Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2014, Vol. 5 Issue (4) : 238-255     DOI: 10.14336/AD.2014.0500238
Metabolic Disturbances in Diseases with Neurological Involvement
João M. N. Duarte1, Patrícia F. Schuck2, Gary L. Wenk3, Gustavo C. Ferreira2, *
1Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Switzerland
2Laboratory of inborn errors of metabolism, Universidade do Extremo Sul Catarinense, Brazil
3Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
Download: PDF(0 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses.

Keywords neurodegenerative diseases      inherited diseases      brain metabolism     
Corresponding Authors: Gustavo C. Ferreira   
Issue Date: 10 July 2014
E-mail this article
E-mail Alert
Articles by authors
João M. N. Duarte
Patrícia F. Schuck
Gary L. Wenk
Gustavo C. Ferreira
Cite this article:   
João M. N. Duarte,Patrícia F. Schuck,Gary L. Wenk, et al. Metabolic Disturbances in Diseases with Neurological Involvement[J]. Aging and Disease, 2014, 5(4): 238-255.
URL:     OR
[1] Barnham KJ, Masters CL, Bush AI(2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3:205-14
[2] Wong E, Cuervo AM(2010). Autophagy gone awry in neurodegenerative diseases. Nat Neurosci, 13:805-11
[3] Amor S, Puentes F, Baker D, van der Valk P(2010). Inflammation in neurodegenerative diseases. Immunology, 129:154-69
[4] Maragakis NJ, Rothstein JD(2006). Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol, 2:679-89
[5] Perry VH, Nicoll JA, Holmes C(2010). Microglia in neurodegenerative disease. Nat Rev Neurol, 6:193-201
[6] Schapira AH(2008). Mitochondrial dysfunction in neurodegenerative diseases. Neurochem Res, 33:2502-9
[7] Kwong JQ, Beal MF, Manfredi G(2006). The role of mitochondria in inherited neurodegenerative diseases. J Neurochem, 97:1659-75
[8] DiMauro S, Hirano M(2005). Mitochondrial encephalomyopathies: an update. Neuromuscul Disord, 15:276-86
[9] Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH(1999). Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol, 45:25-32
[10] Mann VM, Cooper JM, Javoy-Agid F, Agid Y, Jenner P, Schapira AH(1990). Mitochondrial function and parental sex effect in Huntington’s disease. Lancet, 336:749
[11] DiMauro S, De Vivo DC(1996). Genetic heterogeneity in Leigh syndrome. Ann Neurol, 40:5-7
[12] Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR(2004). Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging, 25:105-10
[13] Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF(2010). Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets, 11:1193-206
[14] Caldeira GL, Ferreira IL, Rego AC(2013). Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis, 34:115-31
[15] Johnson WM, Wilson-Delfosse AL, Mieyal JJ(2012). Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 4(10):1399-440
[16] Fatokun AA, Stone TW, Smith RA(2008). Oxidative stress in neurodegeneration and available means of protection. Front Biosci, 13:3288-311
[17] Guedes-Dias P, Oliveira JM(2013). Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim Biophys Acta, 1832:1345-59
[18] Itoh K, Nakamura K, Iijima M, Sesaki H(2013). Mitochondrial dynamics in neurodegeneration. Trends Cell Biol, 23:64-71
[19] Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS(2013). Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem, 127:221-32
[20] Schon EA, Przedborski S(2011). Mitochondria: the next (neurode)generation. Neuron, 70:1033-53
[21] Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC(1975). Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med, 12:12-21
[22] Stokke O, Goodman SI, Thompson JA, Miles BS(1975). Glutaric aciduria; presence of glutaconic and beta-hydroxyglutaric acids in urine. Biochem Med, 12:386-91
[23] Brismar J, Ozand PT(1995). CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol, 16:675-83
[24] Neumaier-Probst E, Harting I, Seitz A, Ding C, Kolker S(2004). Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency)J Inherit Metab Dis, 27:869-76
[25] Floret D, Divry P, Dingeon N, Monnet P(1979). Glutaric aciduria. 1 new case. Arch Fr Pediatr, 36:462-70
[26] Gregersen N, Brandt NJ(1979). Ketotic episodes in glutaryl-CoA dehydrogenase deficiency (glutaric aciduria)Pediatr Res, 13:977-81
[27] Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, Goodman SI(2002). Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet, 11:347-57
[28] Schuck PF, Busanello EN, Tonin AM, Viegas CM, Ferreira GC(2013). Neurotoxic effects of transglutaconic acid in rats. Oxid Med Cell Longev, 2013). 607610
[29] Ullrich K, Flott-Rahmel B, Schluff P, Musshoff U, Das A, Lücke T, Steinfeld R, Christensen E, Jakobs C, Ludolph A, Neu A, Röper R(1999). Glutaric aciduria type I: pathomechanisms of neurodegeneration. J Inherit Metab Dis, 22:392-403
[30] Kölker S, Köhr G, Ahlemeyer B, Okun JG, Pawlak V, Hörster F, Mayatepek E, Krieglstein J, Hoffmann GF(2002). Ca(2+) and Na(+) dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr Res, 52:199-206
[31] da C Ferreira G, Viegas CM, Schuck PF, Latini A, Dutra-Filho CS, Wyse AT, Wannmacher CM, Vargas CR, Wajner M(2005). Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci, 23:687-93
[32] Beal MF(1992). Mechanisms of excitotoxicity in neurologic diseases. FASEB J, 6:3338-44
[33] Greene JG, Greenamyre JT(1996). Bioenergetics and glutamate excitotoxicity. Prog Neurobiol, 48:613-34
[34] Henneberry RC, Novelli A, Cox JA, Lysko PG(1989). Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. An hypothesis for cell death in aging and disease. Ann N Y Acad Sci, 568:225-33
[35] Ikonomidou C, Turski L(1995). Excitotoxicity and neurodegenerative diseases. Curr Opin Neurol, 8:487-97
[36] Das AM, Lücke T, Ullrich K(2003). Glutaric aciduria I: creatine supplementation restores creatinephosphate levels in mixed cortex cells from rat incubated with 3-hydroxyglutarate. Mol Genet Metab, 78:108-11
[37] Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry ML, Wyse AT, Dutra-Filho CS, Wannmacher CM, Vargas CR, Wajner M(2007). Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci, 25:391-398
[38] Scriver CR, Kaufman S(2001). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. Scriver CR, Beaudet AL, Valle D, Sly WS The Metabolic and Molecular Bases of Inherited DiseaseNew YorkMcGraw-Hill1667-724
[39] Bauman ML, Kemper TL(1982). Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol, 58:55-63
[40] Gazit V, Ben-Abraham R, Pick CG, Katz Y(2003). Beta-Phenylpyruvate induces long-term neurobehavioral damage and brain necrosis in neonatal mice. Behav Brain Res, 143:1-5
[41] Hörster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, Kölker S, Kins S(2006). Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res, 59:544-8
[42] Sitta A, Manfredini V, Biasi L, Treméa R, Schwartz IV, Wajner M, Vargas CR(2009). Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res, 679:13-6
[43] Simon KR, Dos Santos RM, Scaini G, Leffa DD, Damiani AP, Furlanetto CB, Machado JL, Cararo JH, Macan TP, Streck EL, Ferreira GC, Andrade VM, Schuck PF(2013). DNA damage induced by phenylalanine and its analogue pchlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia. Biochem Cell Biol, 91:319-24
[44] Gu XF, Yang XW, Chen RG(2000). Possible mechanism of nerve damage on hyperphenylalanine in embryonic rat. Am J Hum Genet, 67:S281
[45] Yang XW, Gu XF, Chen RG(2000). Toxic effects of phenylacetic acid to cultured rat cortical neurons. Chin J Neurosci, 16:330-2
[46] Zhang HW, Gu XF(2005). A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metab Brain Dis, 20:61-72
[47] Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS(2006). Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metab, 87:272-7
[48] Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, Kreis R(2003). Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res, 53:654-62
[49] Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM(2003). Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci, 21:111-6
[50] Miller AL, Hawkins RA, Veech RL(1973). Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo. Science, 179:904-6
[51] Lütz Mda G, Feksa LR, Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM(2003). Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metab Brain Dis, 18:87-94
[52] Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM(2002). Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res, 27:353-7
[53] Fenton WA, Gravel RA, Rosenblatt DS(2001). Scriver CR, Beaudet AL, Sly WS, Valle D The metabolic and molecular bases of inherited diseaseNew YorkMcGraw-Hill2165-93
[54] Heidenreich R, Natowicz M, Hainline BE, Berman P, Kelley RI, Hillman RE, Berry GT(1988). Acute extrapyramidal syndrome in methylmalonic acidemia: “metabolic stroke” involving the globus pallidus. J Pediatr, 113:1022-7
[55] Harting I, Seitz A, Geb S, Zwickler T, Porto L, Lindner M, Kölker S, Hörster F(2008). Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis, 31:368-78
[56] Trinh BC, Melhem ER, Barker PB(2001). Multi-slice proton MR spectroscopy and diffusion-weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. AJNR Am J Neuroradiol, 22:831-3
[57] Hayasaka K, Metoki K, Satoh T, Narisawa K, Tada K, Kawakami T, Matsuo N, Aoki T(1982). Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med, 137:329-34
[58] Østergaard E, Wibrand F, Ørngreen MC, Vissing J, Horn N(2005). Impaired energy metabolism and abnormal muscle histology in mut- methylmalonic aciduria. Neurology, 65:931-3
[59] Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S, Venditti CP(2009). Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J, 23:1252-61
[60] de Keyzer Y, Valayannopoulos V, Benoist JF, Batteux F, Lacaille F, Hubert L, Chrétien D, Chadefeaux-Vekemans B, Niaudet P, Touati G, Munnich A, de Lonlay P(2009). Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res, 66:91-5
[61] Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF(2008). Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis, 31:44-54
[62] Halperin ML, Schiller CM, Fritz IB(1971). The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria. A possible explantation for hypoglycemia in methylmalonic aciduria. J Clin Invest, 50:2276-82
[63] Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M(2002). Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int, 40:593-601
[64] Pettenuzzo LF, Ferreira Gda C, Schmidt AL, Dutra-Filho CS, Wyse AT, Wajner M(2006). Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Dev Neurosci, 24:45-52
[65] Utter MF, Keech DB, Scrutton MC(1964). A possible role for acetyl CoA in the control of gluconeogenesis. Adv Enzyme Regul, 2:49-68
[66] Dutra JC, Wajner M, Wannmacher CF, Dutra-Filho CS, Wannmacher CM(1991). Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats. Biochem Med Metab Biol, 45:56-64
[67] Dutra JC, Dutra-Filho CS, Cardozo SE, Wannmacher CM, Sarkis JJ, Wajner M(1993). Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. J Inherit Metab Dis, 16:147-53
[68] Saad LO, Mirandola SR, Maciel EN, Castilho RF(2006). Lactate dehydrogenase activity is inhibited by methylmalonate in vitro. Neurochem Res, 31:541-8
[69] Schuck PF, Rosa RB, Pettenuzzo LF, Sitta A, Wannmacher CM, Wyse AT, Wajner M(2004). Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int, 45:661-7
[70] Wajner M, Dutra JC, Cardoso SE, Wannmacher CM, Motta ER(1992). Effect of methylmalonate on in vitro lactate release and carbon dioxide production by brain of suckling rats. J Inherit Metab Dis, 15:92-6
[71] Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF(2004). Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem, 90:1025-35
[72] Kowaltowski AJ, Maciel EN, Fornazari M, Castilho RF(2006). Diazoxide protects against methylmalonate-induced neuronal toxicity. Exp Neurol, 201:165-71
[73] Sauer SW, Okun JG, Hoffmann GF, Koelker S, Morath MA(2008). Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim Biophys Acta, 1777:1276-82
[74] Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea E, Neufeld EB, Blanchette-Mackie JE, Pentchev PG(2001). Niemann-Pick disease type C. A lipid trafficking disorder. Scriver CR, Sly WS, Valle D The Metabolic and Molecular Basis of Inherited DiseaseNew YorkMulencer Hill
[75] Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED(1996). Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet, 58:118-25
[76] NP-C Guidelines Working Group Wraith JE, Baumgartner MR, Bembi B, Covanis A, Levade T, Mengel E, Pineda M, Sedel F, Topçu M, Vanier MT, Widner H, Wijburg FA, Patterson MC(2009). Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab, 98:152-65
[77] Pentchev PGV, Vanier MT, Suzuki K, Patterson MC(1995). Niemann-Pick disease type C: a cellular cholesterol lipidosis. Scriver CR, Beaudet AL, Sly WS, Valle D The Metabolic and Molecular Bases of Inherited DiseaseNew YorkMcGraw Hill2625-39
[78] Ory DS(2000). Niemann-Pick type C: a disorder of cellular cholesterol trafficking. Biochim Biophys Acta, 1529:331-9
[79] Stefulja J, Perica M, Malnar M, Kosicek M, Schweinzer C, Zivkovic J, Scholler M, Panzenboeck U, Hecimovic S(2013). Pharmacological Activation of LXRs Decreases Amyloid-β Levels in Niemann-Pick Type C Model Cells. Curr Pharm BiotechnolIn press
[80] Mattsson N, Zetterberg H, Bianconi S(2011). Gamma-secretase- dependent amyloid-beta is increased in Niemann-Pick type C: a cross-sectional study. Neurology, 76:366-72
[81] Walkley SU, Suzuki K(2004). Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta, 1685:48-62
[82] Fu R, Yanjanin NM, Bianconi S, Pavan WJ, Porter FD(2010). Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab, 101:214-8
[83] Vázquez MC, Balboa E, Alvarez AR, Zanlungo S(2012). Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. Oxid Med Cell Longev, 2012). 205713
[84] Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M(2005). Altered cholesterol metabolism in Niemann- Pick type C1 mouse brains affects mitochondrial function. J Biol Chem, 280:11731-11739
[85] Lucken-Ardjomande S, Montessuit S, Martinou JC(2008). Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ, 15:484-493
[86] Charman M, Kennedy BE, Osborne N, Karten B(2010). MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res, 51:1023-1034
[87] Harman D(1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11:298-300
[88] Nicholls DG(2004). Mitochondrial membrane potential and aging. Aging Cell, 3:35-40
[89] Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, ParentiCastelli G(2000). Mitochondrial bioenergetics in aging. Biochim Biophys Acta, 1459:397-404
[90] Feuers RJ(1998). The effects of dietary restriction on mitochondrial dysfunction in aging. Ann NY Acad Sci, 54:192-201
[91] Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN(2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A, 99:2356-61
[92] Liu J, Killilea DW, Ames BN(2002). Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A, 99:1876-81
[93] Roth GS, Ingram DK, Lane MA(2001). Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci, 928:305-15
[94] Weindruch, Walford(1988). The Retardation of Aging and Disease by Dietary RestrictionSpringfield, IllinoisCharles C Thomas
[95] Cerqueira FM, Cunha FM, Laurindo FR, Kowaltowski AJ(2012). Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO•-mediated mechanism: impact on neuronal survival. Free Radic Biol Med, 52:1236-41
[96] Eckles-Smith K, Clayton D, Bickford P, Browning MD(2000). Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res, 78:154-62
[97] Okada M, Nakanishi H, Amamoto T, Urae R, Ando S, Yazawa K, Fujiwara M(2003). How does prolonged caloric restriction ameliorate age-related impairment of long-term potentiation in the hippocampus?. Brain Res Mol Brain Res, 111:175-81
[98] Hillman CH, Erickson KI, Kramer AF(2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci, 9:58-65
[99] Kramer AF, Erickson KI, Colcombe SJ(2006). Exercise, cognition, and the aging brain. J Appl Physiol, 101:1237-42
[100] Dietrich MO, Andrews ZB, Horvath TL(2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28:10766-71
[101] Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG(2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 17:2042-6
[102] Van Praag H, Christie BR, Sejnowski TJ, Gage FH(1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A, 96:13427-31
[103] Van Praag H, Kempermann G, Gage FH(1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2:266-70
[104] Trejo JL, Carro E, Torres-Aleman I(2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21:1628-34
[105] Eadie BD, Redila VA, Christie BR(2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol, 486:39-47
[106] Van Praag H, Shubert T, Zhao C, Gage FH(2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci, 25:8680-5
[107] Chang L, Ernst T, Poland RE, Jenden DJ(1996). In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci, 58:2049-2056
[108] Gruber S, Pinker K, Riederer F, Chmelík M, Stadlbauer A, Bittsanský M, Mlynárik V, Frey R, Serles W, Bodamer O, Moser E(2008). Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol, 68:320-327
[109] Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW(2001). Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med, 45:899-907
[110] Duarte JMN, Gruetter R(2013). Extended neurochemical profile in the aging mouse brain detected in vivo by proton magnetic resonance spectroscopy. J Neurochem, 125(Suppl 1):224
[111] Canas PM, Duarte JMN, Rodrigues RJ, Köfalvi A, Cunha RA(2009). Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 30:1877-1884
[112] Van Guilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM(2010). Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem, 113:1577-1588
[113] Allard S, Scardochio T, Cuello AC, Ribeiroda-Silva A(2012). Correlation of cognitive performance and morphological changes in neocortical pyramidal neurons in aging. Neurobiol Aging, 33:1466-1480
[114] Gage FH, Dunnett SB, Björklund A(1984). Spatial learning and motor deficits in aged rats. Neurobiol Aging, 5:43-48
[115] Kennard JA, Woodruff-Pak DS(2011). Age sensitivity of behavioral tests and brain substrates of normal aging in mice. Front Aging Neurosci, 3:1-22
[116] Pistell PJ, Spangler EL, Kelly-Bell B, Miller MG, de Cabo R, Ingram DK(2012). Age-associated learning and memory deficits in two mouse versions of the stone T-maze. Neurobiol Aging, 33:2431-2439
[117] Duarte JMN, Lei H, Mlynárik V, Gruetter R(2012). The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage, 61:342-362
[118] Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF(2010). Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab, 30:211-221
[119] Gage FH, Kelly PA, Björklund A(1984). Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J Neurosci, 4:2856-2865
[120] Tack W, Wree A, Schleicher A(1989). Local cerebral glucose utilization in the hippocampus of old rats. Histochemistry, 92:413-419
[121] Kulak A, Duarte JMN, Do KQ, Gruetter R(2010). Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem, 115:1466-1477
[122] Blüml S, Seymour KJ, Ross BD(1999). Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled 31P MRS in in vivo human brain. Magn Reson Med, 42:643-654
[123] Calderini G, Bonetti AC, Battistella A, Crews FT, Toffano G(1983). Biochemical changes of rat brain membranes with aging. Neurochem Res, 8:483-492
[124] Albrecht J, Schousboe A(2005). Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res, 30:1615-1621
[125] Tkáč I, Rao R, Georgieff MK, Gruetter R(2003). Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo1H NMR spectroscopy. Magn Reson Med, 50:24-32
[126] Calne DB, Langston JW(1983). Aetiology of Parkinson’s disease. Lancet, 2:1457-1459
[127] Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD(1990). Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem, 54:823-827
[128] Parker WDJr, Parks JK(2005). Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun, 326:667-669
[129] Parker WDJr, Parks JK, Swerdlow RH(2008). Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res, 1189:215-218
[130] Ravid R, Ferrer I(2012). Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson’s disease. FEBS J, 279:1167-76
[131] Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH(1992). Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol, 32:782-788
[132] Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker WDJr, Turnbull DM(1991). Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J Neurol Sci, 104:203-208
[133] Zhu J, Chu CT(2010). Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis, 20:325-334
[134] Schapira AH(2008). Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol, 7:97-109
[135] Annepu J, Ravindranath V(2000). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced complex I inhibition is reversed by disulfide reductant, dithiothreitol in mouse brain. Neurosci Lett, 289:209-212
[136] Mytilineou C, Werner P, Molinari S, Di Rocco A, Cohen G, Yahr MD(1994). Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. J Neural Transm Park Dis Dement Sect, 8:223-228
[137] Campello L, Esteve-Rudd J, Bru-Martínez R, Herrero MT, Fernández-Villalba E, Cuenca N, Martín-Nieto J(2013). Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys. PLoS One, 8:e74439
[138] Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM(2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet, 38:515-517
[139] Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JPJr(2009). Parkinson’s disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Mol Neurodegener, 4:37
[140] Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K(2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 38:518-520
[141] Lucetti C, Del Dotto P, Gambaccini G, Ceravolo R, Logi C, Berti C, Rossi G, Bianchi MC, Tosetti M, Murri L, Bonuccelli U(2007). Influences of dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord, 22:2170-2175
[142] Taylor-Robinson SD, Turjanski N, Bhattacharya S, Seery JP, Sargentoni J, Brooks DJ, Bryant DJ, Cox IJ(1999). A proton magnetic resonance spectroscopy study of the striatum and cerebral cortex in Parkinson’s disease. Metab Brain Dis, 14:45-55
[143] Nie K, Zhang Y, Huang B, Wang L, Zhao J, Huang Z, Gan R, Wang L(2013). Marked N-acetylaspartate and choline metabolite changes in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat Disord, 19:329-334
[144] Griffith HR, Okonkwo OC, O’Brien T, Hollander JA(2008). Reduced brain glutamate in patients with Parkinson’s disease. NMR Biomed, 21:381-387
[145] Lin MT, Beal MF(2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443:787-795
[146] Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C, Steinmetz H, Zanella F, Hilker R(2009). Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain, 132:3285-3297
[147] Henchcliffe C, Shungu DC, Mao X, Huang C, Nirenberg MJ, Jenkins BG, Beal MF(2008). Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann N Y Acad Sci, 1147:206-220
[148] Emir UE, Tuite PJ, Öz G(2012). Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One, 7:e30918
[149] Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, Mosley RL, Gendelman HE(2005). Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neurosci, 25:1691-1700
[150] Koga K, Mori A, Ohashi S, Kurihara N, Kitagawa H, Ishikawa M, Mitsumoto Y, Nakai M(2006). 1H MRS identifies lactate rise in the striatum of MPTP-treated C57BL/6 mice. Eur J Neurosci, 23:1077-1081
[151] Jenkins BG, Brouillet E, Chen YC, Storey E, Schulz JB, Kirschner P, Beal MF, Rosen BR(1996). Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J Cereb Blood Flow Metab, 16:450-461
[152] Storey E, Hyman BT, Jenkins B, Brouillet E, Miller JM, Rosen BR, Beal MF(1992). 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem, 58:1975-1978
[153] Hou Z, Lei H, Hong S, Sun B, Fang K, Lin X, Liu M, Yew DT, Liu S(2010). Functional changes in the frontal cortex in Parkinson’s disease using a rat model. J Clin Neurosci, 17:628-633
[154] Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traoré A, Durif F(2008). Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson’s disease, the MPTP-intoxicated mouse. J Neurochem, 105:874-882
[155] Chassain C, Bielicki G, Keller C, Renou JP, Durif F(2010). Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed, 23:547-553
[156] Podell M, Hadjiconstantinou M, Smith MA, Neff NH(2003). Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol, 179:159-166
[157] Chassain C, Bielicki G, Carcenac C, Ronsin AC, Renou JP, Savasta M, Durif F(2013). Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A ¹H nuclear MRS study. NMR Biomed, 26:336-47
[158] Huang Y, Mucke L(2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148:1204-1222
[159] Santoro A, Balbi V, Balducci E, Pirazzini C, Rosini F, Tavano F(2010). Evidence for subhaplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer’s disease. PLoS One, 5:e12037
[160] Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X(2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci, 29:9090-9103
[161] Palau F, Estela A, Pla-Martín D, Sánchez-Piris M(2009). The role of mitochondrial network dynamics in the pathogenesis of Charcot-Marie-Tooth disease. Adv Exp Med Biol, 652:129-137
[162] Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA(2002). Beta-amyloid inhibits inte- grated mitochondrial respiration and key enzyme activities. J Neurochem, 80:91-100
[163] Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH(2006). Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 15:1437-1449
[164] Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA(2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 324:102-5
[165] Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI(2007). Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One, 2:536
[166] Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ(2013). Mitochondrial Alterations near Amyloid Plaques in an Alzheimer’s Disease Mouse Model. J Neurosci, 33:17042-170451
[167] Pahnke J, Fröhlich C, Krohn M, Schumacher T, Paarmann K(2013). Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech Ageing DevIn press
[168] Meyerhoff DJ, MacKay S, Constans JM, Norman D, Van Dyke C, Fein G, Weiner MW(1994). Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol, 36:40-7
[169] Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO(1999). In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease. Arch Gen Psychiatry, 56:185-192
[170] Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO(1999). In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med, 41:276-284
[171] Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O’Brien PC, Weigand SD, Edland SD, Smith GE, Ivnik RJ, Ferman TJ, Tangalos EG, Jack CRJr(2004). 1H MR spectroscopy in common dementias. Neurology, 63:1393-1398
[172] Chantal S, Labelle M, Bouchard RW, Braun CM, Boulanger Y(2002). Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease. Arch Neurol, 59:955-962
[173] Watanabe T, Shiino A, Akiguchi I(2010). Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord, 30:71-77
[174] Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ(1992). Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A, 89:1671-1675
[175] Jessen F, Gür O, Block W, Ende G, Frölich L, Hammen T, Wiltfang J, Kucinski T, Jahn H, Heun R, Maier W(2009). A multicenter 1H-MRS study of the medial temporal lobe in AD and MCI. Neurology, 72:1735-1740
[176] Kantarci K(2007). 1H magnetic resonance spectroscopy in dementia. Br J Radiol, 80:S146-S152
[177] Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y(2004). Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res, 1003:26-35
[178] Pilatus U, Lais C, Rochmont Adu M, Kratzsch T, Frölich L, Maurer K, Zanella FE, Lanfermann H, Pantel J(2009). Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res, 173:1-7
[179] Haley AP, Knight-Scott J, Simnad VI, Manning CA(2006). Increased glucose concentration in the hippocampus in early Alzheimer’s disease following oral glucose ingestion. Magn Reson Imaging, 24:715-720
[180] Duarte AI, Moreira PI, Oliveira CR(2012). Insulin in central nervous system: more than just a peripheral hormone. J Aging Res, 1-21
[181] Selkoe DJ(1995). Deciphering Alzheimer’s disease: molecular genetics and cell biology yield major clues. J NIH Res, 7:57-64
[182] Choi JK, Jenkins BG, Carreras I, Kaymakcalan S, Cormier K, Kowall NW, Dedeoglu A(2010). Anti-inflammatory treatment in AD mice protects against neuronal pathology. Exp Neurol, 223:377-384
[183] Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CRJr, Ugurbil K, Garwood M(2005). Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A, 102:11906-11910
[184] Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, Norinder U, Klason T, Wahlund LO, Lindberg M(2008). Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging, 29:1423-1433
[185] Jack CRJr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M(2007). Magnetic resonance imaging of Alzheimer’s pathology in the brains of living transgenic mice: a new tool in Alzheimer’s disease research. Neuroscientist, 13:38-48
[186] Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC(2009). Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord, 28:558-566
[187] Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG(2004). Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res, 1012:60-65
[188] Mlynárik V, Cacquevel M, Sun-Reimer L, Janssens S, Cudalbu C, Lei H, Schneider BL, Aebischer P, Gruetter R(2012). Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J Alzheimers Dis, 3:S87-99
[189] Zheng Z, Diamond MI(2012). Huntington disease and the huntingtin protein. Prog Mol Biol Transl Sci, 107:189-214
[190] Bossy-Wetzel E, Bossy-Wetzel E, Petrilli A, Knott AB(2008). Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci, 31:609-616
[191] Oliveira JM(2010). Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr, 42:227-234
[192] Greene JG, Greenamyre JT(1995). Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J Neurochem, 64:430-436
[193] Massieu L, Del Río P, Montiel T(2001). Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience, 106:669-677
[194] Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT(2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci, 5:731-736
[195] Grunewald T, Beal MF(1999). Bioenergetics in Huntington’s disease. Ann NY AcadSci, 893:203-213
[196] Trushina E, Dyer RB, Badger II JD, Ure D, Eide L, Tran DD(2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol, 24:8195-8209
[197] Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D(2010). Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med, 2:490-503
[198] Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y(2011). Mutant huntingtin binds the mitochondrial fission GTPasedynamin-related protein-1 and increases its enzymatic activity. Nat Med, 17:377-382
[199] Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR(1993). Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology, 43:2689-2695
[200] Brennan WAJr, Bird ED, Aprille JR(1985). Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem, 44:1948-1950
[201] Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH(1996). Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol, 39:385-389
[202] Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF(1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol, 41:646-653
[203] Ribeiro M, Silva AC, Rodrigues J, Naia L, Rego AC(2013). Oxidizing Effects of Exogenous Stressors in Huntington’s Disease Knock-in Striatal Cells--Protective Effect of Cystamine and Creatine. Toxicol SciIn press
[204] Fan MM, Raymond LA(2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol, 81:272-293
[205] Johri A, Chandra A, Beal(2013). MF.PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free RadicBiol Med, 62:37-46
[206] Sturrock A, Laule C, Decolongon J, Dar Santos R, Coleman AJ, Creighton S, Bechtel N, Reilmann R, Hayden MR, Tabrizi SJ, Mackay AL, Leavitt BR(2010). Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology, 75:1702-1710
[207] Unschuld PG, Edden RA, Carass A, Liu X, Shanahan M, Wang X, Oishi K, Brandt J, Bassett SS, Redgrave GW, Margolis RL, van Zijl PC, Barker PB, Ross CA(2012). Brain metabolite alterations and cognitive dysfunction in early Huntington’s disease. Mov Disord, 27:895-902
[208] Tkáč I, Dubinsky JM, Keene CD, Gruetter R, Low WC(2007). Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo1H NMR spectroscopy. J Neurochem, 100:1397-1406
[209] Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF(2000). Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem, 74:2108-2119
[210] Zacharoff L, Tkac I, Song Q, Tang C, Bolan PJ, Mangia S, Henry PG, Li T, Dubinsky JM(2012). Cortical metabolites as biomarkers in the R6/2 model of Huntington’s disease. J Cereb Blood Flow Metab, 32:502-14
[211] Jenkins BG, Andreassen OA, Dedeoglu A, Leavitt B, Hayden M, Borchelt D, Ross CA, Ferrante RJ, Beal MF(2005). Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem, 95:553-562
[212] Heikkinen T, Lehtimäki K, Vartiainen N, Puoliväli J, Hendricks SJ, Glaser JR, Bradaia A, Wadel K, Touller C, Kontkanen O, Yrjänheikki JM, Buisson B, Howland D, Beaumont V, Munoz-Sanjuan I, Park LC(2012). Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One, 7:e50717
[213] Klapstein GJ, Fisher RS, Zanjani H, Cepeda C, Jokel ES, Chesselet MF, Levine MS(2001). Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. J Neurophysiol, 86:2667-2677
[214] Choo YS, Mao Z, Johnson GV, Lesort M(2005). Increased glutathione levels in cortical and striatal mitochondria of the R6/2 Huntington’s disease mouse model. Neurosci Lett, 386:63-68
[215] Lee WT, Chang C(2004). Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol, 72:87-110
[216] Tsai MJ, Goh CC, Wan YL, Chang C(1997). Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization. Neuroscience, 79:819-826
[1] Ting Shen,Yuyi You,Chitra Joseph,Mehdi Mirzaei,Alexander Klistorner,Stuart L. Graham,Vivek Gupta. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders[J]. A&D, 2018, 9(3): 523-536.
[2] Aleksandra Szybińska, Wieslawa Le?niakx. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes?[J]. A&D, 2017, 8(4): 506-518.
[3] Matthew Redmann,Victor Darley-Usmar,Jianhua Zhang. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases[J]. A&D, 2016, 7(2): 150-162.
[4] Ashok Munivenkatappa,Bhavani Shankara Bagepally,Jitender Saini,Pramod Kumar Pal. In vivo Age-related Changes in Cortical, Subcortical Nuclei, and Subventricular Zone: A Diffusion Tensor Imaging Study[J]. Aging and Disease, 2013, 4(2): 65-75.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd