Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2014, Vol. 5 Issue (4) : 281-291     DOI: 10.14336/AD.2014.0500281
|
Nothobranchius as a model for aging studies. A review
Alejandro Lucas-Sánchez1, *, Pedro Francisco Almaida-Pagán2, Pilar Mendiola1, Jorge de Costa1
1Department of Physiology. Faculty of Biology. University of Murcia. 30100 Murcia, Spain.
2Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
Download: PDF(0 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent decades, the increase in human longevity has made it increasingly important to expand our knowledge on aging. To accomplish this, the use of animal models is essential, with the most common being mouse (phylogenetically similar to humans, and a model with a long life expectancy) and Caenorhabditis elegans (an invertebrate with a short life span, but quite removed from us in evolutionary terms). However, some sort of model is needed to bridge the differences between those mentioned above, achieving a balance between phylogenetic distance and life span. Fish of the genus Nothobranchius were suggested 10 years ago as a possible alternative for the study of the aging process. In the meantime, numerous studies have been conducted at different levels: behavioral (including the study of the rest-activity rhythm), populational, histochemical, biochemical and genetic, among others, with very positive results. This review compiles what we know about Nothobranchius to date, and examines its future prospects as a true alternative to the classic models for studies on aging.

Keywords Aging      Fish      killifish      Nothobranchius     
Corresponding Authors: Alejandro Lucas-Sánchez   
Issue Date: 04 November 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alejandro Lucas-Sánchez
Pedro Francisco Almaida-Pagán
Pilar Mendiola
Jorge de Costa
Cite this article:   
Alejandro Lucas-Sánchez,Pedro Francisco Almaida-Pagán,Pilar Mendiola, et al. Nothobranchius as a model for aging studies. A review[J]. Aging and Disease, 2014, 5(4): 281-291.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2014.0500281     OR     http://www.aginganddisease.org/EN/Y2014/V5/I4/281
Figure 1.  Advantages of Nothobranchius genus as a model for aging studies
[1] Paxton JR, Eschmeyer WN, Kirshner D Encyclopedia of fishesNew YorkAcademic Press1998
[2] Finch CE Longevity, senescence, and the genomeChicagoUniversity of Chicago Press1994
[3] Woodhead AD(1978). Fish in studies of aging. Exp Gerontol, 13:125-140
http://dx.doi.org/10.1016/0531-5565(78)90005-0
[4] Comfort A(1960). The effect of age on growth-resumption in fish (Lebistes) checked by food restriction. Gerontologia, 4:177-186
http://dx.doi.org/10.1159/000210992
[5] Comfort A(1961). The longevity and mortality of a fish (Lebistes reticulatus Peters) in captivity. Gerontologia, 5:209-222
http://dx.doi.org/10.1159/000211060
[6] Comfort A(1969). Effect of temperature on tail regeneration in Lebistes. Gerontologia, 15:248-251
http://dx.doi.org/10.1159/000211692
[7] Comfort A(1961). Age and reproduction in female Lebistes. Gerontologia, 5:146-149
http://dx.doi.org/10.1159/000211050
[8] Woodhead AD, Pond V(1984). Aging changes in the optic tectum of the guppy Poecilia (lebistes) reticulatus. Exp Gerontol, 19:305-311
http://dx.doi.org/10.1016/0531-5565(84)90003-2
[9] Woodhead AD, Pond V, Dailey K(1983). Aging changes in the kidneys of two poeciliid fishes, the guppy Poecilia reticulatus and the Amazon molly P. formosa. Exp Gerontol, 18:211-221
http://dx.doi.org/10.1016/0531-5565(83)90033-5
[10] Reznick DN, Buckwalter G, Groff J, Elder D(2001). The evolution of senescence in natural populations of guppies (Poecilia reticulata): a comparative approach. Exp Gerontol, 36:791-812
http://dx.doi.org/10.1016/S0531-5565(00)00241-2
[11] Eisen JS(1996). Zebrafish make a big splash. Cell, 87:969-977
http://dx.doi.org/10.1016/S0092-8674(00)81792-4
[12] Gerhard GS(2003). Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol, 38:1333-1341
http://dx.doi.org/10.1016/j.exger.2003.10.022
[13] Keller ET, Murtha JM(2004). The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol, 138C:335-341
[14] Kishi S(2004). Functional aging and gradual senescence in Zebrafish. Ann N Y Acad Sci, 1019:521-526
http://dx.doi.org/10.1196/annals.1297.097
[15] Yu L, Tucci V, Kishi S, Zhdanova IV(2006). Cognitive aging in zebrafish. PLoS One, 1:e14
http://dx.doi.org/10.1371/journal.pone.0000014
[16] Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC(2002). Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio)Exp Gerontol, 37:1055-1068
http://dx.doi.org/10.1016/S0531-5565(02)00088-8
[17] Talbot WS, Hopkins N(2000). Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev, 14:755-762
[18] Liu RK, Walford RL(1966). Increased growth and lifespan with lowered ambient temperature in the annual fish, Cynolebias adloffi. Nature, 212:1277-1278
http://dx.doi.org/10.1038/2121277a0
[19] Liu RK, Walford RL(1969). Laboratory studies on lifespan, growth, aging, and pathology of the annual fish, Cynolebias bellottii Stendachner. Zool NY Zool Soc, 54:1-19
[20] Markofsky J, Milstoc M(1979). Histopathological observations of the kidney during aging of the male annual fish Nothobranchius guentheri. Exp Gerontol, 14:149-155
http://dx.doi.org/10.1016/0531-5565(79)90030-5
[21] Markofsky J, Milstoc M(1979). Aging changes in the liver of the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol, 14:11-20IN1
http://dx.doi.org/10.1016/0531-5565(79)90003-2
[22] Herrera M, Jagadeeswaran P(2004). Annual fish as a genetic model for aging. J Gerontol A Biol Sci Med Sci, 59:B101-B107
http://dx.doi.org/10.1093/gerona/59.2.B101
[23] Jubb RA NothobranchiusNeptune City, New JerseyTFH Publications1982
[24] Markofsky J, Perlmutter A(1972). Age at sexual maturity and its relationship to longevity in the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol, 7:131-135
http://dx.doi.org/10.1016/0531-5565(72)90007-1
[25] Valdesalici S, Cellerino A(2003). Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc R Soc Lond B Biol Sci, 270:S189-S191
http://dx.doi.org/10.1098/rsbl.2003.0048
[26] Markofsky J, Perlmutter A(1973). Growth differences in subgroups of varying longevities in a laboratory population of the male annual cyprinodont fish, Nothobranchius guentheri (Peters)Exp Gerontol, 8:65-73
http://dx.doi.org/10.1016/0531-5565(73)90016-8
[27] Cooper EL, Zapata A, García Barrutia M, Ramírez JA(1983). Aging changes in lymphopoietic and myelopoietic organs of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol, 18:29-38
http://dx.doi.org/10.1016/0531-5565(83)90048-7
[28] Balmer RT(1982). The effect of age on body energy content of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol, 17:139-143
http://dx.doi.org/10.1016/0531-5565(82)90048-1
[29] Ruijter JM, Peute J, Levels PJ(1987). The relation between pituitary gland and thyroid growth during the lifespan of the annual fish Cynolebias whitei and Nothobranchius korthausae: gonadotropic and thyrotropic cells. Cell Tissue Res, 248:689-697
http://dx.doi.org/10.1007/BF00216500
[30] Hsu CY, Chiu YC, Hsu WL, Chan YP(2008). Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci, 63:1267-1276
http://dx.doi.org/10.1093/gerona/63.12.1267
[31] Lucas-Sánchez A, Almaida-Pagán PF, Madrid Pérez JA, de Costa Ruiz J, Mendiola López P(2011). Age-related markers in Nothobranchius korthausae: fatty acid profile and locomotor activity rhythms. Exp Gerontol, 46:970-978
http://118.145.16.217/magsci/article/article?id=15012266
[32] Terzibasi Tozzini E, Lefrançois C, Domenici P, Hartmann N, Graf M, Cellerino A(2009). Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell, 8:88-99
http://dx.doi.org/10.1111/j.1474-9726.2009.00455.x
[33] Yu X, Li G(2012). Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol, 47:940-949
http://dx.doi.org/10.1016/j.exger.2012.08.009
[34] Graf M, Cellerino A, Englert C(2010). Gender separation increases somatic growth in females but does not affect lifespan in Nothobranchius furzeri. PLoS One, 5:e11958
http://dx.doi.org/10.1371/journal.pone.0011958
[35] Kirkwood JK(1983). A limit to metabolisable energy intake in mammals and birds. Comp Biochem Physiol, 75A(1):1-3
[36] Di Cicco E, Terzibasi Tozzini E, Rossi G, Cellerino A(2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging processes reinforced by high incidence of age-dependent neoplasias. Exp Gerontol, 46:249-256
http://118.145.16.217/magsci/article/article?id=15012300
[37] Genade T, Benedetti M, Terzibasi Tozzini E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A(2005). Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell, 4:223-233
http://dx.doi.org/10.1111/j.1474-9726.2005.00165.x
[38] Podrabsky JE(1999). Husbandry of the annual killifish Austrofundulus limnaeus with special emphasis on the collection and rearing of embryos. Environ Biol Fishes, 54:421-431
http://dx.doi.org/10.1023/A:1007598320759
[39] Reznick DN, Ghalambor CK, Nunney L(2002). The evolution of senescence in fish. Mech Ageing Dev, 123:773-789
http://dx.doi.org/10.1016/S0047-6374(01)00423-7
[40] Lucas-Sánchez Alejandro, Almaida-Pagán Pedro Francisco, Tocher Douglas R, Mendiola López Pilar, de Costa Ruiz Jorge(2013). Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci(in press)
[41] Hulbert AJ(2005). On the importance of fatty acid composition of membranes for aging. J Theor Biol, 234:277-288
http://dx.doi.org/10.1016/j.jtbi.2004.11.024
[42] Hulbert AJ(2007). Membrane fatty acids as pacemakers of animal metabolism. Lipids, 42:811-819
http://118.145.16.217/magsci/article/article?id=16738375
[43] Terzibasi Tozzini E, Valenzano DR, Benedetti M, Roncaglia P, Cataneo A, Domenici L, Cellerino A(2008). Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One, 3:e3866-13
http://dx.doi.org/10.1371/journal.pone.0003866
[44] Valenzano DR, Terzibasi Tozzini E, Cattaneo A, Domenici L, Cellerino A(2006). Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell, 5:275-278
http://dx.doi.org/10.1111/j.1474-9726.2006.00212.x
[45] Hsu CY, Chiu YC(2009). Ambient temperature influences aging in an annual fish (Nothobranchius rachovii)Aging Cell, 8:726-737
http://dx.doi.org/10.1111/j.1474-9726.2009.00525.x
[46] Valenzano DR, Terzibasi Tozzini E, Genade T, Cattaneo A, Domenici L, Cellerino A(2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol, 16:296-300
http://118.145.16.217/magsci/article/article?id=14161407
[47] Genade T, Lang DM(2013). Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum. Exp Gerontol, 48:202-212
http://118.145.16.217/magsci/article/article?id=17676894
[48] Baur JA, Sinclair DA(2006). Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov, 5:493-506
http://dx.doi.org/10.1038/nrd2060
[49] Hatakeyama H, Nakamura KI, Izumiyama-Shimomura N, Ishii A, Tsuchida S, Takubo K, Ishikawa N(2008). The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech Ageing Dev, 129:550-557
http://dx.doi.org/10.1016/j.mad.2008.05.006
[50] Walford RL, Liu RK(1965). Husbandry, life span, and growth rate of the annual fish, Cynolebias adloffi E. Ahl. Exp Gerontol, 1:161-168
http://dx.doi.org/10.1016/0531-5565(65)90019-7
[51] Laudien H, Freyer J, Erb R, Denzer D(1986). Influence of isolation stress and inhibited protein biosynthesis on learning and memory in goldfish. Physiol Behav, 38:621-628
http://dx.doi.org/10.1016/0031-9384(86)90255-6
[52] Pradel G, Schachner M, Schmidt R(1999). Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol, 39:197-206
http://dx.doi.org/10.1002/(SICI)1097-4695(199905)39:2<197::AID-NEU4>3.0.CO;2-9
[53] Dunlap JC, Loros JJ, DeCoursey PJ Chronobiology: Biological timekeepingSunderland, MASinauer Associates Inc.,U.S.2003
[54] Reiter RJ(1993). The melatonin rhythm: both a clock and a calendar. Cell Molec Life Sci, 49:654-664
http://dx.doi.org/10.1007/BF01923947
[55] Weinert D(2000). Age-dependent changes of the circadian system. Chronobiol Int, 17:261-283
http://dx.doi.org/10.1081/CBI-100101048
[56] Mailloux A, Benstaali C, Bogdan A, Auzéby A, Touitou Y(1999). Body temperature and locomotor activity as marker rhythms of aging of the circadian system in rodents. Exp Gerontol, 34:733-740
http://dx.doi.org/10.1016/S0531-5565(99)00051-0
[57] Campbell SS, Tobler I(1984). Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev, 8:269-300
http://dx.doi.org/10.1016/0149-7634(84)90054-X
[58] Lucas-Sánchez A, Almaida-Pagán PF, Martínez-Nicolás AB, Madrid Pérez JA, Mendiola López P, de Costa Ruiz J(2013). Rest-activity circadian rhythms in aged Nothobranchius korthausae. The effects of melatonin Exp Gerontol, 48:507-516
http://dx.doi.org/10.1016/j.exger.2013.02.026
[59] Reiter RJ(1995). The pineal gland and melatonin in relation to aging: A summary of the theories and of the data. Exp Gerontol, 30:199-212
http://dx.doi.org/10.1016/0531-5565(94)00045-5
[60] Zhdanova IV, Geiger DA, Schwagerl AL, Leclair OU, Killiany R, Taylor JA, Rosene DL, Moss MB, Madras BK(2002). Melatonin promotes sleep in three species of diurnal nonhuman primates. Physiol Behav, 75:523-529
http://dx.doi.org/10.1016/S0031-9384(02)00654-6
[61] Zhdanova IV(2011). Sleep and its regulation in zebrafish. Rev Neurosci, 22:27-36
[62] Allegra M, Reiter RJ, Tan D-X, Gentile C, Tesoriere L, Livrea MA(2003). The chemistry of melatonin’s interaction with reactive species. J Pineal Res, 34:1-10
http://dx.doi.org/10.1034/j.1600-079X.2003.02112.x
[63] Escames G, Ozturk G, Baño Otálora B, Pozo MJ, Madrid Pérez JA, Reiter RJ, Serrano E, Concepción M, Acuña-Castroviejo D(2012). Exercise and melatonin in humans: Reciprocal benefits. J Pineal Res, 52:1-11
http://dx.doi.org/10.1111/j.1600-079X.2011.00924.x
[64] Rodríguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, Reiter RJ(2004). Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 36:1-9
http://dx.doi.org/10.1046/j.1600-079X.2003.00092.x
[65] Sánchez-Barceló EJ, Mediavilla MD, Tan D-X, Reiter RJ(2010). Clinical uses of melatonin: evaluation of human trials. Curr Med Chem, 17:2070-2095
http://dx.doi.org/10.2174/092986710791233689
[66] Barja de Quiroga Losada G(2004). Free radicals and aging. Trends Neurosci, 27:595-600
http://dx.doi.org/10.1016/j.tins.2004.07.005
[67] Balaban RS, Nemoto S, Finkel T(2005). Mitochondria, oxidants, and aging. Cell, 120:483-495
http://dx.doi.org/10.1016/j.cell.2005.02.001
[68] Sanz A, Pamplona R, Barja de Quiroga Losada G(2006). Is the mitochondrial free radical theory of aging intact?. Antiox Redox Signal, 8:582-599
http://dx.doi.org/10.1089/ars.2006.8.582
[69] Harman D(1956). Aging: A theory based on free radical and radiation chemistry. J Gerontol, 11:298-300
http://dx.doi.org/10.1093/geronj/11.3.298
[70] Harman D(2006). Free radical theory of aging: An update. Increasing the functional life span. Ann N Y Acad Sci, 1067:10-21
http://dx.doi.org/10.1196/annals.1354.003
[71] Miquel J, Economos AC, Fleming J, Johnson J(1980). Mitochondrial role in cell aging. Exp Gerontol, 15:575-591
http://dx.doi.org/10.1016/0531-5565(80)90010-8
[72] Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM(2003). Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell, 2:1-7
http://dx.doi.org/10.1046/j.1474-9728.2003.00034.x
[73] Paradies G, Petrosillo G, Paradies V, Ruggiero FM(2011). Mitochondrial dysfunction in brain aging: Role of oxidative stress and cardiolipin. Neurochem Int, 58:447-457
http://118.145.16.217/magsci/article/article?id=15240122
[74] Paradies G, Petrosillo G, Pistolese M, Ruggiero FM(2002). Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene, 286:135-141
http://dx.doi.org/10.1016/S0378-1119(01)00814-9
[75] Wei YH, Lee HC(2002). Oxidative tress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med, 227:671-682
[76] Larsson NG(2010). Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem, 79:683-706
http://dx.doi.org/10.1146/annurev-biochem-060408-093701
[77] Hartmann N, Reichwald K, Wittig I, Dröse S, Schmeisser S, Lück C, Hahn C, Graf M, Gausmann U, Terzibasi Tozzini E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C(2011). Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell, 10:824-831
http://dx.doi.org/10.1111/j.1474-9726.2011.00723.x
[78] Bielski BH, Arudi RL, Sutherland MW(1983). A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem, 258:4759-4761
[79] Hoch FL(1992). Cardiolipins and biomembrane function. Biochim Biophys Acta, 1113:71-133
http://dx.doi.org/10.1016/0304-4157(92)90035-9
[80] Wiseman H(1996). Dietary influences on membrane function: Importance in protection against oxidative damage and disease. J Nutr Biochem, 7:2-15
http://dx.doi.org/10.1016/0955-2863(95)00152-2
[81] Crimi M, Esposti MD(2011). Apoptosis-induced changes in mitochondrial lipids. Biochim Biophys Acta, 1813:551-557
http://dx.doi.org/10.1016/j.bbamcr.2010.09.014
[82] Subbaiah PV, Subramanian VS, Wang K(1999). Novel physiological function of sphingomyelin in plasma: Inhibition of lipid peroxidation in low density lipoproteins. J Biol Chem, 274:36409-36414
http://dx.doi.org/10.1074/jbc.274.51.36409
[83] Hannun YA, Obeid LM(1997). Ceramide and the eukaryotic stress response. Biochem Soc Trans, 25:1171-1175
[84] Inness CLW, Metcalfe NB(2008). The impact of dietary restriction, intermittent feeding and compensatory growth on reproductive investment and lifespan in a short-lived fish. Proc R Soc Lond B Biol Sci, 275:1703-1708
http://dx.doi.org/10.1098/rspb.2008.0357
[85] Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel M, Szafranski K, Glockner G, Schmid M, Cellerino A, Schartl M, Englert C, Platzer M(2009). High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol, 10:R16
http://dx.doi.org/10.1186/gb-2009-10-2-r16
[86] Valenzano DR, Kirschner J, Kamber RA, Zhang E, Weber D, Cellerino A, Englert C, Platzer M, Reichwald K, Brunet A(2009). Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics, 183:1385-1395
http://dx.doi.org/10.1534/genetics.109.108670
[87] Kirschner J, Weber D, Neuschl C, Franke A, Böttger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K(2012). Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri- a new vertebrate model for age research. Aging Cell, 11:252-261
http://dx.doi.org/10.1111/j.1474-9726.2011.00780.x
[88] Petzold A, Reichwald K, Groth M, Taudien S, Hartmann N, Priebe S, Shagin D, Englert C, Platzer M(2013). The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics, 14:1-16
http://118.145.16.217/magsci/article/article?id=18813900
[89] Valenzano DR, Sharp S, Brunet A(2011). Transposon-mediated transgenesis in the short-lived African killifish Nothobranchius furzeri, a vertebrate model for aging. G3, 1:531-538
http://dx.doi.org/10.1534/g3.111.001271
[90] Hartmann N, Englert C(2012). A microinjection protocol for the generation of transgenic killifish (Species: Nothobranchius furzeri)Dev Dyn, 241:1133-1141
http://dx.doi.org/10.1002/dvdy.23789
[91] Allard JB, Kamei H, Duan C(2013). Inducible transgenic expression in the short-lived fish Nothobranchius furzeri. J Fish Biol, 82:1733-1738
http://dx.doi.org/10.1111/jfb.12099
[1] Alexandra Moura,José Madureira,Pablo Alija,João Carlos Fernandes,José Gerardo Oliveira,Martin Lopez,Madalena Filgueiras,Leonilde Amado,Maria Sameiro-Faria,Vasco Miranda,Alice Santos-Silva,Elísio Costa. Effect of Aging in the Perception of Health-Related Quality of Life in End-Stage Renal Disease Patients under Online-Hemodiafiltration[J]. Aging and Disease, 2015, 6(1): 17-26.
[2] Amanda Piano,Vladimir I. Titorenko. The Intricate Interplay between Mechanisms Underlying Aging and Cancer[J]. Aging and Disease, 2015, 6(1): 56-75.
[3] Kunlin Jin,James W. Simpkins,Xunming Ji,Miriam Leis,Ilia Stambler. The Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population[J]. Aging and Disease, 2015, 6(1): 1-5.
[4] Shinichi Iwasaki,Tatsuya Yamasoba. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System[J]. Aging and Disease, 2015, 6(1): 38-47.
[5] Baugé Catherine,Girard Nicolas,Lhuissier Eva,Bazille Celine,Boumediene Karim. Regulation and Role of TGFβ Signaling Pathway in Aging and Osteoarthritis Joints[J]. Aging and Disease, 2014, 5(6): 394-405.
[6] Juliane Schulze,Antje Vogelgesang,Alexander Dressel. Catecholamines, Steroids and Immune Alterations in Ischemic Stroke and Other Acute Diseases[J]. Aging and Disease, 2014, 5(5): 327-339.
[7] David Blokh,Ilia Stambler. Estimation of Heterogeneity in Diagnostic Parameters of Age-related Diseases[J]. Aging and Disease, 2014, 5(4): 218-225.
[8] Olaoluwa O Okusaga. Accelerated Aging in Schizophrenia Patients: The Potential Role of Oxidative Stress[J]. Aging and Disease, 2014, 5(4): 256-262.
[9] Shaohua Xu,Ying Cai,Yuehua Wei. mTOR Signaling from Cellular Senescence to Organismal Aging[J]. Aging and Disease, 2014, 5(4): 263-273.
[10] Chandan Prasad,Victorine Imrhan,Francesco Marotta,Shanil Juma,Parakat Vijayagopal. Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging[J]. Aging and Disease, 2014, 5(3): 212-217.
[11] Ninu Poulose,Raghavan Raju. Aging and Injury: Alterations in Cellular Energetics and Organ Function[J]. Aging and Disease, 2014, 5(2): 101-108.
[12] Peter M Nilsson. Hemodynamic Aging as the Consequence of Structural Changes Associated with Early Vascular Aging (EVA)[J]. Aging and Disease, 2014, 5(2): 109-113.
[13] Ryan Oakley,Binu Tharakan. Vascular Hyperpermeability and Aging[J]. Aging and Disease, 2014, 5(2): 114-125.
[14] Marlene E Starr,Hiroshi Saito. Sepsis in Old Age: Review of Human and Animal Studies[J]. Aging and Disease, 2014, 5(2): 126-136.
[15] Irina Grishina,Anne Fenton,Sumathi Sankaran-Walters. Gender Differences, Aging and Hormonal Status in Mucosal Injury and Repair[J]. Aging and Disease, 2014, 5(2): 160-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd