Blocking C3d+/GFAP+ A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke Qi Zhang^{1,#}, Chang Liu^{1,#}, Rubing Shi¹, Shiyi Zhou¹, Huimin Shan¹, Lidong Deng¹, Tingting Chen¹, Yiyan Guo¹, Zhijun Zhang¹, Guo-Yuan Yang^{1,2}, Yongting Wang^{1*}, Yaohui Tang^{1*} Supplementary Figure 1. Semaglutide treatment did not directly prevent IL-1 α , TNF α and C1q induced phenotype change of astrocyte. A. Astrocytes were treated with IL-1 α +TNF α +C1q or IL-1 α +TNF α +C1q+semaglutide for 24 hours and immunocytochemistry and real-time PCR were performed. B. Immunostaining of C3d+/GFAP+ cells (C3d in red color; GFAP in green color; DAPI in blue color). Scale bar=25 μ m. C. Bar graph showed the mRNA levels of C3d+/GFAP+ cells related genes H2-T23, Serping1, H2D1 and Ligp1 expression after IL-1 α +TNF α +C1q or IL-1 α +TNF α +C1q+semaglutide treatment. Data are mean \pm SEM. n=3 per group. NS, p>0.05. D. Astrocytes were treated with the medium derived from LPS stimulated microglia or LPS+semaglutide stimulated microglia for 24 hours and the immunocytochemistry and real-time PCR were performed. E. Immunostaining of C3d+/GFAP+ cells (C3d in red color; GFAP in green color; DAPI in blue color). Scale bar=25 μ m. F. Bar graph showed the mRNA levels of C3d+/GFAP+ cells related genes H2-T23, Serping1, H2D1 and Ligp1 expression after treatment with the medium derived from LPS stimulated microglia or LPS+semaglutide stimulated microglia. Data are mean \pm SEM. n=3 per group. *, p<0.05; **, p<0.01; ***, p<0.001. Supplementary Figure 2. The formation of C3d+/GFAP+ reactive astrocytes are induced by activated microglia. A. Photomicrographs showed that P2RY12⁺/Iba-1⁺ cells (P2RY12 in green color; Iba-1 In red color; DAPI in blue color) in the ipsilateral hemisphere of the perifocal area in tMCAO mice and semaglutide treated tMCAO mice. Scale bar=75 μm. **B.** Immunofluorescence images showed C3d⁺/GFAP⁺ cells (C3d in red color; GFAP in green color; DAPI in blue color) after microglial depletion. Scale bar=75 μm. Supplementary Figure 3. IL-1 α (3 ng/ml), TNF α (30 ng/ml) and C1q (400 ng/ml) or LPS (200 ng/ml) treatment did not affect the tight junction integrity and viability of bEnd.3 cells. A. bEnd.3 cells were treated with IL-1 α +TNF α +C1q or LPS (200 ng/ml) for 24 hours, then immunocytochemistry and western blot were performed. B. Immunostaining of ZO-1/CD31 cells (ZO-1 in red color; CD31 in green color; DAPI in blue color). Scale bar=25 μ m. C. Western blot of ZO-1 in bEnd.3 cells. Bar graph showed ZO-1 level in bEnd.3 cells. Data are mean \pm SEM. n=3 per group. NS, p>0.05. D. CCK8 assay in bEnd.3 cells in no treatment group or treated with IL-1 α +TNF α +C1q or 200 ng/ml LPS. Supplementary Figure 4. Semaglutide treatment increased TJ integrity of bEnd.3 cells exposed to 3μ g/ml LPS. A. bEnd.3 cells were treated with LPS or LPS+semaglutide for 24 hours, then CCK-8 and western blot were performed. B. CCK-8 assay showed the viability of bEnd.3 cells exposed to different concentration of LPS (1μ g/ml and 3μ g/ml). Data are mean \pm SEM. n=8 per group. *, p<0.05; **, p<0.01. C. Western blot data showed the expression of ZO-1 in bEnd.3 cells treated with 3μ g/ml LPS or 3μ g/ml LPS+semaglutide. Data are mean \pm SEM. n=3 per group. Supplementary Figure 5. LPS treatment increased the expression of IL-1 α , TNF α and C1 α in primary murine microglia. A. Bar graph showed the expression of IL-1 α , TNF α and C1 α in microglia after LPS treatment. Data are mean \pm SEM. n=3 per group. **, p<0.01; ***, p<0.001.