concluded that WMLs were 
increasingly prevalent in the elderly with a detectable 

ratio at about 90% among individuals over 60 years in 

general population [31, 32]. Besides, WML may also 

progress if exposure to hypertension, diabetes mellitus 

(DM) and other vascular risky profiles [33]. Among 

which, hypertension mainly imposes hypoxia-ischemia 
and hypoperfusion on cerebral WM, as a corollary of 

microvasculature structural lesions caused by the 

mechanical stress of hypertension, which is also the 



Wu X., et al                                                                            Various pathogeneses and imaging features of WMLs 

Aging and Disease • Volume 12, Number 8, December 2021                                                                        2035 

 

reason why hypertensive individuals are likely exposed to 

greater WML volume [34]. Yet only a relatively weak 

association is found between DM and WMLs [35, 36], 

although diabetes can also predispose to cerebral vascular 

disorders. And the excessive inflammation, activated 

oxidative stress, as well as the consequent dysfunction of 

endothelia and vascular smooth muscle cells are the 

proposed alterations in diabetic vessels [36, 37]. 

Importantly, it is possible that the well-control of these 

modifiable factors will to some degree prevent the WML 

towards progression. In support of this, a large 

longitudinal study has been conducted and concluded that 

the chance and severity of hypertension-related WMLs 

could attenuate with the blood pressure being well 

controlled [38]. 

In clinical situation, WMLs are closely related to 

various geriatric disorders, such as cognitive decline, 

dementia and stroke [31], albeit their great clinical 

relevance, current evidence as to their precise 

pathological mechanisms are still inconclusive, possibly 

due to its complex and multifactorial pathologies. In this 

review, the presumed WML pathogeneses and patterns 

arising from vascular origins, including large-artery 

stenosis, small vessel disease, cardiogenic embolism, 

cerebrovenous disease and arteriovenous fistula, will be 

particularly outlined with the exclusion of WMLs 

secondary to neuroinfection, neurodegeneration, 

neoplastic or toxic origins and so forth.  

 

2.4 Vascular pathology and WML in the aged brain 

 

Cerebrovascular pathological changes and WMLs may 

positively correlate with the dynamics of aging. Studies 

have detailed the large artery stiffness in the aged brain, 

which featured with the loss of elastin and medial muscle 

fibers that gradually replaced by the stiffed collagen [39, 

40]. Under physiological condition, the rich contents of 

elastic tissues allow large arteries to buffer the pulsatile 

flow generated by the heartbeat. Apparently, when large 

arteries become stiffened with elastin fatigue and 

accumulated collagen, the subsequent pulsatile flow in 

downstream vessels may induce microvascular alterations 

and escalate hemodynamic stress instead. Besides, 

excessive flow pulsation is regarded as the condition 

involving the endothelia-based oxidative stress and a 

stimulus to endothelial dysfunction [41, 42]. Aging is also 

known to change the structures of cerebral arterioles, 

probably through the elongation of vessels and the 

compromised elastic fiber integrity, thus leading to 

arteriolar tortuosity [43]. Interestingly, investigators 

found that the WM tissues around the tortuous arteries 

were frequently lost and the arterial tortuosity was more 

apparent in WML areas [44]; such findings further lent 

weight to the possible relationship between arterial 

tortuosity and lesions. The microstructural changes of 

capillary beds in the grey population may play a pivotal 

role in age-specific WMLs. Degenerative capillaries may 

develop with disrupted microvascular integrity, decreased 

number of endothelial cells, perivascular collagen 

depositions and the resultant basement membrane 

thickening during the aging process [45]. Cerebral 

endothelial dysfunction is considered paralleled with such 

an altered microvasculature, which may be accountable 

for the impaired endothelial-dependent vasodilation [46]. 

In addition, endothelia dysfunction is also the cause of 

BBB damage that renders the blood constituents leak into 

the WM areas and damages the WM structure with visible 

lesions [47]. Aging-related vascular modeling occurs in 

cerebral venous system as well, characterized by the 

collagenous thickening of venous walls with narrowed 

and even occluded lumen, so as to maintain the venous 

tensile strength to adapt the increased arterial pulsatile 

pressure caused by age-associated arterial stiffening [46]. 

Clearly, the incidence of internal jugular venous reflux 

(IJVR) also increases with natural aging [48], partly 

owing to the age-related degenerative changes of venous 

valves. Both venous collagenosis and IJVR may induce 

WML formation and accelerate its burden accumulation 

in the elderly [44, 48].  

Building on the present evidence, it was suggested 

that the prevailing neuroimaging features of age-related 

WMLs encompassed PVWM caps or lining lesions and 

punctate DWM changes, which could be observed in more 

than half of asymptomatic elderly [27]. Besides, frontal 

and parietal lobes were in lesion predominant as ever 

observed in normal elderly [32]. Surprisingly, 

symptomatic variability may associate with the lesion 

locations. For instance, lesions around the frontal horns 

are likely the detriments of executive disability in the 

healthy elderly, and those around the posterior horns may 

be the culprits of memory decline [49], whereas 

subcortical lesions are more pronounced in late-onset 

depression [50]. 

 

3. Cerebroarterial disease and WML 

 

3.1 Large-artery stenosis and WML 

 

Large-artery stenosis (LAS) is defined as more than 50% 

stenosis or occlusion of intra- or extra-cranial arteries 

[51]. One case-control study deciphered the scattered and 

round, patchy or fused lesions with clear-defined margins 

arising as a result of arteriostenosis [52]. Yet, there existed 

incongruency results among the studies regarding the 

interplay between WMLs and LAS.  

 

3.1.1 Intracranial large-artery stenosis and WML  
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Intracranial large-artery stenosis (iLAS) is a group of 

diseases associated with cerebrovascular ischemic events 

enabled by varying mechanisms [53]. Abundant 

literatures showed that hemodynamic ischemia secondary 

to iLAS, irrespective of single or multiple stenoses, may 

contribute to WML formation in both stroke-free and 

stroke patients [54-56]. Indeed, vascular hazard factors, 

such as greater age, hypertension and probably the DM, 

which can themselves result in damaged WM independent 

of arterial stenosis as delineated above, often coexist with 

LAS. With iLAS per se and accelerated by the preexisting 

hazard factors, it is therefore not surprising that iLAS has 

long been linked to the higher WML risk. Paradoxically, 

an earlier study based on a Chinese population with stroke 

failed to find the association between iLAS and WML 

formation [57]. Perhaps a cross-sectional design and a 

relatively small sample size may account for such 

conflicting outcomes.  

 
3.1.2 Extracranial large-artery stenosis and WML 

 

The relationship between extracranial LAS (eLAS), 

especially the carotid artery, and WML severity remains 

controversial. Chutinet et al. implied that extracranial 

carotid artery (ECA) stenosis might impair cerebral 

perfusion and was to blame for the WML deterioration 

after eliminating the influence of iLAS [58]. Likewise, a 

similar finding was reported on one earlier observational 

study consisting that ECA stenosis might compromise the 

cerebrovascular autoregulation and add harm to the 

WMLs [59]. However, some studies failed to replicate the 

positive association between ECA stenosis and WMLs. 

For example, a large cohort study performed by Potter et 

al. indicated that ECA stenosis had little effect on WML 

load, if any, a third associated mediating factor, such as 

advanced age, hypertension or DM, might be accused 

[60]. One possible explanation for these inconsistencies 

may be that most of them came from cross-sectional and 

retrospective studies. 

In corroboration of the above, existing evidence 

regarding the deleterious effects of LAS on WML burden 

remains obscure and confirmatory investigations are 

warranted. First of all, LAS itself may limit the blood flow 

in WM areas that nourished by the distal small arteries, 

since large arteries are interconnected with small arteries 

or arterioles and the blood flow is transported from the 

former to the latter, which can be supported by the 

recovered cerebral perfusion in WM regions followed 

with the carotid endarterectomy [61]. Actually, this 

insight was first illustrated by Fisher et al. in 1979 in one 

case series that penetrating branches extending from the 

middle cerebral artery (MCA) were occluded by the 

unstable atheromatous plaques of MCA through the 

artery-to-artery embolic mechanism [62]. And our 

previous study lent support to such a theory showing that 

cavities could be generally found in patients with cerebral 

LAS [52]. These findings indicate that upstream vessels 

can act on those downstream, namely the concept of 

‘‘large and small artery cross-talk.’’ Conversely, a 

dramatically different explanation proposed by Masawa et 

al. for their negative association was that the large artery 

atherosclerosis, be it intra- or extra-cranial, could protect 

cerebral small arteries from medial smooth muscle cell 

necrosis for the above-normal serum cholesterol and the 

lesser tensile stress in vascular walls, as well as the 

reduced intraluminal pressure that followed [63]. Besides, 

the reduced blood flow due to LAS may closely relate to 

the exhausted cerebrovascular reactivity (CVR), an ability 

in response to vasodilatory stimulus in ischemic zones for 

blood flow redistribution and ischemia resistance [59]. 

The impaired vasodilatory capability is identified 

significantly attributable for the heavier WML burden, as 

it may lead to the reduction of cerebral perfusion [59, 64, 

65]. In general, the lesions located at the periventricular 

walls are preferentially precipitated by impaired CVR, 

since the WM in periventricular walls is irrigated by the 

terminal branches with scarce or absent anastomoses and 

thereby more sensitive to hemodynamic instability [66]. 

 

3.2 Cerebral small vessel disease and WML  

 

The term cerebral small vessel disease (CSVD), as 

suggested by its name, was primarily used to denote the 

pathological changes of small arteries, arterioles, 

capillaries, small veins and venules, but now, it is more 

often referred only to the pathological alterations of 

arterial origins, for which, another term “arterial small 

vessel disease” was once raised by Pantoni et al. to rename 

this disorder [67]. While the venous component is 

described as venous collagenosis [68], which will be 

introduced in more detail after, and now we return to the 

arterial part first.  

CSVD refers to a broad category of complex diseases 

with intricate mechanisms and is classified into six types 

accordingly [67]. Of these types, arteriolosclerosis (type 

1) and cerebral amyloid angiopathy (CAA, type 2) are 

known to comprise the most CSVD cases. Clinically, 

CSVD is known as a second leading cause of cognitive 

decline and dementia after Alzheimer’s disease in the 

elderly and a key reason for stroke-prone [67, 69]. 

Radiologically, compared to large-artery disease, small 

vessels are too tiny to capture their underpinning 

pathological alterations on conventional MR 

angiography, and CSVD diagnosis is mainly based on the 

interpretation of parenchymal lesions presented on 

neuroimaging [70]. Notwithstanding the heterogeneity in 

etiologies, CSVD of varying types share homogeneities in 

neuroradiologic markers, covering the WMLs, lacunes, 
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cerebral microbleeds (CMBs), enlarged perivascular 

spaces (EPVS) and brain atrophy. Considering these 

markers themselves are individually associated with 

certain clinical impacts, recently, a total CSVD score was 

proposed to capture the global CSVD burden based on the 

combined occurrence of 4 MRI-detected markers as 

followed [71]: (1) irregular PVWML extending into the 

DWM (Fazekas score 3) or confluent DWML (Fazekas 

score 2 or 3); (2) lacunes; (3) CMBs; and (4) moderate to 

severe (>10) EPVS in the basal ganglia. One point is 

allocated to each of these indicators in this score, creating 

an ordinal scale ranged from 0 to 4 points. Previous 

analyses have tried to prove that the CSVD score might 

predict the initial and recurrent stroke risk in the ischemic 

population [72, 73], and cognitive decline in the diseased 

population [74-76]. In line with these literatures, a 

community-based study with long-term follow-up 

established that a CSVD score of 3-4 may be predictive of 

a higher risk of stroke events and dementia [77]. However, 

a recent research held the view that this score may not 

have additional predictive value in stroke outcomes as 

compared with the usual predictors (i.e., age and baseline 

NIHSS) [78]. Integrating these findings, the CSVD score 

may have practical use in assessing the clinical prognosis, 

yet its cutoff points that relate to the prevalence of stroke 

or dementia need deeper exploration and should be a 

priority for future research. 

It is worthwhile to mention that WML is the most 

prominent one among the radiological evidences of 

CSVD [4], frequently ranging in severity from spots, 

patchy, to almost-confluent or confluent hyperintensities 

and arranging symmetrically in bilateral hemispheres [3]. 

Nevertheless, the pathogeneses underlying the CSVD-

induced WMLs are as-yet unclear. We will take the two 

major CSVD types, the arteriolosclerosis (type 1) and the 

cerebral amyloid angiopathy (type 2), as representative 

examples to review the CSVD-associated WMLs in the 

following paragraph. 

 

3.2.1 Arteriolosclerosis and WML 

 

Type 1 CSVD, caused by arteriolosclerosis, whose 

prevalence is strongly associated with advanced age and 

hypertension, is featured with the fibroid necrosis and 

lipohyalinosis in vascular walls [3]. First and foremost, 

such arteriolar changes likely predispose the lumen of 

small vessels to progressive stenosis or even occlusion 

with reduced cerebral blood flow (CBF) and extensive 

tissue ischemia, whereby leading to varying degrees of 

myelin loss, astrogliosis, oligodendrocyte and axonal 

necrosis [79]. However, contradictory viewpoint went 

that the WMLs may be the cause rather than the result of 

the reduced CBF, since the lesion possibly formed prior 

to the reduced CBF in the affected tissue [80]. An 

illustration for such a finding was that CBF was less 

needed to supply nutrients and remove wastes in the 

damaged WM areas, where normal tissue was reduced and 

hence in low metabolic demand [80, 81]. Secondly, the 

arteriosclerotic conditions may cause the small vessels 

lose elasticity and become stiffened and unreactive, hence 

being unable to dilate or constrict in response to the 

hemodynamic variations, that is, the reduced 

cerebrovascular reactivity (CVR) [82]. Importantly, the 

existence of CVR deficits might precede the formation of 

lesions, and areas with impeded CVR had higher 

frequency to occur WMLs as observed by Sam and 

associates [65, 83]. These findings lent support to the 

notion that impaired CVR may act as an etiologic role in 

the WM diseases, and can be interpreted that reduced 

CVR may expose the WM to hypoperfusion due to its 

inability to preserve blood supply [65, 83]. Last but not 

least, it appears that the blood–brain barrier (BBB) high-

permeability is also an indispensable event in the cascade 

of small vessel pathology [84]. Clearly, the vascular 

lesions of CSVD may bring harm to the BBB 

architectures, including the endothelial cells, cellular tight 

junctions (TJs), adhesion molecules and basement 

membranes, hence lead to the breaches of BBB with 

inevitable leakage of blood components into the WM and 

cause diffuse tissue damage [85, 86]. There was evidence 

suggesting that the NAWM around the visible lesions may 

also suffer from the elevated BBB permeability and be 

seen as candidates for future lesion growth [87]. Notably, 

as arteriolosclerosis has a strongly hypertension-related 

prevalence, type 1 CSVD is also named hypertensive 

vasculopathy [67]. Moreover, anti-hypertensive 

medications have proved effective in protecting the 

baseline WML against expansion [88].  

 

3.2.2 Cerebral amyloid angiopathy and WML 

 

Type 2 CSVD, namely cerebral amyloid angiopathy 

(CAA), is an age-associated vasculopathy characterized 

by deposits of vascular β-amyloid (Aβ) in cortex and 

meninges [89]. It may possibly occur owing to the loss of 

smooth muscle cells and the impaired Aβ clearance in 

the vascular media and adventitia with increasing age 

[90]. Ample evidence has established a causal link 

between CAA and WMLs [91, 92], presumably being the 

result of the interaction of several mechanisms. 

Additionally, early studies have emphasized that Aβ 

peptides are disproportionately prominent in occipital 

lobes, where the CAA-related WMLs also tend to be the 

most severe, hinting that vascular Aβ may exert an effect 

on the WM [89, 93]. This idea was supported by a finding 

that CAA-related WML level is dependent on the Aβ 

burden, raising the surmise that Aβ burden may be a 

predictive surrogate for CAA severity [92]. The 
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mechanisms that mediated Aβ-associated WMLs may 

include the following: Firstly, vascular amyloid 

deposition admixture with the smooth muscle loss may 

impair the vascular structural integrity and result in Aβ-

related vascular dysregulation [94, 95]. Evidences 

concerning the Aβ-provoked vascular dysfunction are 

widely available, including both animal and human 

studies. To be detail, animal literatures have deduced that 

Aβ proteins may lessen the adhesion between the vascular 

smooth muscles and basement membrane [95], and 

capillary Aβ may lead to the vascular occlusion followed 

with the reduced CBF [96]. Besides, Aβ peptides may 

increase cerebral susceptibility to ischemic damage 

because of the defective CVR, as found in a mice study 

[97]. These observations were corroborated by a human 

study showing that the Aβ-mediated vascular toxicity may 

decrease the vascular autoregulation and contribute to the 

reduced CBF and cerebral ischemia [98]. On top of the 

above, also worth mentioning is that Aβ may increase the 

BBB permeability through the detrimental effects on the 

tight junction (TJ) proteins as observed in both rat models 

and humans [99, 100]. Normally, the BBB permeability is 

maintained by the endothelial cells that are bound together 

by the TJs, whose injury may therefore lead to the 

imperfect BBB structure.  

To sum up, the CSVD-associated WMLs are mainly 

caused by ischemia, CVR deficits and BBB disintegrity. 

Of particular note, these pathomechanisms combine 

together, rather act separately, to mediate the WML 

formation and development; and the endothelial 

dysfunction may function as a central role in the cascade 

of WML pathogeneses, since its association with both 

impaired CVR and BBB [101]. Despite the certain similar 

mechanisms, the WML distributions between 

arteriosclerosis and CAA are remarkably dissimilar: 

lesions located around peri-basal ganglia are highly 

associated with arteriolosclerosis, whereas multiple 

subcortical spots are strongly indicative of CAA [102]. 

Equally important, distinct topographic distributions of 

CMBs are also identified that arteriosclerosis is typically 

involved with deep CMBs in the basal ganglia, thalamus 

and brainstem, whilst CAA is relatively more associated 

with lobar CMBs [103]. Aside from WML and CMB, the 

other CSVD-MRI markers will not be further mentioned 

in this review for their irrelevancies to our major topic. If 

interested, other reviews can be referred to [104, 105]. 

 
Figure 3. The common causes of right-to-left shunt. The PAVF, ASD, PFO, and VSD are the common entities of RLS. PAVF is a 

direct communication between pulmonary artery and vein without the mediation of capillaries. ASD refers to a window on the atrial 

level. PFO is an anatomical defect between septum primum and septum secundum. VSD is defined as a direct pathway between two 

ventricles. In these settings, venous micro-emboli can directly enter into to the cerebral arteries, resulting in subclinical WMLs or even 

cerebral infarctions.  Note: PAVF indicates pulmonary arterio-venous fistula; ASD indicates atrial septal defect; PFO indicates patent 

foramen ovale; VSD indicates ventricular septal defect; RLS indicates right-to-left shunt; WMLs indicate white matter lesions. 
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Figure 4. The anatomy of cerebral venous system. The superficial venous blood often outflows through the right-side 

transverse sinus and internal jugular vein, whereas the deep venous blood often outflows through the left side. 

 

3.3 Intracardiac right-to-left shunts and WML 

 

Intracardiac right-to-left shunt (RLS), as a potential 

embolic source, is commonly acknowledged as an 

anatomical predisposition that linked with a bulk of 

pathological conditions, such as cryptogenic stroke [106], 

migraine with aura [107] and decompression sickness 

[108]. Paradoxical embolism is a contributory mechanism 

of intracardiac RLS that allows the venous emboli to 

circumvent the pulmonary system, directly pass through 

the arteries and then into the cerebral circulation via a 

preexistent venous-to-arterial shunt, possibly a patent 

foramen ovale (PFO), atrial or ventricular septal defects 

(ASD or VSD), or a pulmonary arterio-venous fistula 

(AVF) [109] (Fig. 3). Among them, PFO is established as 

the most common one with an incidence of about 27.3%, 

as revealed by an earlier autopsy study [110]. Plenty of 

studies suggested that the scattered juxtacortical spots on 

T2WI and FLAIR maps were usually the surrogate 

predictors of cardiogenic embolization and could be 

interpreted as silent or subclinical lesions without 

ischemic symptoms [18, 111, 112]. Interestingly, the 

number of juxtacortical spots are thought to be positively 

correlated with the magnitude of shunting [111, 112]. A 
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feasible explanation for this concordance is that when the 

degree of RLS increases, the quantification of micro-

emboli that travels through the RLS will correspondingly 

be larger, thereby imparting an increased embolic risk 

[113-115]. Moreover, the wider PFO size may have an 

inclination to cause larger lesions for its capacity to permit 

the passage of larger emboli [116]. Bonati et al. also 

confirmed the multiple ischemic lesions to be attributable 

to PFO, however, he denied the association between the 

lesion number and the PFO size or RLS degree [117]. 

More interestingly, Hagen and associates implied that the 

PFO size seemed to have an age-related enlargement 

[110]. 

Previously, a plethora of studies have analyzed but 

created noises in the distribution patterns of the spotted 

WMLs of cardioembolic origin. For instance, some 

reports insisted that multiple lesions with a posterior 

predominance was likely a specific embolic pattern 

mediated by PFO [113, 115, 118]. Some studies, instead, 

stated that frontal lobes seemed to be the predilection site 

of PFO-associated embolic lesions [18, 119]; while some 

findings failed to identify any purported radiological 

signatures for paradoxical embolism [120]. The 

discrepancies in inspection methods and adopted 

instruments may be responsible for these distinct 

outcomes.  

In regards to the pathogeneses, it is prevalently 

accepted that the multiple-lesion pattern may be derive of 

the paradoxical embolism. Indeed, venous emboli 

stemming from the cardiogenic RLS may impair the 

cerebral autoregulation, through which non-pulsate 

cerebral blood flow is maintained, and small thrombi are 

washed out under normal circumstances, and thus result 

in the failed emboli cleavage [121, 122]. These 

mechanisms interweave inextricably along with the 

paradoxical embolism. In precise, paradoxical embolism 

often leads to hypoperfusion; as a consequence, the 

cerebral autoregulation and emboli clearance will subject 

to compromise in succession owing to the insufficient 

blood supply.  

In terms of therapy, the PFO degree to which extent 

that PFO closure should be performed is still debated 

across studies. On the one hand, two large prospective 

studies previously demonstrated that PFO closure may not 

be a necessity on the clinical ground that the presence of 

PFO, regardless of small or large, may not increase the 

likelihood of stroke if treated medically [123, 124]; rather, 

atrial septal aneurysm may convey the increased risk of 

recurrent stroke in PFO patients [125]; on the other hand, 

a recent meta-analysis of randomized studies showed that 

PFO closure was superior to medical therapy for stroke 

prevention, particularly in patients with moderate-to-large 

shunts [126]. Further well-designed and multi-center 

clinical trials are warranted to settle such a controversy. 

4. Cerebrovenous hypertension and WML 

 

Both arterial supply and venous drainage compose the 

cerebral circulation. Previous research mainly focused on 

the arterial WMLs, while the relationship between WMLs 

and venous diseases was relatively understudied. In 

anatomy, cerebral venous system includes the superficial 

and deep venous outflow roads, by which, venous blood 

in DWM and PVWM regions is respectively collected. 

That is, a venous watershed is present and separates the 

venous outflow between DWM and PVWM [127]. 

Venous blood from DWM and PVWM areas mostly flows 

out through the bilateral transverse sinuses (superficial 

system often toward the right side while the deep toward 

the left), sigmoid sinuses and then internal jugular veins 

(IJVs), the largest vein in the neck, and ultimately into the 

right atrium [128] (Fig. 4). The above-mentioned anatomy 

features indicate that IJV is a main pipeline for cerebral 

venous drainage [129]; and venous outflow hindrance 

caused by cerebral venous stenosis or IJVR may 

secondarily contribute to venous WMLs [48, 52, 130-

132]. Differing from arterial WMLs, published studies 

have described that the symmetric, diffuse cloud-like 

lesions around bilateral periventricles highly suggested 

venous WMLs [52, 133-135]. However, the mechanisms 

of which still need to be elucidated. 

 

4.1 Venous collagenosis and WML  

 

The concept of “periventricular venous collagenosis 

(PVC)” was first proposed by Moody and associates in 

1995 to describe the collagenous thickened walls of 

periventricular veins, which was notably correlated with 

WML severity [68]. From then on, the role of venous 

collagenosis in WML formation has been attached with 

more importance but yet remains unclear. On the one 

hand, some autopsy studies revealed that some veins, 

particularly superficial and intraparenchymal veins, often 

contained fibrohyalinous thickened and collagenized 

venous walls, consistent with the phlebosclerotic changes, 

in patients with cerebral venous thrombosis (CVT) or 

dural arteriovenous fistula (DAVF) or combinations 

thereof [136, 137]. A study on histopathology revealed 

that the phlebosclerotic veins in WM tissue were often 

accompanied by the axonal injury, demyelination plus 

global tissue rarefaction and even the destruction of 

vascular walls with blood plasma exudation [136]. These 

pathological changes are believed to be compatible with 

the manifestations of diffuse WMLs on MRI scans [136-

138]. In turn, the venous collagenosis may further worsen 

as a corollary of protracted hypoxia-ischemia in the WM 

tissue caused by increased venous resistance, hence 

making the WM more vulnerable to lesions. On the other 

hand, Pettersen et al. speculated that it was the arterial 
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diseases that resulted in tissue hypoperfusion and the 

ensuing excessive collagen deposition in venous walls 

[138], presumably based on the fact that collagenized and 

stenotic veins are frequently found in patients with 

ischemic arterial diseases [44]. And the venous 

collagenosis may in its turn aggravate the cerebral 

hypoperfusion by adding resistance to the venous system, 

emphasizing a bi-directional association between venous 

collagenosis and ischemia [138, 139]. However, this 

mechanism remains as a matter of speculation for its lack 

of more convincing evidence and calls for more thorough 

research. 

 

 
Figure 5. The proposed pathological mechanism of WMLs secondary to vascular endothelial inflammation. 

4.2 Venous hypertension and WML   

 

According to the available literatures, venous 

hypertension, possibly secondary to venous obstruction or 

retrograde-transmitted pressure from the IJVR or DAVF, 
could involve in a wide spectrum of pathological changes 

associated with the formation of diffuse WMLs [48, 132, 

134, 140, 141]. Firstly, the venous hypertension can 

retrograde to upstream veins, venules and capillary beds, 

which may induce the thickening and narrowing of the 

venous walls so as to compensate for the elevated pressure 

[142]. In this condition, the thickened venous walls may 

increase the vascular resistance and further worsen the 
venous drainage, promoting the secondary WML 

progression [143]. In addition, there may be an impaired 

venous drainage with the increased resistance of capillary 
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perfusion in the context of venous hypertension. The 

venous insufficiency plus the capillary hypoperfusion 

may therefore work together to result in the whole-brain 

hypoperfusion [144]. Lastly, venous hypertension may 

lead to the upstream venous expansion as well, which will 

up-regulate the expression of vascular endothelial 

adhesion molecules (i.e., intercellular adhesion molecule-

1, ICAM-1 and vascular cell adhesion molecule-1, 

VCAM-1) through activated endotheliocytes, which may 

be responsible for the looseness of BBB and the 

transmural leukocytes migration [145, 146]. It should be 

noted that the ICAM-1 and VCAM-1 mainly mediate the 

migration of leukocytes to the inflammatory sites of 

endothelium and only little or no are expressed by the 

cerebral endothelia at luminal surface under normal 

conditions [145], the overexpression of which may allow 

excessive leukocytes to adhere to the endothelia. Then the 

inflamed endothelia will activate the secretion of 

inflammatory cytokines, including tumor necrosis factor-

α (TNF-α), interleukin-1(IL-1) and interferon-γ (IFN-γ), 

which in turn facilitate the inflammatory response and 

even initiate the autoimmune attacks against myelin 

[146]. A schematic drawing for this mechanism is present 

as Figure 5. Actually, venous hypertension-triggered 

WMLs are likely caused by the synergistic effects of more 

than one mechanism mentioned above, or more likely, 

caused by other as-yet disclosed mechanisms. A 

schematic flow as to mechanisms underlying venous 

WML formation is outlined in Figure 6. 

 

 

 
 

Figure 6. A schematic flow of proposed mechanisms underlying the venous WML formation. 

 

4.3 DAVF-WML and IJVR-WML 

 

Many venous disease entities, such as DAVF and IJVR, 

may act on symmetrical WM areas through intracranial 

hypertension, regardless of their different 

pathophysiology. DAVF, characterizing with the aberrant 

arteriovenous shunting between meningeal arteries and 

veins or sinuses [147], may contribute to diffuse WMLs 

through the venous hypertension created by the delivery 

of high-pressure arterial flow [137, 148]; surprisingly, 

early studies reported that the diffuse parenchymal lesions 

on FLAIR maps could attenuate after the fistula 

embolization and the venous hypertension relief [134, 

137, 141]. From above, it can be hypothesized that the 

signal intensity of DAVF-WMLs may be paralleled with 

the magnitude of venous hypertension. Apart from the 
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WMLs, a broad range of symptomology, such as the 

reversible vascular cognitive impairment (VCI), could 

also arise from DAVF [134, 137, 141, 149, 150]. It was 

suggested that the DAVF-induced VCI might be ascribe 

to the reduced CBF caused by venous hypertension, 

supported by the phenomenon that the recovered 

hypoperfusion was followed by the cognitive 

amelioration after DAVF embolization [134, 141]. 

Timely treatment might correct the radiographic and 

clinical anomalies in DAVF patients, and so prevent the 

happens of irreversible parenchymal damage and 

intellectual impairment that has been previously reported 

[141]. 

 

 

 
 
Figure 7. Cases of different WML patterns and the characteristic CMBs in CSVD. Age-related WMLs (A1 and A2) mainly 

locate at periventricular areas, especially the frontal horns; a 14-year-old girl with refractory PFO-associated migraine was found 

with multiple subcortical spots asymmetrically surrounding bilateral WM areas (B, white arrows); symmetrical lesions around peri-

basal ganglia and periventricular horns (C1) were found in an arteriosclerosis patient with deep CMBs (C2) in the basal ganglia; 

multiple subcortical lesions with an occipital dominance (D1) were identified in a CAA patient with lobar CMBs (D2); venous WMLs 

(E1-E3) are in a symmetrical and diffuse cloud-like pattern around bilateral periventricular areas (white triangles), and reversible in 

selected cases as ranged in severity from E1 to E3. Note: WML indicates white matter lesion; CMBs indicate cerebral microbleeds; 

CSVD indicates cerebral small vessel disease; PFO indicates patent foramen ovale; CAA indicates cerebral amyloid angiopathy. 
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IJVR, characterized by retrograde flow in IJVs, is 

recognized as a cause of retrograde venous hypertension 

that may possibly predispose to the diffuse WMLs and 

VCI [48, 132, 140, 143]. High-rate IJVR in senile citizens 

is possibly triggered by the age-dependent structural 

changes in venous valves and walls [46, 151]. It is worth 

noting that the mechanisms responsible for IJVR-induced 

WMLs are similar as those for DAVF-mediated WMLs, 

since both IJVR and DAVF may manifest with venous 

hypertension, although the former possibly harbors a 

lesser degree as mediated by the retrograde venous 

pressure whilst the latter driven by the rapid arterial 

shunts. Recent literatures also indicated these two 

diseases entities shared similar features on MR sequences 

and may result in confused diagnosis [152, 153]. For 

which, we posit that they may be distinct from the WML 

intensity, since IJVR may harbor a milder venous 

hypertension for its venous origin, while the venous 

hypertension of DAVF may be relatively severer as 

created by the high-flow arterial source. Frustratedly, 

present studies have neither compared the WML intensity 

between DAVF and IJVR after the adjustment of 

confounding variables, nor labeled the reversibility of 

IJVR-associated WMLs. One reason for this condition 

may be the unavailable therapy for IJVR. Future studies 

with novel IJVR therapy are needed to confirm the 

validation of our hypothesis. 

 

Limitations and perspectives 

 

This review has some limitations: Firstly, it only outlines 

the vascular origin-induced WMLs, while WMLs with 

other etiologies are not involved. Secondly, some 

mechanisms underlying the WML formation in this study 

have not been clearly established and warrant further 

confirmation. Last but not least, this review mainly 

discusses the qualitative assessment of the WML burden 

based on simple visual rating; if possible, future research 

can analyze the relationship between the quantitative 

variables (e.g., the stenotic degree, the magnitude of 

venous hypertension) and the precise WML volume.  

Summary 

 

According to the studies reviewed above, PVWM is the 

most vulnerable area to hypoxia-ischemia, followed by 

DWM, while the U-fibers are relatively resistant to 

hypoxia-ischemia and hence often spare from the menace 

of WMLs. A variety of microstructural changes have been 

identified in aged vessels, and the periventricular caps or 

linings plus punctate lesions may favor the age-related 

WM with a frontal and parietal predominance.  

The highlight in this review is that we investigate the 

dissimilarities in pathogeneses and neuroimaging patterns 

of both arterial and venous WMLs. In general, LAS-

induced WMLs usually appear as well-demarcated dots or 

patches; arteriosclerosis-related WMLs mainly manifest 

as symmetrical lesions with a preference of peri-basal 

ganglia; CAA-associated WMLs may be not uniformly 

distributed, but more likely to occur in occipital lobes; 

multiple ischemic spots may be traces of silent 

cardioembolic lesions caused by paradoxical embolism; 

whereas, venous WMLs may feature with a symmetrical 

cloud-like pattern around bilateral periventricles, as 

showed in Figure 7.  

A question regarding the precise definitions for 

clearly-demarcated lesions in arterial diseases and cloud-

like lesions in venous diseases may hence be put forward. 

Frankly, their proper definitions and distinctions are 

lacking and retain some ambiguity; but it is generally 

accepted that clearly-defined lesions represent the focal 

ischemia created by local CBF reduction, while the cloudy 

lesions mean the whole-brain hypoperfusion because of 

the prolonged and persistent exposure to intracranial 

hypertension. Besides, it is of utmost importance to bear 

in mind that the purported radiological WML patterns 

mentioned in this study can only assist in predicting, 

rather than determining, the potential causes. Also, it 

should be acknowledged that our conclusions are not 

absolute since they are drawn based on the previous 

studies and the radiological patterns were not established 

specifically across the involved studies. Therefore, the 

WML pattern should be seen as a complementary 

diagnostic reference but not a diagnosis standard. With 

respect to the underlying mechanisms, cerebral arterial 

diseases may be mediated by hypoperfusion, embolism, 

endothelial dysfunction and BBB breakdown, while 

cerebral venous diseases are predominantly determined 

by venous hypertension.  

Currently, the role of venous WML is emerging and 

its underlying mechanisms and clinical impacts may 

likely represent a field left for research and further 

answer. A majority of previous studies only focused on 

the role of venous hypertension functioned in cloud-like 

WMLs, whereas their quantitative relationship whether or 

not to be validity are poorly understood. Thus, an 

important territory warranted for in-depth investigation is 

the link between the degree of venous hypertension and 

its contribution to the intensity of WM changes.  
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