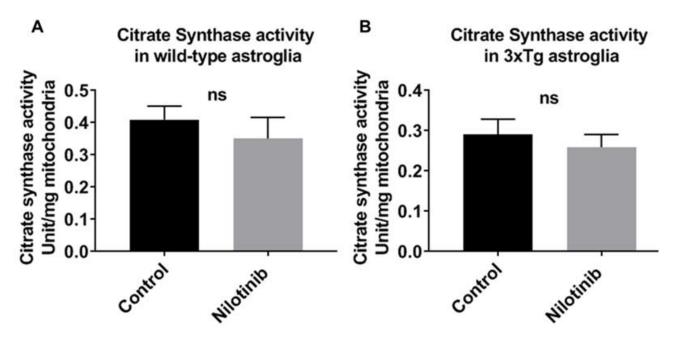

SUPPLEMENTARY DATA

Nilotinib Improves Bioenergetic Profiling in Brain Astroglia in the 3xTg Mouse Model of Alzheimer's Disease


Aida Adlimoghaddam^{1,*}, Gary G. Odero¹, Gordon Glazner^{1,2}, R. Scott Turner³, Benedict C. Albensi^{1,2,*}

SUPPLEMENTARY DATA

Supplementary Figure 1. Characterization of culture purity. Both immunohistochemistry (A) and immunofluorescence (B) were utilized to detect astrocytes. Purity of cell culture was determined via immunofluorescence using markers specific for detecting astrocytes (GFAP) and microglia (Iba-1). Red arrows indicate the astrocytes. Nuclei were labeled blue with DAPI. The percentages of astrocytes and microglia were determined. Results are expressed as mean \pm SD of n = 5 (**** = p < 0.0001).

SUPPLEMENTARY DATA

Supplementary Figure 2. Nilotinib did not alter the activity of citrate synthase (n = 6/group) in C57BL/6-WT and 3xTg-AD astroglia. Specific enzyme activity of citrate synthase was measured in C57BL/6-WT (A) and 3xTg-AD (B) astroglia in presence and absence of 100 nM nilotinib treatment. Results are expressed as mean \pm SD of n = 6 per group (*P \leq 0.05) analyzed by unpaired Student's t-test.