Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2014, Vol. 5 Issue (6) : 394-405     DOI: 10.14336/AD.2014.0500394
Review Article |
Regulation and Role of TGFβ Signaling Pathway in Aging and Osteoarthritis Joints
Baugé Catherine1, 2, *(), Girard Nicolas1, 2, Lhuissier Eva1, 2, Bazille Celine1, 2, 3, Boumediene Karim1, 2
1 Normandie Univ, France
2 UNICAEN, EA4652 MILPAT, Caen, France
3 Service d’Anatomie Pathologique, CHU, Caen, France
Download: PDF(0 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Transforming growth factor beta (TGFβ) is a major signalling pathway in joints. This superfamilly is involved in numerous cellular processes in cartilage. Usually, they are considered to favor chondrocyte differentiation and cartilage repair. However, other studies show also deleterious effects of TGFβ which may induce hypertrophy. This may be explained at least in part by alteration of TGFβ signaling pathways in aging chondrocytes. This review focuses on the functions of TGFβ in joints and the regulation of its signaling mediators (receptors, Smads) during aging and osteoarthritis.

Keywords osteoarthritis      TGFbeta      chondrocytes      aging     
Corresponding Authors: Baugé Catherine     E-mail: catherine.bauge@unicaen.fr
Issue Date: 21 November 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baugé Catherine
Girard Nicolas
Lhuissier Eva
Bazille Celine
Boumediene Karim
Cite this article:   
Baugé Catherine,Girard Nicolas,Lhuissier Eva, et al. Regulation and Role of TGFβ Signaling Pathway in Aging and Osteoarthritis Joints[J]. Aging and Disease, 2014, 5(6): 394-405.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2014.0500394     OR     http://www.aginganddisease.org/EN/Y2014/V5/I6/394
Figure 1.  Role of TGF-beta in healthy and OA cartilage. TGFβ signals through TβRII and ALK5 in young and healthy cartilage eliciting chondrogenic factors. In aged or AO cartilage, TβRII and ALK5 breakdown occurs while ALK1 expression is enhanced. Therefore, TGFβ signalling shifts from Smad2/3 to Smad 1/5/8 leading to COL10 and MMP13 expression.
[1] Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005). Osteoarthritis - an untreatable disease? Nat Rev Drug Discov, 4:331–44.
http://dx.doi.org/10.1038/nrd1693
[2] Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, et al. (1994). The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health, 84:351–8.
http://dx.doi.org/10.2105/AJPH.84.3.351
[3] Bijlsma JW, Berenbaum F, Lafeber FP (2011). Osteoarthritis: an update with relevance for clinical practice. The Lancet, 377:2115–26.
http://dx.doi.org/10.1016/S0140-6736(11)60243-2
[4] Pearle AD, Warren RF, Rodeo SA (2005). Basic Science of Articular Cartilage and Osteoarthritis. Clin Sports Med, 24:1–12.
http://118.145.16.217/magsci/article/article?id=14547155
[5] Sun HB (2010). Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci, 1211:37–50.
[6] Goldring MB, Marcu KB (2009). Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther, 11:224.
http://dx.doi.org/10.1186/ar2592
[7] Gelse K, Ekici AB, Cipa F, Swoboda B, Carl HD, Olk A, et al. (2012) Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthritis Cartilage, 20:162–71.
http://dx.doi.org/10.1016/j.joca.2011.12.004
[8] Arden N, Nevitt MC (2006). Osteoarthritis: Epidemiology. Best Pract Res Clin Rheumatol, 20:3–25.
http://118.145.16.217/magsci/article/article?id=15487895
[9] Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. (2008) Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States, Part II. Arthritis Rheum, 58:26–35.
http://dx.doi.org/10.1002/art.23176
[10] Wu Z, Schimmele CM, Chappell NL (2012). Aging and Late-Life Depression. J Aging Health, 24:3–28.
http://dx.doi.org/10.1177/0898264311422599
[11] Anderson AS, Loeser RF. (2010) Why is Osteoarthritis an Age-Related Disease? Best Pract Res Clin Rheumatol, 24:15.
http://118.145.16.217/magsci/article/article?id=14906727
[12] Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987). The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum, 30:914–8.
http://dx.doi.org/10.1002/art.1780300811
[13] Dagenais S, Garbedian S, Wai EK (2009). Systematic Review of the Prevalence of Radiographic Primary Hip Osteoarthritis. Clin Orthop, 467:623–37.
http://118.145.16.217/magsci/article/article?id=16375899
[14] Goldring MB, Goldring SR (2007). Osteoarthritis. J Cell Physiol, 213:626–34.
http://dx.doi.org/10.1002/jcp.21258
[15] Attisano L, Cárcamo J, Ventura F, Weis FM, Massagué J, Wrana JL (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell, 75:671–80.
http://dx.doi.org/10.1016/0092-8674(93)90488-C
[16] Hogan BL (1996). Bone morphogenetic proteins in development. Curr Opin Genet Dev, 6:432–8.
http://dx.doi.org/10.1016/S0959-437X(96)80064-5
[17] Annes JP, Munger JS, Rifkin DB (2003). Making sense of latent TGFβ activation. J Cell Sci, 116:217–24.
http://dx.doi.org/10.1242/jcs.00229
[18] Hyytiäinen M, Penttinen C, Keski-Oja J (2004). Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci, 41:233–64.
http://dx.doi.org/10.1080/10408360490460933
[19] Fontana L, Chen Y, Prijatelj P, Sakai T, Fässler R, Sakai LY, et al. (2005) Fibronectin is required for integrin αvβ6-mediated activation of latent TGF-β complexes containing LTBP-1. FASEB J, 19:1798–808.
http://dx.doi.org/10.1096/fj.05-4134com
[20] Gomez-Duran A, Mulero-Navarro S, Chang X, Fernandez-Salguero PM (2006). LTBP-1 blockade in dioxin receptor-null mouse embryo fibroblasts decreases TGF-β activity: Role of extracellular proteases plasmin and elastase. J Cell Biochem, 97:380–92.
http://dx.doi.org/10.1002/jcb.20637
[21] Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, et al. (1997). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J, 16:5353–62.
http://dx.doi.org/10.1093/emboj/16.17.5353
[22] Moustakas A, Heldin C-H (2005). Non-Smad TGF-β signals. J Cell Sci, 118:3573–84.
http://dx.doi.org/10.1242/jcs.02554
[23] Hartsough MT, Mulder KM. (1995). Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem, 270:7117–24.
http://dx.doi.org/10.1074/jbc.270.13.7117
[24] Engel ME, McDonnell MA, Law BK, Moses HL (1999). Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem, 274:37413–20.
http://dx.doi.org/10.1074/jbc.274.52.37413
[25] Wilkes MC, Mitchell H, Penheiter SG, Doré JJ, Suzuki K, Edens M, et al (2005). Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res, 65:10431–40.
http://dx.doi.org/10.1158/0008-5472.CAN-05-1522
[26] Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell, 12:27–36.
http://dx.doi.org/10.1091/mbc.12.1.27
[27] Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994). Mechanism of activation of the TGF-beta receptor. Nature, 370:341–7.
http://dx.doi.org/10.1038/370341a0
[28] Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily (2002). Science, 296:1646–7.
http://118.145.16.217/magsci/article/article?id=14825916
[29] Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell, 95:779–91.
http://dx.doi.org/10.1016/S0092-8674(00)81701-8
[30] Denker AE, Nicoll SB, Tuan RS (1995). Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differ Res Biol Divers, 59:25–34.
http://dx.doi.org/10.1046/j.1432-0436.1995.5910025.x
[31] Yang X, Chen L, Xu X, Li C, Huang C, Deng CX (2001). TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol, 153:35–46.
http://dx.doi.org/10.1083/jcb.153.1.35
[32] Yoon DM, Fisher JP (2006). Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol, 585:67–86.
[33] Inoue Y, Imamura T (2008). Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci, 99:2107–12.
http://dx.doi.org/10.1111/j.1349-7006.2008.00925.x
[34] Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T (2003). Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell, 14:2809–17.
http://dx.doi.org/10.1091/mbc.E02-07-0441
[35] Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, et al. (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 389:631–5.
http://dx.doi.org/10.1038/39369
[36] Massagué J, Seoane J, Wotton D (2005). Smad transcription factors. Genes Dev, 19:2783–810.
http://dx.doi.org/10.1101/gad.1350705
[37] Morales TI, Joyce ME, Sobel ME, Danielpour D, Roberts AB (1991). Transforming growth factor-beta in calf articular cartilage organ cultures: synthesis and distribution. Arch Biochem Biophys, 288:397–405.
http://dx.doi.org/10.1016/0003-9861(91)90212-2
[38] Ellingsworth LR, Brennan JE, Fok K, Rosen DM, Bentz H, Piez KA, et al. (1986) Antibodies to the N-terminal portion of cartilage-inducing factor A and transforming growth factor beta. Immunohistochemical localization and association with differentiating cells. J Biol Chem, 261:12362–7.
[39] Albro MB, Nims RJ, Cigan AD, Yeroushalmi KJ, Alliston T, Hung CT, et al. (2013) Accumulation of exogenous activated TGF-β in the superficial zone of articular cartilage. Biophys J, 104:1794–804.
http://118.145.16.217/magsci/article/article?id=19609423
[40] Pujol JP (1999). TGF-beta and osteoarthritis: in vivo veritas? Osteoarthr Cartil OARS Osteoarthr Res Soc, 7:439–40.
http://dx.doi.org/10.1053/joca.1999.0248
[41] Van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB (2000). Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthr Cartil OARS Osteoarthr Res Soc, 8:25–33.
http://dx.doi.org/10.1053/joca.1999.0267
[42] Kulyk WM, Rodgers BJ, Greer K, Kosher RA (1989). Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol, 135:424–30.
http://dx.doi.org/10.1016/0012-1606(89)90191-7
[43] Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, et al. (1997). Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol, 139:541–52.
http://dx.doi.org/10.1083/jcb.139.2.541
[44] Chimal-Monroy J, Díaz de León L (1999). Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. Int J Dev Biol, 43:59–67.
[45] Grimaud E, Heymann D, Rédini F (2002). Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev, 13:241–57.
http://dx.doi.org/10.1016/S1359-6101(02)00004-7
[46] Reddi AH (1994). Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem, 56:192–5.
http://dx.doi.org/10.1002/jcb.240560213
[47] Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP, et al. (2008). Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthr Cartil OARS Osteoarthr Res Soc, 16:1509–18.
http://118.145.16.217/magsci/article/article?id=14363794
[48] Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, et al. (2006). Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res Off J Am Soc Bone Miner Res, 21:626–36.
[49] Mizuta H, Sanyal A, Fukumoto T, Fitzsimmons JS, Matsui N, Bolander ME, et al. (2002). The spatiotemporal expression of TGF-beta1 and its receptors during periosteal chondrogenesis in vitro. J Orthop Res Off Publ Orthop Res Soc, 20:562–74.
http://dx.doi.org/10.1016/S0736-0266(01)00130-9
[50] Baugé C, Duval E, Ollitrault D, Girard N, Leclercq S, Galéra P, et al. (2013) Type II TGFβ receptor modulates chondrocyte phenotype. Age Dordr Neth, 35:1105–16.
http://dx.doi.org/10.1007/s11357-012-9433-7
[51] Yu Z, Xing Y (2006). All-trans retinoic acid inhibited chondrogenesis of mouse embryonic palate mesenchymal cells by down-regulation of TGF-beta/Smad signaling. Biochem Biophys Res Commun, 340:929–34.
http://dx.doi.org/10.1016/j.bbrc.2005.12.100
[52] Lotz M, Rosen F, McCabe G, Quach J, Blanco F, Dudler J, et al. (1995). Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. Proc Natl Acad Sci U S A, 92:10364–8.
http://dx.doi.org/10.1073/pnas.92.22.10364
[53] Baugé C, Legendre F, Leclercq S, Elissalde JM, Pujol JP, Galéra P, et al. (2007). Interleukin-1β impairment of transforming growth factor β1 signaling by down-regulation of transforming growth factor β receptor type II and up-regulation of Smad7 in human articular chondrocytes. Arthritis Rheum, 56:3020–32.
http://dx.doi.org/10.1002/art.22840
[54] Rédini F, Mauviel A, Pronost S, Loyau G, Pujol JP (1993). Transforming growth factor beta exerts opposite effects from interleukin-1 beta on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum, 36:44–50.
http://dx.doi.org/10.1002/art.1780360108
[55] Pronost S, Segond N, Macro M, Rédini F, Penfornis H, Jullienne A, et al. (1995). Modulation of interleukin-1 receptor expression by transforming growth factor-beta in cultured rabbit articular chondrocytes: analysis by reverse transcription-polymerase chain reaction. Osteoarthr Cartil OARS Osteoarthr Res Soc, 3:147–55.
http://dx.doi.org/10.1016/S1063-4584(05)80049-4
[56] Pujol JP, Galera P, Redini F, Mauviel A, Loyau G (1991). Role of cytokines in osteoarthritis: comparative effects of interleukin 1 and transforming growth factor-beta on cultured rabbit articular chondrocytes. J Rheumatol Suppl, 27:76–9.
[57] Demoor-Fossard M, Boittin M, Redini F, Pujol JP (1999). Differential effects of interleukin-1 and transforming growth factor beta on the synthesis of small proteoglycans by rabbit articular chondrocytes cultured in alginate beads as compared to monolayers. Mol Cell Biochem, 199:69–80.
http://dx.doi.org/10.1023/A:1006947015094
[58] Amin AR, Abramson SB (1998). The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol, 10:263–8.
http://dx.doi.org/10.1097/00002281-199805000-00018
[59] Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM (1997). Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res, 237:318–25.
http://dx.doi.org/10.1006/excr.1997.3781
[60] Daireaux M, Redini F, Loyau G, Pujol JP (1990). Effects of associated cytokines (IL-1, TNF-alpha, IFN-gamma and TGF-beta) on collagen and glycosaminoglycan production by cultured human synovial cells. Int J Tissue React, 12:21–31.
[61] Galéra P, Vivien D, Pronost S, Bonaventure J, Rédini F, Loyau G, et al. (1992) Transforming growth factor-beta 1 (TGF-beta 1) up-regulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing. J Cell Physiol, 153:596–606.
http://dx.doi.org/10.1002/jcp.1041530322
[62] Redini F, Galera P, Mauviel A, Loyau G, Pujol JP (1998). Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett, 234:172–6.
[63] Brandes ME, Allen JB, Ogawa Y, Wahl SM (1991). Transforming growth factor beta 1 suppresses acute and chronic arthritis in experimental animals. J Clin Invest, 87:1108–13.
http://dx.doi.org/10.1172/JCI115073
[64] Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA (1992). Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A, 89:7375–9.
http://dx.doi.org/10.1073/pnas.89.16.7375
[65] Cho M-L, Min S-Y, Chang S-H, Kim K-W, Heo S-B, Lee S-H, et al. (2006). Transforming growth factor beta 1 (TGF-beta1) down-regulates TNFalpha-induced RANTES production in rheumatoid synovial fibroblasts through NF-kappaB-mediated transcriptional repression. Immunol Lett, 105:159–66.
http://dx.doi.org/10.1016/j.imlet.2006.02.003
[66] Ellman MB, An HS, Muddasani P, Im H-J (2008). Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene, 420:82–9.
http://dx.doi.org/10.1016/j.gene.2008.04.019
[67] Kurth T, Hedbom E, Shintani N, Sugimoto M, Chen FH, Haspl M, et al. (2007). Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthr Cartil OARS Osteoarthr Res Soc, 15:1178–89.
http://118.145.16.217/magsci/article/article?id=14363033
[68] Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010). Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 376:440–8.
http://dx.doi.org/10.1016/S0140-6736(10)60668-X
[69] Shlopov BV, Smith GN Jr, Cole AA, Hasty KA (1999). Differential patterns of response to doxycycline and transforming growth factor beta1 in the down-regulation of collagenases in osteoarthritic and normal human chondrocytes. Arthritis Rheum, 42:719–27.
http://dx.doi.org/10.1002/1529-0131(199904)42:4<719::AID-ANR15>3.0.CO;2-T
[70] Thompson CC, Clegg PD, Carter SD (2001). Differential regulation of gelatinases by transforming growth factor beta-1 in normal equine chondrocytes. Osteoarthr Cartil OARS Osteoarthr Res Soc, 9:325–31.
http://dx.doi.org/10.1053/joca.2000.0392
[71] Cheon H, Yu S-J, Yoo DH, Chae IJ, Song GG, Sohn J (2002). Increased expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF-beta1 in synovial fibroblasts from rheumatoid arthritis and normal individuals. Clin Exp Immunol, 127:547–52.
http://dx.doi.org/10.1046/j.1365-2249.2002.01785.x
[72] Yamanishi Y, Boyle DL, Clark M, Maki RA, Tortorella MD, Arner EC, et al. (2002). Expression and regulation of aggrecanase in arthritis: the role of TGF-beta. J Immunol Baltim Md, 168:1405–12.
[73] Allen JB, Manthey CL, Hand AR, Ohura K, Ellingsworth L, Wahl SM (1990). Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med, 171:231–47.
http://dx.doi.org/10.1084/jem.171.1.231
[74] Fava RA, Olsen NJ, Postlethwaite AE, Broadley KN, Davidson JM, Nanney LB, et al. (1991) Transforming growth factor beta 1 (TGF-beta 1) induced neutrophil recruitment to synovial tissues: implications for TGF-beta-driven synovial inflammation and hyperplasia. J Exp Med, 173:1121–32.
http://dx.doi.org/10.1084/jem.173.5.1121
[75] Baugé C, Cauvard O, Leclercq S, Galéra P, Boumédiene K (2011). Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: involvement of Sp1 in both early and late response cells to transforming growth factor beta. Arthritis Res Ther, 13:R23.
http://dx.doi.org/10.1186/ar3247
[76] Blaney Davidson EN, Remst DFG, Vitters EL, van Beuningen HM, Blom AB, Goumans M-J, et al. (2009). Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol Baltim Md, 182:7937–45.
[77] Hellingman CA, Blaney Davidson E, Koevoet W, Vitters EL, van den Berg WB, van Osch G, et al. (2011). Smad signaling determines chondrogenic differentiation of bone-marrow derived mesenchymal stem cells: Inhibition of Smad 1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A, 17:1157–67.
http://dx.doi.org/10.1089/ten.tea.2010.0043
[78] Zhao G-Q (2003). Consequences of knocking out BMP signaling in the mouse. Genes New York N, 35:43–56.
[79] Pathi S, Rutenberg JB, Johnson RL, Vortkamp A (1999). Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol, 209:239–53.
http://dx.doi.org/10.1006/dbio.1998.9181
[80] Zou H, Wieser R, Massagué J, Niswander L (1997). Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev, 11:2191–203.
http://dx.doi.org/10.1101/gad.11.17.2191
[81] Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, et al. (2001). Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet, 27:84–8.
[82] Haaijman A, Burger EH, Goei SW, Nelles L, ten Dijke P, Huylebroeck D, et al. (2000) Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments. Growth Factors Chur Switz, 17:177–92.
http://dx.doi.org/10.3109/08977190009001067
[83] Lyons KM, Pelton RW, Hogan BL (1990). Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Dev Camb Engl, 109:833–44.
[84] Lyons KM, Hogan BL, Robertson EJ (1995). Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev, 50:71–83.
http://dx.doi.org/10.1016/0925-4773(94)00326-I
[85] Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, et al (2001). BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Dev Camb Engl, 128:4523–34.
[86] Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T K, Ten Dijke P (1999). Localization of Smads, the TGF-beta family intracellular signaling components during endochondral ossification. J Bone Miner Res Off J Am Soc Bone Miner Res, 14:1145–52.
http://dx.doi.org/10.1359/jbmr.1999.14.7.1145
[87] Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM (2001). The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A, 98:7994–9.
http://dx.doi.org/10.1073/pnas.141002798
[88] Cárcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, et al. (1994). Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol, 14:3810–21.
[89] Massagué J (1996). TGFbeta signaling: receptors, transducers, and Mad proteins. Cell, 85:947–50.
http://dx.doi.org/10.1016/S0092-8674(00)81296-9
[90] Keller S, Nickel J, Zhang J-L, Sebald W, Mueller TD (2004). Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol, 11:481–8.
http://dx.doi.org/10.1038/nsmb756
[91] Hatta T, Konishi H, Katoh E, Natsume T, Ueno N, Kobayashi Y, et al. (2000). Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers, 55:399–406.
http://dx.doi.org/10.1002/1097-0282(2000)55:5<399::AID-BIP1014>3.0.CO;2-9
[92] Macías-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL (1998). Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem, 273:25628–36.
http://dx.doi.org/10.1074/jbc.273.40.25628
[93] Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, et al. (2004). Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther, 11:1312–20.
http://dx.doi.org/10.1038/sj.gt.3302298
[94] Luther G, Wagner ER, Zhu G, Kang Q, Luo Q, Lamplot J, et al. (2011). BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther, 11:229–40.
http://dx.doi.org/10.2174/156652311795684777
[95] Retting KN, Song B, Yoon BS, Lyons KM (2009). BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Dev Camb Engl, 136:1093–104.
[96] Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. (2006). BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Dev Camb Engl, 133:4667–78.
[97] Grimsrud CD, Romano PR, D’Souza M, Puzas JE, Reynolds PR, Rosier RN, et al. (1999). BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res, 14:475–82.
http://dx.doi.org/10.1359/jbmr.1999.14.4.475
[98] Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005). BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A, 102:18023–7.
http://dx.doi.org/10.1073/pnas.0503617102
[99] Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006). Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet, 2:e216.
http://dx.doi.org/10.1371/journal.pgen.0020216
[100] Zehentner BK, Dony C, Burtscher H (1999). The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res Off J Am Soc Bone Miner Res, 14:1734–41.
http://dx.doi.org/10.1359/jbmr.1999.14.10.1734
[101] Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005). Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A, 102:5062–7.
http://dx.doi.org/10.1073/pnas.0500031102
[102] Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F (2002). Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem, 277:33545–58.
http://dx.doi.org/10.1074/jbc.M202086200
[103] Kim D-J, Moon S-H, Kim H, Kwon U-H, Park M-S, Han K-J, et al. (2003). Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine, 28:2679–84.
http://dx.doi.org/10.1097/01.BRS.0000101445.46487.16
[104] Gründer T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, et al. (2004). Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr Cartil OARS Osteoarthr Res Soc, 12:559–67.
http://118.145.16.217/magsci/article/article?id=14691595
[105] Kramer J, Hegert C, Guan K, Wobus AM, Müller PK, Rohwedel J (2000). Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev, 92:193–205.
http://dx.doi.org/10.1016/S0925-4773(99)00339-1
[106] Majumdar MK, Wang E, Morris EA (2001). BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol, 189:275–84.
http://dx.doi.org/10.1002/jcp.10025
[107] Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005). Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res, 320:269–76.
http://118.145.16.217/magsci/article/article?id=17150666
[108] Nochi H, Sung JH, Lou J, Adkisson HD, Maloney WJ, Hruska KA (2004). Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res Off J Am Soc Bone Miner Res, 19:111–22.
http://dx.doi.org/10.1359/jbmr.2004.19.1.111
[109] Vaes RBA, Rivadeneira F, Kerkhof JM, Hofman A, Pols HAP, Uitterlinden AG, et al. (2009). Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study. Ann Rheum Dis, 68:1754–60.
http://dx.doi.org/10.1136/ard.2008.099655
[110] Bai X, Xiao Z, Pan Y, Hu J, Pohl J, Wen J, et al. (2004). Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem Biophys Res Communn, 325:453–60.
http://dx.doi.org/10.1016/j.bbrc.2004.10.055
[111] Chubinskaya S, Segalite D, Pikovsky D, Hakimiyan AA, Rueger DC (2008). Effects induced by BMPS in cultures of human articular chondrocytes: comparative studies. Growth Factors Chur Switz, 26:275–83.
http://dx.doi.org/10.1080/08977190802291733
[112] Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000). Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med, 133:321–8.
http://dx.doi.org/10.7326/0003-4819-133-5-200009050-00007
[113] Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995). Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil OARS Osteoarthr Res Soc, 3:261–7.
http://dx.doi.org/10.1016/S1063-4584(05)80017-2
[114] Iqbal J, Dudhia J, Bird JL, Bayliss MT (2000). Age-related effects of TGF-beta on proteoglycan synthesis in equine articular cartilage. Biochem Biophys Res Commun, 274:467–71.
http://dx.doi.org/10.1006/bbrc.2000.3167
[115] Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JCW, Pitsillides AA (2003). Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem, 278:53063–71.
http://dx.doi.org/10.1074/jbc.M209632200
[116] Barbero A, Grogan S, Schäfer D, Heberer M, Mainil-Varlet P, Martin I (2004). Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr Cartil OARS Osteoarthr Res Soc, 12:476–84.
http://118.145.16.217/magsci/article/article?id=14691585
[117] Blaney Davidson E, Scharstuhl A, Vitters E, van der Kraan P, van den Berg W (2005). Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther, 7:R1338–R1347.
http://dx.doi.org/10.1186/ar1833
[118] Van der Kraan PM, van den Berg WB (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil OARS Osteoarthr Res Soc, 20:223–32.
http://dx.doi.org/10.1016/j.joca.2011.12.003
[119] Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, et al. (2013). Deletion of the Type II TGF-β receptor gene in articular chondrocytes leads to a progressive OA-like phenotype in mice. Arthritis Rheum, 65:3107-19.
http://118.145.16.217/magsci/article/article?id=19507394
[120] Seo H-S, Serra R (2007). Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol, 310:304–16.
http://dx.doi.org/10.1016/j.ydbio.2007.07.040
[121] Finnson KW, Parker WL, ten Dijke P, Thorikay M, Philip A (2008). ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res Off J Am Soc Bone Miner Res, 23:896–906.
http://dx.doi.org/10.1359/jbmr.080209
[122] Van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, et al. (2011). Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet, 43:121–6.
http://dx.doi.org/10.1038/ng.744
[123] Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005). Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem, 280:8343–50.
http://dx.doi.org/10.1074/jbc.M413913200
[124] Mori Y, Chen SJ, Varga J (2000). Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-beta. Exp Cell Res, 258:374–83.
http://dx.doi.org/10.1006/excr.2000.4930
[125] Verdier M-P, Seité S, Guntzer K, Pujol J-P, Boumédiène K (2005). Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int, 25:118–24.
http://118.145.16.217/magsci/article/article?id=15835735
[126] Boumediene K, Conrozier T, Mathieu P, Richard M, Marcelli C, Vignon E, et al. (1998). Decrease of cartilage transforming growth factor-beta receptor II expression in the rabbit experimental osteoarthritis--potential role in cartilage breakdown. Osteoarthr Cartil OARS Osteoarthr Res Soc, 6:146–9.
http://dx.doi.org/10.1053/joca.1997.0104
[127] Baugé C, Beauchef G, Leclercq S, Kim SJ, Pujol JP, Galéra P, et al. (2008). NFκB mediates IL-1β-induced down-regulation of TβRII through the modulation of Sp3 expression. J Cell Mol Med, 12:1754–66.
http://dx.doi.org/10.1111/j.1582-4934.2007.00173.x
[128] Baugé C, Girard N, Leclercq S, Galéra P, Boumédiene K (2012). Regulatory mechanism of transforming growth factor beta receptor type II degradation by interleukin-1 in primary chondrocytes. Biochim Biophys Acta, 1823:983–6.
[129] Fei Q-M, Jiang X-X, Chen T-Y, Li J, Murakami H, Tsai K-J, et al. (2006). Changes with age and the effect of recombinant human BMP-2 on proteoglycan and collagen gene expression in rabbit anulus fibrosus cells. Acta Biochim Biophys Sin, 38:773–9.
http://dx.doi.org/10.1111/j.1745-7270.2006.00230.x
[130] Guo C-A, Liu X-G, Huo J-Z, Jiang C, Wen X-J, Chen Z-R (2007). Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1-transfected mesenchymal stem cells grown on chitosan scaffolds. J Biosci Bioeng, 103:547–56.
http://dx.doi.org/10.1263/jbb.103.547
[131] Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee S-H, Cho H, et al. (2004). Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials, 25:4163–73.
http://118.145.16.217/magsci/article/article?id=14503165
[132] Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, et al. (2006). Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials, 27:1095–103.
http://118.145.16.217/magsci/article/article?id=15494875
[133] Diao H, Wang J, Shen C, Xia S, Guo T, Dong L, et al. (2009). Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue Eng Part A, 15:2687–98.
http://dx.doi.org/10.1089/ten.tea.2008.0621
[134] Peng L, Cheng X, Zhuo R, Lan J, Wang Y, Shi B, et al. (2009). Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. J Biomed Mater Res A, 90:564–76.
[135] Lu H, Lv L, Dai Y, Wu G, Zhao H, Zhang F (2013). Porous Chitosan Scaffolds with Embedded Hyaluronic Acid/Chitosan/Plasmid-DNA Nanoparticles Encoding TGF-β1 Induce DNA Controlled Release, Transfected Chondrocytes, and Promoted Cell Proliferation. PLoS One [Internet], Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720934/
http://118.145.16.217/magsci/article/article?id=19648354
[136] Chung C, Burdick JA (2008). Engineering cartilage tissue. Adv Drug Deliv Rev, 60:243–62.
http://118.145.16.217/magsci/article/article?id=15446862
[137] Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005). Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials, 26:7095–103.
http://118.145.16.217/magsci/article/article?id=14508090
[138] Kim H-J, Kim Y-J, Im G-I (2009). Is continuous treatment with transforming growth factor-beta necessary to induce chondrogenic differentiation in mesenchymal stem cells? Cells Tissues Organs, 190:1–10.
http://dx.doi.org/10.1159/000153041
[139] Kawamura K, Chu CR, Sobajima S, Robbins PD, Fu FH, Izzo NJ, et al. (2005). Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol, 33:865–72.
http://dx.doi.org/10.1016/j.exphem.2005.05.010
[140] Solorio LD, Fu AS, Hernández-Irizarry R, Alsberg E (2010). Chondrogenic differentiation of human mesenchymal stem cell aggregates via controlled release of TGF-beta1 from incorporated polymer microspheres. J Biomed Mater Res A, 92:1139–44.
[141] Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006). Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A, 77:785–94.
[142] Yang Z, Sui L, Toh WS, Lee EH, Cao T (2009). Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev, 18:929–40.
http://dx.doi.org/10.1089/scd.2008.0219
[143] Elder SH, Nettles DL, Bumgardner JD (2004). Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering. Methods Mol Biol Clifton NJ, 238:41–8.
[144] Shi D, Cai D, Zhou C, Rong L, Wang K, Xu Y (2005). Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering. Chin Med J (Engl), 118:1436–43.
[145] Shintani N, Siebenrock KA, Hunziker EB (2013). TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PloS One, 8:e53086.
http://dx.doi.org/10.1371/journal.pone.0053086
[146] Mehlhorn AT, Schmal H, Kaiser S, Lepski G, Finkenzeller G, Stark GB, et al. (2006). Mesenchymal Stem Cells Maintain TGF- β -Mediated Chondrogenic Phenotype in Alginate Bead Culture. Tissue Eng, 12:1393–403.
http://dx.doi.org/10.1089/ten.2006.12.1393
[147] Mehlhorn AT, Niemeyer P, Kaschte K, Muller L, Finkenzeller G, Hartl D, et al. (2007). Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif, 40:809–23.
http://dx.doi.org/10.1111/j.1365-2184.2007.00473.x
[1] Alexandra Moura,José Madureira,Pablo Alija,João Carlos Fernandes,José Gerardo Oliveira,Martin Lopez,Madalena Filgueiras,Leonilde Amado,Maria Sameiro-Faria,Vasco Miranda,Alice Santos-Silva,Elísio Costa. Effect of Aging in the Perception of Health-Related Quality of Life in End-Stage Renal Disease Patients under Online-Hemodiafiltration[J]. Aging and Disease, 2015, 6(1): 17-26.
[2] Amanda Piano,Vladimir I. Titorenko. The Intricate Interplay between Mechanisms Underlying Aging and Cancer[J]. Aging and Disease, 2015, 6(1): 56-75.
[3] Kunlin Jin,James W. Simpkins,Xunming Ji,Miriam Leis,Ilia Stambler. The Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population[J]. Aging and Disease, 2015, 6(1): 1-5.
[4] Shinichi Iwasaki,Tatsuya Yamasoba. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System[J]. Aging and Disease, 2015, 6(1): 38-47.
[5] Juliane Schulze,Antje Vogelgesang,Alexander Dressel. Catecholamines, Steroids and Immune Alterations in Ischemic Stroke and Other Acute Diseases[J]. Aging and Disease, 2014, 5(5): 327-339.
[6] David Blokh,Ilia Stambler. Estimation of Heterogeneity in Diagnostic Parameters of Age-related Diseases[J]. Aging and Disease, 2014, 5(4): 218-225.
[7] Olaoluwa O Okusaga. Accelerated Aging in Schizophrenia Patients: The Potential Role of Oxidative Stress[J]. Aging and Disease, 2014, 5(4): 256-262.
[8] Shaohua Xu,Ying Cai,Yuehua Wei. mTOR Signaling from Cellular Senescence to Organismal Aging[J]. Aging and Disease, 2014, 5(4): 263-273.
[9] Alejandro Lucas-Sánchez,Pedro Francisco Almaida-Pagán,Pilar Mendiola,Jorge de Costa. Nothobranchius as a model for aging studies. A review[J]. Aging and Disease, 2014, 5(4): 281-291.
[10] Chandan Prasad,Victorine Imrhan,Francesco Marotta,Shanil Juma,Parakat Vijayagopal. Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging[J]. Aging and Disease, 2014, 5(3): 212-217.
[11] Ninu Poulose,Raghavan Raju. Aging and Injury: Alterations in Cellular Energetics and Organ Function[J]. Aging and Disease, 2014, 5(2): 101-108.
[12] Peter M Nilsson. Hemodynamic Aging as the Consequence of Structural Changes Associated with Early Vascular Aging (EVA)[J]. Aging and Disease, 2014, 5(2): 109-113.
[13] Ryan Oakley,Binu Tharakan. Vascular Hyperpermeability and Aging[J]. Aging and Disease, 2014, 5(2): 114-125.
[14] Marlene E Starr,Hiroshi Saito. Sepsis in Old Age: Review of Human and Animal Studies[J]. Aging and Disease, 2014, 5(2): 126-136.
[15] Irina Grishina,Anne Fenton,Sumathi Sankaran-Walters. Gender Differences, Aging and Hormonal Status in Mucosal Injury and Repair[J]. Aging and Disease, 2014, 5(2): 160-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd