Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation

Yaqun Huang^{1,2,3#}, Ming-Xia Ge^{1,4#}, Yu-Hong Li^{1#}, Jing-Lin Li^{1,2,3}, Qin Yu¹, Fu-Hui Xiao¹, Hong-Shun Ao^{1,4}, Li-Qin Yang¹, Ji Li^{2,3*}, Yonghan He^{1*}, Qing-Peng Kong^{1,5*}

Supplementary Figure 1. *ATF7* expression is up-regulated in LLIs, while down-regulated in senescent HDFs. (A) qRT-PCR of different *ATF7* expression levels between LLIs and YCs (n = 10 biological replicates/group). (B) *ATF7* mRNA levels were assessed in senescent WI-38 fibroblasts, HFF and BJ fibroblasts, and IMR-90 fibroblasts compared to non-senescent cells. LLIs: long-lived individuals; YCs: younger controls. Mann-Whitney U test for A.

Supplementary Figure 2. ATF7 overexpression efficiency decreases during serial passage in HDFs. (A) ATF7 overexpression efficiency and phosphorylation during serial passage in control and *ATF7*-overexpressing HDFs by western blotting (n = 2 biological replicates). (B) ATF7 overexpression efficiency and phosphorylation during serial passage by western blotting in control and *ATF7*-overexpressing HDFs incubated with p38MAPK inhibitor SB203580 (1 μ M) (n = 1 biological replicate). OE, overexpression.

Supplementary Figure 3. Manipulation of *ATF7* expression alters cellular senescence progression in IMR-90 cells. (A) qRT-PCR analysis of mRNA levels of *ATF7*, *p21*, and *p16* in control and *ATF7*-knockdown IMR-90 cells (n = 3 biological replicates). (B) SA- β -Gal-staining cells in control and *ATF7*-knockdown IMR-90 cells. Typical images are presented on the left and quantitative result is presented on the right (n = 3 biological replicates, scale bar, 200 µm). KD, knockdown. Statistical analyses were performed using two-sided Student's *t*-test.

Supplementary Figure 4. Depletion of *ATF7* promotes expression of several SASP factors in HDFs. (A) Heatmap of inflammatory pathway genes in *ATF7*-knockdown HDFs relative to the control from RNA-seq datasets (n = 3 biological replicates). (B-C) qRT-PCR analysis of mRNA levels in SASP genes (B) and inflammatory pathway genes (C) in *ATF7*-knockdown HDFs relative to the control (n = 3 biological replicates). KD, knockdown. Statistical analyses were performed using two-sided Student's *t*-test.

Supplementary Figure 5. *ATF7* inhibits SASP by inhibiting NF-κB signaling in HDFs and recruiting G9a in HEL cells. (A) Inflammatory pathway activation was assessed by western blotting in control and ATF7-overexpressing HDFs. (n = 3 biological replicates). (B) Co-immunoprecipitation of ATF7 and G9a. Cell lysates of HEL fibroblasts were immunoprecipitated with anti-ATF7 antibody or control IgG, with immunocomplexes then subjected to western blotting using G9a (n = 2 biological replicates). OE, overexpression.

Supplementary Figure 6. ATF7 inhibits inflammatory genes by modulating H3K9me2 in HDFs, based on CUT&Tag. IGV analysis of H3K9me2 peaks in inflammatory genes in control and ATF7-overexpressing cells. (n = 2 biological replicates). OE, overexpression.

Supplementary Table 1. Primers used in qRT-PCR analysis

Name	Forward primer	Reverse primer	
Human ATF7	GAGACGACAGACCGTTTGTGT	AGGCGTTTGATCTGCAATGAT	
Human p16	GAGCAGCATGGAGCCTTC	CCGCTGCAGACCCTCTAC	
Human p21	TGTCCGTCAGAACCCATGC	AAAGTCGAAGTTCCATCGCTC	
Human IL1B	AGCTACGAATCTCCGACCAC	CGTTATCCCATGTGTCGAAGAA	
Human IL6	ACTCACCTCTTCAGAACGAATTG	CCATCTTTGGAAGGTTCAGGTTG	
Human MMP1	CTCTGGAGTAATGTCACACCTCT	TGTTGGTCCACCTTTCATCTTC	
Human CCL2	CAGCCAGATGCAATCAATGCC	TGGAATCCTGAACCCACTTCT	
Human CCL8	CTTGCTCAGCCAGATTCAGTT	GACCCATCTCTCCTTGGGGT	
Human CXCL1	CAGGGAATTCACCCCAAGAACA	GGATGCAGGATTGAGGCAAGC	
Human CXCL2	GAAAGCTTGTCTCAACCCCG	TGGTCAGTTGGATTTGCCATTTT	
Human CXCL3	AAACCGAAGTCATAGCCACA	ATTTTCAGCTCTGGTAAGGGCA	
Human IGFBP4	ACTTCCACCCCAAGCAGTGTC	AAGCTTCACCCCGTCTTC	
Human IGFBP5	ACCTGAGATGAGACAGGAGTC	GTAGAATCCTTTGCGGTCACAA	
Human IGFBP6	GAGGGGCTCAAACACTCTACG	CCATCCGATCCACACACA	
Human HGF	GACGCAGCTACAAGGGAACA	GCTCGAAGGCAAAAAGCTGTG	
Human FGF7	GAGCGACACACAAGAAGT	AATTCCAACTGCCACTGT	
Human IL8	AGTTTTTGAAGAGGGCTGAGA	TGCTTGAAGTTTCACTGGCATC	
Human GM-CSF	AATGTTTGACCTCCAGGAGCC	AGTGCTGCTTGTAGTGGCTG	
Human ID1	ACGACATGAACGGCTGTTACTC	GCTCCAACTGAAGGTCCCTGAT	
Human ID2	ATCCTGTCCTTGCAGGCTTC	ACCGCTTATTCAGCCACACA	
Human SMAD6	CCTCCCTACTCTCGGCTGTC	GGTAGCCTCCGTTTCAGTGTA	
Human SMAD7	TCACCTTAGCCGACTCTGCG	TCCAGAAGAAGTTGGGAATCTGA	
Human STAT3	CAGCAGCTTGACACACGGTA	AAACACCAAAGTGGCATGTGA	
Human NFKB2	ATGGAGAGTTGCTACAACCCA	CTGTTCCACGATCACCAGGTA	
Human RELB	CCATTGAGCGGAAGATTCAACT	CTGCTGGTCCCGATATGAGG	
Human ACTB	AGAGCTACGAGCTGCCTGAC	AGCACTGTGTTGGCGTACAG	
C. elegans ATF7	TTGTTATCTGTGGCCGGTGA	ATGGAGAACGAAGGAGTGCC	
C. elegans act-1	GCTGGACGTGATCTTACTGATTACC	GTAGCAGAGCTTCTCCTTGATGTC	

Antibodies Source Identifier Experiment Actin Beyotime AA128-1 Immunoblotting P16 Proteintech 10883-1-AP Immunoblotting ATF7 Abcam ab87844 Immunoblotting/Co-IP H3k9me2 07-441 Millipore Immunoblotting Cell Signaling Technology Immunoblotting/ChIP/CUT&Tag H3k9me2 4658 NF-kB Pathway Antibody Cell Signaling Technology 9936 Immunoblotting Sampler Kit Abcam Ab185050 Immunoblotting G9a P-ATF7/ATF2 Cell Signaling Technology 40749 Immunoblotting P-STAT3 ABclonal AP0715 Immunoblotting Immunoblotting P-AKT ABclonal AP0637 P-P65 ABclonal AP0124 Immunoblotting P-SMAD2/SMAD3 ABclonal AP0548 Immunoblotting P-P38 ABclonal AP1165 Immunoblotting Normal rabbit IgG Cell Signaling Technology 2729 ChIP/CUT&Tag/Co-IP H3 Cell Signaling Technology 4620 ChIP/CUT&Tag Anti-Rabbit IgG-HRP Beyotime A0208 Immunoblotting Anti-Mouse IgG-HRP Beyotime A0216 Immunoblotting

Supplementary Table 2. List of antibodies used in this study

Supplementary Table 3. Primers used in ChIP-qRT-PCR analysis.

Name	Forward primer	Reverse primer	
IL6	CAGCCATCCTCCCCCATTTT	ATTTCAGGACCCGCCTGTTG	
IL8	TGATGACTCAGGTTTGCCCT	AGTGCTCCGGTGGCTTTTTA	
<i>p16</i>	TGAATCGGGGTGTTTGGTGT	ATTTCGATTCTCGGTGGGGC	
CCL8	GGTTTGCCCTGAGGGGATG	ACAGAGCTGCAGAAATCAGGAAGGCT	
CXCL1	CTCCAGCCACAAATCCGAGA	GGCGGATCCCTGAGAACCA	
CXCL2	AGTTCGGAAGGAAGGCGATG	CAAGACAGTCAGACCCGGAC	
CXCL3	TGGTTGAGACTGGAAAGCCC	CCTACCCGTATCCGACTCCA	
TNF	GTCACTCATTGCTGAGCCTCT	AGCTTCTTCCCACCACAAG	
STAT1	CGCAGGAAAGCGAAACTACC	CGCAGGAAAGCGAAACTACC	

Supplementary Table 4. The suggested roles of upregulated DEG orthologs in humans.

Gene (<i>C. elegans</i>)	Orthologs in Homo sapiens	Potential role in human inflammation	Reference
GST-13	HPGDS	Pro- or anti-inflammation	[80]
ASP-12	REN	Pro- or anti-inflammation	[81]
K12H4.7	PRSS16	Anti-inflammation	[82]
ASP-14	CTSE	Proinflammation	[83]
PGP-3	ABCB1	Anti-inflammation	[84, 85]
CLEC-86	REG1A	Anti-inflammation	[86]
LEC-11	LGALS4	Pro- or anti-inflammation	[87]
NHR-115	RORA	Anti-inflammation	[88]