Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2015, Vol. 6 Issue (2) : 95-108     DOI: 10.14336/AD.2014.0228
Review Article |
Modelling the p53/p66Shc Aging Pathway in the Shortest Living Vertebrate Nothobranchius Furzeri
Chiara Priami1,3,Giulia De Michele1,Franco Cotelli3,Alessandro Cellerino4,Marco Giorgio1,Pier Giuseppe Pelicci1,2,*(),Enrica Migliaccio1,*()
1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
2Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Milan, Italy
3Dipartimento di Bioscienze, University of Milan, Italy.
4Scuola Normale Superiore, Pisa, Italy
Download: PDF(757 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Oxidative stress induced by reactive oxygen species (ROS) increases during lifespan and is involved in aging processes. The p66Shc adaptor protein is a master regulator of oxidative stress response in mammals. Ablation of p66Shc enhances oxidative stress resistance both in vitro and in vivo. Most importantly, it has been demonstrated that its deletion retards aging in mice. Recently, new insights in the molecular mechanisms involving p66Shc and the p53 tumor suppressor genes were given: a specific p66Shc/p53 transcriptional regulation pathway was uncovered as determinant in oxidative stress response and, likely, in aging. p53, in a p66Shc-dependent manner, negatively downregulates the expression of 200 genes which are involved in the G2/M transition of mitotic cell cycle and are downregulated during physiological aging. p66Shc modulates the response of p53 by activating a p53 isoform (p44/p53, also named Delta40p53). Based on these latest results, several developments are expected in the future, as the generation of animal models to study aging and the evaluation of the use of the p53/p66Shc target genes as biomarkers in aging related diseases. The aim of this review is to investigate the conservation of the p66Shc and p53 role in oxidative stress between fish and mammals. We propose to approach this study trough a new model organism, the annual fish Nothobranchius furzeri, that has been demonstrated to develop typical signs of aging, like in mammals, including senescence, neurodegeneration, metabolic disorders and cancer.

Keywords stress response      p53      cell cycle checkpoint G2/M      senescence      aging      nothobranchius furzeri      animal models     
Corresponding Authors: Pier Giuseppe Pelicci,Enrica Migliaccio     E-mail:;
Issue Date: 25 March 2015
E-mail this article
E-mail Alert
Articles by authors
Chiara Priami
Giulia De Michele
Franco Cotelli
Alessandro Cellerino
Marco Giorgio
Pier Giuseppe Pelicci
Enrica Migliaccio
Cite this article:   
Chiara Priami,Giulia De Michele,Franco Cotelli, et al. Modelling the p53/p66Shc Aging Pathway in the Shortest Living Vertebrate Nothobranchius Furzeri[J]. A&D, 2015, 6(2): 95-108.
URL:     OR
[1] Holzenberger M,Dupont J,Ducos B,Leneuve P,Geloen A,Even PC,Cervera P,Le Bouc Y (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421: 182–187
[2] Bartke A,Brown-Borg H (2004). Life extension in the dwarf mouse. Curr Top Dev Biol, 63:189–225
[3] Yamamoto M,Clark JD,Pastor JV,Gurnani P,Nandi A,Kurosu H,Miyoshi M,Ogawa Y,Castrillon DH,Rosenblatt KP andKuro-o M (2005). Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem, 280: 38029–38034
[4] Migliaccio E,Giorgio M,Mele S,Pelicci G,Reboldi P,Pandolfi PP,Lanfrancone L,Pelicci PG (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402:309–313
[5] Carpi A,Menabo R,Kaludercic N,Pelicci P,Di Lisa F,Giorgio M (2009). The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta, 1787:774–780
[6] Fadini GP,Albiero M,Menegazzo L,Boscaro E,Pagnin E,Iori E,Cosma C,Lapolla A,Pengo V,Stendardo M,Agostini C,Pelicci PG,Giorgio M,Avogaro A (2010). The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes, 59:2306–2314
[7] Savino C,Pelicci P,Giorgio M (2013). The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. Oxid Med Cell Longev, 2013:719407.
[8] Harman D (1981). The aging process. Proc Natl Acad Sci USA, 78:7124–7128
[9] Kujoth GC,Hiona A,Pugh TD, et al (2005). Mitochondrial DNA mutations, oxidative stress and apoptosis in mammalian aging. Science, 309: 481–484
[10] Naylor RM,Baker DJ,van Deursen JM (2013). Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther, 93:105–116
[11] Pelicci G,Lanfrancone L,Grignani F, et al (1992). A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell, 70: 93–104
[12] Bonfini L,Migliaccio E,Pelicci G,Lanfrancone L,Pelicci PG (1996). Not all Shc’s roads lead to Ras. Trends Biochem Sci, 21:257–261
[13] Migliaccio E,Mele S,Salcini AE, et al (1997).Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J, 16:706–716
[14] Luzi L,Confalonieri S,Di Fiore PP,Pelicci PG (2000).Evolution of Shc functions from nematode to human. Curr Opin Genet Dev, 10:668–674
[15] Trinei M,Giorgio M,Cicalese A, et al (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21:3872–3878
[16] Migliaccio E,Giorgio M,Pelicci PG (2006). Apoptosis and aging: role of p66Shc redox protein. Antioxid Redox Signal, 8:600–608
[17] Trinei M,Berniakovich I,Beltrami E,Migliaccio E,Fassina A,Pelicci P,Giorgio M (2009). P66Shc signals to age. Aging, 1(6): 503–510
[18] Ramsey JJ,Tran D,Giorgio M, et al (2013). The Influence of Shc Proteins on Life Span in Mice. J Gerontol A Biol Sci Med Sci, in press.
[19] Orsini F,Migliaccio E,Moroni M, et al (2004). The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem, 279:25689–25695
[20] Giorgio M,Migliaccio E,Orsini F, et al (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122:221–233
[21] Feng Z,Lin M,Wu R (2011). The Regulation of Aging and Longevity: A New and Complex Role of p53. Genes Cancer, 2:443–452
[22] Maier B,Gluba W,Bernier B, et al (2004). Modulation of mammalian life span by the short isoform of p53. Genes Dev, 18:306–319
[23] Gambino V,De Michele G,Venezia O, et al (2013). Oxidative stress activates a specific p53 transcriptional-response that regulates cellular senescence and aging. Aging Cell, 12:435–45.
[24] Di Cicco E,Tozzini ET,Rossi G,Cellerino A (2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol, 46:249–256
[25] Valdesalici S,Cellerino A (2003). Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci, 270 (Suppl 2S): 189–191
[26] Kenyon C (1996). Ponce d’elegans: genetic quest for the fountain of youth. Cell, 84:501–504
[27] Guarente L,Kenyon C (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408:255–262
[28] Ladiges W,Van Remmen H,Strong R,Ikeno Y,Treuting P,Rabinovitch P,Richardson A (2009). Lifespan extension in genetically modified mice. Aging Cell, 8:346–352
[29] Dorn A,Ng’oma E,Janko K,Reichwald K,Polacik M,Platzer M,Cellerino A,Reichard M (2011). Phylogeny, genetic variability and colour polymorphism of an emerging animal model: the short-lived annual Nothobranchius fishes from southern Mozambique. Mol Phylogenet Evol, 61:739–749
[30] Terzibasi E,Valenzano DR,Benedetti M,Roncaglia P,Cattaneo A,Domenici L,Cellerino A (2008). Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One, 3:e3866
[31] Genade T,Benedetti M,Terzibasi E, et al (2005). Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell, 4:223–233
[32] Valenzano DR,Terzibasi E,Genade T, et al (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol, 16:296–300
[33] Kirschner J,Weber D,Neuschl C, et al (2012). Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell, 11:252–61.
[34] Baumgart M,Groth M,Priebe S, et al (2012) Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri . Mech Ageing Dev, 133:226–33.
[35] Petzold A,Reichwald K,Groth M, et al (2013). The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics, 14: 185–201
[36] Li IC,Chan CT,Lu YF, (2011) Zebrafish kruppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLoS One, 6:e20974.
[37] Donnini S,Giachetti A,Ziche M (2013) Assessing vascular senescence in zebrafish. Methods Mol Biol, 965:517–31.
[38] Santoriello C,Deflorian G,Pezzimenti F, et al (2009) Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Dis Model Mech, 2:56–67.
[39] Anchelin M,Alcaraz-Pérez F,Martínez CM, et al (2013) Premature aging in telomerase-deficient zebrafish. Dis Model Mech. 6:1101–12.
[40] Maier B,Gluba W,Bernier B, et al (2004). Modulation of mammalian life span by the short isoform of p53. Genes Dev, 18:306–319
[41] Tyner SD,Venkatachalam S,Choi J, et al (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature, 415:45–53
[42] Garcia-Cao I,Garcia-Cao M,Martin-Caballero J, et al (2002). "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J, 21:6225–6235
[43] Belyi VA,Ak P,Markert E, et al (2010). The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol, 2: a001198
[44] Jeon HY andLee H (2013). Depletion of Aurora-A in zebrafish causes growth retardation due to mitotic delay and p53-dependent cell death. FEBS J, 280: 1518–1530
[45] Gunther EJ,Moody SE,Belka GK, et al (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev, 17: 488–501
[46] Le Bras M,Bensaad K,Soussi T (2003). Data mining the p53 pathway in the Fugu genome: evidence for strong conservation of the apoptotic pathway. Oncogene, 22:5082–5090
[47] Yasuda T,Oda S,Li Z,Kimori Y,Kamei Y,Ishikawa T,Todo T,Mitani H (2012). Gamma-ray irradiation promotes premature meiosis of spontaneously differentiating testis-ova in the testis of p53-deficient medaka (Oryzias latipes). Cell Death Dis, 3e395
[48] Dai C,Gu W (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med, 16:528–536
[49] Iwakuma T,Lozano G (2007). Crippling p53 activities via knock-in mutations in mouse models. Oncogene, 26; 2177–2184.
[50] Tang Y,Luo J,Zhang W,Gu W (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell, 24:827–839
[51] Chao C,Herr D,Chun J,Xu Y (2006). Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J, 25:2615–2622
[52] Tang Y,Zhao W,Chen Y,Zhao Y,Gu W (2008). Acetylation is indispensable for p53 activation. Cell, 133: 612–626.
[53] Rainwater R,Parks D,Anderson ME,Tegtmeyer P,Mann K (1995). Role of cysteine residues in regulation of p53 function. Mol Cell Biol, 15:3892–3903
[54] Stoner CS,Pearson GD,Koc A,Merwin JR,Lopez NI,Merrill GF (2009). Effect of thioredoxin deletion and p53 cysteine replacement on human p53 activity in wild-type and thioredoxin reductase null yeast. Biochemistry, 48: 9156–9169
[55] Gully CP,Velazquez-Torres G,Shin JH, et al (2012). Aurora B kinase phosphorylates and instigates degradation of p53. Proc Natl Acad Sci U S A, 109:E1513–1522
[56] Liu Q,Kaneko S,Yang L, et al (2004). Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem, 279: 52175–52182
[57] Matsumoto M,Furihata M,Ohtsuki Y (2006) Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol, 39:79–87
[58] Wang YH,Tsay YG,Tan BC,Lo WY,Lee SC (2003) Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem, 278:25568–25576
[59] Kruse JP,Gu W (2008). SnapShot: p53 posttranslational modifications. Cell, 133, 930–930 e931.
[60] Lanfrancone L,Pelicci G,Brizzi MF, et al (1995). Overexpression of Shc proteins potentiates the proliferative response to the granulocyte-macrophage colony-stimulating factor and recruitment of Grb2/SoS and Grb2/p140 complexes to the beta receptor subunit. Oncogene, 10:907–917
[61] Berniakovich I,Trinei M,Stendardo M, et al (2008). p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem, 283:34283–34293
[62] Ranieri SC,Fusco S,Panieri E, et al (2010). Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc Natl Acad Sci U S A, 107:13420–13425
[63] Menini S,Amadio L,Oddi G, et al (2006). Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes, 55: 1642–1650
[64] Fadini GP,Albiero M,Menegazzo L, et al (2010). The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes, 59: 2306–2314
[65] Napoli C,Martin-Padura I,de Nigris F, et al (2003). Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high fat diet. Proc Natl Acad Sci U S A, 100:2112–2116
[66] Graiani G,Lagrasta C,Migliaccio E, et al (2005). Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension, 46:433–440
[67] Zaccagnini G,Martelli F,Fasanaro P, et al (2004). p66ShcA modulates tissue response to hindlimb ischemia. Circulation, 109: 2917–2923
[68] Carpi A,Menabo R,Kaludercic N, et al (2009). The cardioprotective effects elicited by p66 (Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta, 1787: 774–780
[69] Cattaneo E,Pelicci PG (1998). Emerging roles for SH2/PTB-containing Shc adaptor proteins in the developing mammalian brain. Trends Neurosci, 21:476–481
[70] Kojima T,Yoshikawa Y,Takada S, et al (2001). Genomic organization of the Shc-related phosphotyrosine adapters and characterization of the full-length Sck/ShcB: specific association of p68-Sck/ShcB with pp135. Biochem Biophys Res Commun, 284:1039–1047
[71] Fagiani E,Giardina G,Luzi L, et al (2007). RaLP, a new member of the Src homology and collagen family, regulates cell migration and tumor growth of metastatic melanomas. Cancer Res, 67:3064–3073
[72] Aoto M,Sato K,Takeba S, et al (1999). “A 58-kDa Shc protein is present in Xenopus eggs and is phosphorylated on tyrosine residues upon egg activation.”. Biochem Biophys Res Commun, 258:265–70.
[73] Sato K,Ogawa K,Tokmakov AA,Iwasaki T,Fukami Y (2001). Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs. Dev Growth Differ, 43:55–72
[74] Chesnel F,Heligon C,Richard-Parpaillon L,Boujard D (2003). Molecular cloning and characterization of an adaptor protein Shc isoform from Xenopus laevis oocytes. Biol Cell, 95:311–320
[75] Yamaguchi F,Yamaguchi K,Tokuda M,Brenner S (1999). Molecular cloning of EDG-3 and N-Shc genes from the puffer fish, Fugu rubripes, and conservation of synteny with the human genome. FEBS Lett, 459:105–110
[76] Sweet DT,Chen Z,Wiley DM,Bautch VL,Tzima E (2011). The adaptor protein Shc integrates growth factor and ECM signaling during postnatal angiogenesis. Blood, 119: 1946–1955
[77] Pinton P,Rimessi A,Marchi S, et al (2007). Protein kinase C beta and prolyl isomerase 1 regulates mitochondrial effects of the life-span determinant p66Shc. Science, 315: 659–663
[78] Foschi M,Franchi F,Han J,La Villa G,Sorokin A (2001). Endothelin-1 induces serine phosphorylation of the adaptor protein p66Shc and its association with 14-3-3 protein in glomerular mesangial cells. J Biol Chem, 276:26640–26647
[79] Kyriakis JM,Avruch J (1996). Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem, 4:24313–6.
[80] Karandikar M,Cobb MH (1999) Scaffolding and protein interactions in MAP kinase modules.”. Cell Calcium, 26:219–26
[81] Hu Y,Wang X,Zeng L,Cai DY,Sabapathy K,Goff SP,Firpo EJ,Li B (2005). ERK phosphorylates p66shcA on Ser36 and subsequently regulates p27kip1 expression via the Akt-FOXO3a pathway: implication of p27kip1 in cell response to oxidative stress. Mol Biol Cell, 16:3705–18.
[82] Le S,Connors TJ,Maroney AC (2001). c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J Biol Chem, 276:48332–6.
[83] Zhen Y,Hoganson CW,Babcock GT,Ferguson-Miller S (1999). Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit ii of Rhodobacter sphaeroides cytochrome aa. J Biol Chem, 274:38032–38041
[84] Trinei M,Migliaccio E,Bernardi P,Paolucci F,Pelicci P,Giorgio M (2013). p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol, 528: 99–11
[85] Gertz M,Fischer F,Wolters D,Steegborn C (2008). Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci U S A., 105: 5705–9.
[86] Faisal A,el-Shemerly M,Hess D,Nagamine Y (2002). Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem, 277:30144–30152
[87] Khanday FA,Yamamori T,Mattagajasingh I, et al (2006). Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell, 17:122–129
[88] Salcini AE,McGlade J,Pelicci G, et al (1994). Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene, 9:2827–2836
[89] Gotoh T,Niino Y,Tokuda M,Hatase O,Nakamura S,Matsuda M,Hattori S (1997). Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J Biol Chem, 272:18602–18607
[90] Aylon Y,Oren M (2007). Living with p53, dying of p53. Cell, 130:597–600.
[91] Olivares-Illana V,Fahraeus R (2010). p53 isoforms gain functions. Oncogene, 29:5113–5119
[92] Marcel V,Dichtel-Danjoy ML,Sagne C, et al (2011). Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ, 18:1815–1824
[93] Bourougaa K,Naski N,Boularan C, et al (2012). Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell, 38:78–88
[94] Davidson WR,Kari C,Ren Q, et al (2010). Differential regulation of p53 function by the N-terminal DeltaNp53 and Delta113p53 isoforms in zebrafish embryos. BMC Dev Biol, 10:102–113
[95] Bauer JH,Poon PC,Glatt-Deeley H,Abrams JM,Helfand SL (2005). Neuronal expression of p53 dominant-negative proteins in adult Drosophila melanogaster extends life span. Curr Biol, 15:2063–2068
[96] Ventura N,Rea SL,Schiavi A,Torgovnick A,Testi R,Johnson TE (2009). p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell, 8:380–393
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] Christina Brandenberger,Katharina Maria Kling,Marius Vital,Mühlfeld Christian. The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury[J]. A&D, 2018, 9(4): 553-565.
[3] J. Thomas Mock,Sherilynn G Knight,Philip H Vann,Jessica M Wong,Delaney L Davis,Michael J Forster,Nathalie Sumien. Gait Analyses in Mice: Effects of Age and Glutathione Deficiency[J]. A&D, 2018, 9(4): 634-646.
[4] Jiayu Wu,Weiying Ren,Li Li,Man Luo,Kan Xu,Jiping Shen,Jia Wang,Guilin Chang,Yi Lu,Yiming Qi,Binger Xu,Yuting He,Yu Hu. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats[J]. A&D, 2018, 9(4): 566-577.
[5] Carmen G Vinagre,Fatima R Freitas,Carlos H de Mesquita,Juliana C Vinagre,Ana Carolina Mariani,Roberto Kalil-Filho,Raul C Maranhão. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. A&D, 2018, 9(4): 748-754.
[6] Aurore Marie,Johann Meunier,Emilie Brun,Susanna Malmstrom,Veronique Baudoux,Elodie Flaszka,Gaëlle Naert,François Roman,Sylvie Cosnier-Pucheu,Sergio Gonzalez-Gonzalez. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model[J]. A&D, 2018, 9(4): 664-673.
[7] Jiao Lu,Xuefeng Duan,Wenming Zhao,Jing Wang,Haoyu Wang,Kai Zhou,Min Fang. Aged Mice are More Resistant to Influenza Virus Infection due to Reduced Inflammation and Lung Pathology[J]. A&D, 2018, 9(3): 358-373.
[8] Yali Chen,Mengmei Yin,Xuejin Cao,Gang Hu,Ming Xiao. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. A&D, 2018, 9(3): 374-390.
[9] Wenzhi Sun,Jiewen Tan,Zhuo Li,Shibao Lu,Man Li,Chao Kong,Yong Hai,Chunjin Gao,Xuehua Liu. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging[J]. A&D, 2018, 9(3): 391-400.
[10] Changjun Yang,Kelly M. DeMars,Eduardo Candelario-Jalil. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain[J]. A&D, 2018, 9(2): 322-330.
[11] Lin-Yuan Zhang,Pan Lin,Jiaji Pan,Yuanyuan Ma,Zhenyu Wei,Lu Jiang,Liping Wang,Yaying Song,Yongting Wang,Zhijun Zhang,Kunlin Jin,Qian Wang,Guo-Yuan Yang. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. A&D, 2018, 9(2): 262-272.
[12] Weiming Hu,Junwu Wu,Wenjing Jiang,Jianguo Tang. MicroRNAs and Presbycusis[J]. A&D, 2018, 9(1): 133-142.
[13] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[14] Huaqin Liu,Zhui Yu,Ying Li,Bin Xu,Baihui Yan,Wulf Paschen,David S Warner,Wei Yang,Huaxin Sheng. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice[J]. A&D, 2018, 9(1): 31-39.
[15] Fangyu Peng,Fang Xie,Otto Muzik. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. A&D, 2018, 9(1): 109-118.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd