Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2014, Vol. 5 Issue (4) : 263-273     DOI: 10.14336/AD.2014.0500263
|
mTOR Signaling from Cellular Senescence to Organismal Aging
Shaohua Xu2, Ying Cai1, Yuehua Wei1, 2, *
1No.3 People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
2Gladstone Institute of Cardiovascular Disease, University of California San Francisco, San Francisco, CA94102, USA
Download: PDF(0 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The TOR (target of rapamycin) pathway has been convincingly shown to promote aging in various model organisms. In mice, inhibiting mTOR (mammalian TOR) by rapamycin treatment later in life can significantly extend lifespan and mitigate multiple age-related diseases. However, the underlying mechanisms are poorly understood. Cellular senescence is strongly correlated to organismal aging therefore providing an attractive model to examine the mechanisms by which mTOR inhibition contributes to longevity and delaying the onset of related diseases. In this review, we examine the connections between mTOR and cellular senescence and discuss how understanding cellular senescence on the aspect of mTOR signaling may help to fully appreciate its role in the organismal aging. We also highlight the opposing roles of senescence in various human diseases and discuss the caveats in interpreting the emerging experimental data.

Keywords senescence      aging      mTOR      rapamycin      age-related disease     
Corresponding Authors: Yuehua Wei   
Issue Date: 10 July 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaohua Xu
Ying Cai
Yuehua Wei
Cite this article:   
Shaohua Xu,Ying Cai,Yuehua Wei. mTOR Signaling from Cellular Senescence to Organismal Aging[J]. Aging and Disease, 2014, 5(4): 263-273.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2014.0500263     OR     http://www.aginganddisease.org/EN/Y2014/V5/I4/263
[1] Hayflick L, Moorhead PS(1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25:585-621
[2] d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T(2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426:194-198
[3] Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB(1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279:349-352
[4] Vaziri H, Benchimol S(1998). Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol, 8:279-282
[5] Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW(1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88:593-602
[6] Zhu J, Woods D, McMahon M, Bishop JM(1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev, 12:2997-3007
[7] Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM(2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436:720-724
[8] Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M(2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436:725-730
[9] Kuilman T, Michaloglou C, Mooi WJ, Peeper DS(2010). The essence of senescence. Genes Dev, 24:2463-2479
[10] Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM(2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109:335-346
[11] Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S(2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 133:1006-1018
[12] Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J(2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6:2853-2868
[13] Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ(2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133:1019-1031
[14] Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA(2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113:703-716
[15] Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C(1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 92:9363-9367
[16] Satyanarayana A, Wiemann SU, Buer J, Lauber J, Dittmar KE, Wustefeld T(2003). Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. Embo J, 22:4003-4013
[17] Lechel A, Satyanarayana A, Ju Z, Plentz RR, Schaetzlein S, Rudolph C(2005). The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep, 6:275-281
[18] Collado M, Blasco MA, Serrano M(2007). Cellular senescence in cancer and aging. Cell, 130:223-233
[19] Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U(2007). Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev, 128:36-44
[20] Jeyapalan JC, Sedivy JM(2008). Cellular senescence and organismal aging. Mech Ageing Dev, 129:467-474
[21] Jin K(2010). Modern Biological Theories of Aging. Aging Dis, 1:72-74
[22] Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B(2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479:232-236
[23] Campisi J(2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 120:513-522
[24] Shelton DN, Chang E, Whittier PS, Choi D, Funk WD(1999). Microarray analysis of replicative senescence. Curr Biol, 9:939-945
[25] Ide T, Tsuji Y, Ishibashi S, Mitsui Y(1983). Reinitiation of host DNA synthesis in senescent human diploid cells by infection with Simian virus 40. Exp Cell Res, 143:343-349
[26] Ide T, Tsuji Y, Nakashima T, Ishibashi S(1984). Progress of aging in human diploid cells transformed with a tsA mutant of simian virus 40. Exp Cell Res, 150:321-328
[27] d’Adda di Fagagna F, Teo SH, Jackson SP(2004). Functional links between telomeres and proteins of the DNA-damage response. Genes Dev, 18:1781-1799
[28] Itahana K, Dimri G, Campisi J(2001). Regulation of cellular senescence by p53. Eur J Biochem, 268:2784-2791
[29] Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC(2000). p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene, 19:2165-2170
[30] Demidenko ZN, Blagosklonny MV(2008). Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle, 7:3355-3361
[31] Serrano M, Hannon GJ, Beach D(1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366:704-707
[32] Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y(2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature, 409:1067-1070
[33] McConnell BB, Starborg M, Brookes S, Peters G(1998). Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol, 8:351-354
[34] Shay JW, Wright WE, Werbin H(1991). Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta, 1072:1-7
[35] Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K(1991). Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun, 179:528-534
[36] Wullschleger S, Loewith R, Hall MN(2006). TOR Signaling in Growth and Metabolism. Cell, 124:471-484
[37] Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J, Bonenfant D(2002). Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Mol Cell, 10:457-468
[38] Sarbassov DD, Ali SM, Sabatini DM(2005). Growing roles for the mTOR pathway. Curr Opin Cell Biol, 17:596-603
[39] Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF(2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell, 22:159-168
[40] Wei Y, Zheng XF(2011). Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol Biol, 759:307-319
[41] Wei Y, Zhang YJ, Cai Y(2013). Growth or longevity: the TOR’s decision on lifespan regulation. Biogerontology, 14:353-363
[42] Manning BD, Cantley LC(2003). Rheb fills a GAP between TSC and TOR. Trends Biochem Sci, 28:573-576
[43] Hay N, Sonenberg N(2004). Upstream and downstream of mTOR. Genes Dev, 18:1926-1945
[44] Wei Y, Zheng XS(2010). Maf1 regulation: a model of signal transduction inside the nucleus. Nucleus, 1:162-165
[45] Wei Y, Tsang CK, Zheng XF(2009). Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J, 28:2220-2230
[46] Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN(2010). mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol, 30:3749-3757
[47] Rideout EJ, Marshall L, Grewal SS(2012). Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci U S A, 109:1139-1144
[48] Laplante M, Sabatini DM(2012). mTOR signaling in growth control and disease. Cell, 149:274-293
[49] Campisi J(2013). Aging, cellular senescence, and cancer. Annu Rev Physiol, 75:685-705
[50] Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV(2009). Rapamycin decelerates cellular senescence. Cell Cycle, 8:1888-1895
[51] Serrano M(2012). Dissecting the role of mTOR complexes in cellular senescence. Cell Cycle, 11:2231-2232
[52] Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P(2012). Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle, 11:2391-2401
[53] Pospelova TV, Leontieva OV, Bykova TV, Zubova SG, Pospelov VA, Blagosklonny MV(2012). Suppression of replicative senescence by rapamycin in rodent embryonic cells. Cell Cycle, 11:2402-2407
[54] Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS(2009). mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell, 5:279-289
[55] Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH(2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 501:421-425
[56] Demidenko ZN, Blagosklonny MV(2009). Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of proliferative potential. Aging (Albany NY)1:1008-1016
[57] Blagosklonny MV(2006). Cell senescence: hypertrophic arrest beyond the restriction point. J Cell Physiol, 209:592-597
[58] Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J(2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20:1992-2003
[59] Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y(2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 20:1981-1991
[60] Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X(2009). ULK1.ATG13FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284:12297-12305
[61] Baker BM, Nargund AM, Sun T, Haynes CM(2012). Protective coupling of mitochondrial function and protein synthesis via the eIF2alpha kinase GCN-2. PLoS Genet, 8:e1002760
[62] Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G(2009). Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol, 29:4495-4507
[63] Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H(2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol, 5:e110
[64] Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P(2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 450:736-740
[65] Lerner C, Bitto A, Pulliam D, Nacarelli T, Konigsberg M, Van Remmen H(2013). Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell
[66] Iglesias-Bartolome R, Patel V, Cotrim A, Leelahavanichkul K, Molinolo AA, Mitchell JB(2012). mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell, 11:401-414
[67] Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F(2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature, 426:620
[68] Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S(2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 14:885-890
[69] Kaeberlein M, Powers RW3rd, Steffen KK, Westman EA, Hu D, Dang N(2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310:1193-1196
[70] Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R(2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol, 69:277-285
[71] Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A(2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab, 11:35-46
[72] Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K(2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460:392-395
[73] Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D(2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10:457-468
[74] Honjoh S, Yamamoto T, Uno M, Nishida E(2009). Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature, 457:726-730
[75] Schreiber MA, Pierce-Shimomura JT, Chan S, Parry D, McIntire SL(2010). Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet, 6:e1000972
[76] Jia K, Chen D, Riddle DL(2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development, 131:3897-3906
[77] Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD(2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science, 292:288-290
[78] Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI(2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 326:140-144
[79] Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA(2009). 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 139:149-160
[80] Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WAJr, Aris JP(2009). Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy, 5:847-849
[81] Rodier F, Campisi J(2011). Four faces of cellular senescence. J Cell Biol, 192:547-556
[82] Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B(2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 436:660-665
[83] Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C(2008). Senescence of activated stellate cells limits liver fibrosis. Cell, 134:657-667
[84] Parrinello S, Coppe JP, Krtolica A, Campisi J(2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci, 118:485-496
[85] Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU(2012). Astrocyte senescence as a component of Alzheimer’s disease. PLoS One, 7:e45069
[86] Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R(2007). Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem, 101:794-805
[87] Smith JA, Daniel R(2012). Stem cells and aging: a chicken-or-the-egg issue?. Aging Dis, 3:260-268
[88] Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM(2006). Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 443:421-426
[89] Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S(2006). p16INK4a induces an age-dependent decline in islet regenerative potential. Nature, 443:453-457
[90] Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J(2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443:448-452
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] Christina Brandenberger,Katharina Maria Kling,Marius Vital,Mühlfeld Christian. The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury[J]. A&D, 2018, 9(4): 553-565.
[3] J. Thomas Mock,Sherilynn G Knight,Philip H Vann,Jessica M Wong,Delaney L Davis,Michael J Forster,Nathalie Sumien. Gait Analyses in Mice: Effects of Age and Glutathione Deficiency[J]. A&D, 2018, 9(4): 634-646.
[4] Jiayu Wu,Weiying Ren,Li Li,Man Luo,Kan Xu,Jiping Shen,Jia Wang,Guilin Chang,Yi Lu,Yiming Qi,Binger Xu,Yuting He,Yu Hu. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats[J]. A&D, 2018, 9(4): 566-577.
[5] Carmen G Vinagre,Fatima R Freitas,Carlos H de Mesquita,Juliana C Vinagre,Ana Carolina Mariani,Roberto Kalil-Filho,Raul C Maranhão. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. A&D, 2018, 9(4): 748-754.
[6] Aurore Marie,Johann Meunier,Emilie Brun,Susanna Malmstrom,Veronique Baudoux,Elodie Flaszka,Gaëlle Naert,François Roman,Sylvie Cosnier-Pucheu,Sergio Gonzalez-Gonzalez. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model[J]. A&D, 2018, 9(4): 664-673.
[7] Jiao Lu,Xuefeng Duan,Wenming Zhao,Jing Wang,Haoyu Wang,Kai Zhou,Min Fang. Aged Mice are More Resistant to Influenza Virus Infection due to Reduced Inflammation and Lung Pathology[J]. A&D, 2018, 9(3): 358-373.
[8] Yali Chen,Mengmei Yin,Xuejin Cao,Gang Hu,Ming Xiao. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. A&D, 2018, 9(3): 374-390.
[9] Wenzhi Sun,Jiewen Tan,Zhuo Li,Shibao Lu,Man Li,Chao Kong,Yong Hai,Chunjin Gao,Xuehua Liu. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging[J]. A&D, 2018, 9(3): 391-400.
[10] Changjun Yang,Kelly M. DeMars,Eduardo Candelario-Jalil. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain[J]. A&D, 2018, 9(2): 322-330.
[11] Lin-Yuan Zhang,Pan Lin,Jiaji Pan,Yuanyuan Ma,Zhenyu Wei,Lu Jiang,Liping Wang,Yaying Song,Yongting Wang,Zhijun Zhang,Kunlin Jin,Qian Wang,Guo-Yuan Yang. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. A&D, 2018, 9(2): 262-272.
[12] Weiming Hu,Junwu Wu,Wenjing Jiang,Jianguo Tang. MicroRNAs and Presbycusis[J]. A&D, 2018, 9(1): 133-142.
[13] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[14] Huaqin Liu,Zhui Yu,Ying Li,Bin Xu,Baihui Yan,Wulf Paschen,David S Warner,Wei Yang,Huaxin Sheng. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice[J]. A&D, 2018, 9(1): 31-39.
[15] Fangyu Peng,Fang Xie,Otto Muzik. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. A&D, 2018, 9(1): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd