Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2015, Vol. 6 Issue (5) : 304-321     DOI: 10.14336/AD.2014.1104
Review Article |
Metabolic Alterations Associated to Brain Dysfunction in Diabetes
João M. N. Duarte()
Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Download: PDF(733 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been investigated in experimental models that display phenotypes of the disease. The present article reviews the impact of diabetes and AD on brain structure and function, and discusses recent findings from translational studies in animal models that link insulin resistance to metabolic alterations that underlie brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers detectable by magnetic resonance spectroscopy (MRS).

Keywords Neurodegeneration      Diabetes      Alzheimer’s disease      Insulin      Metabolism     
About author:

present address: Kunming Biomed International, Kunming, Yunnan, 650500, China

Issue Date: 01 October 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
João M. N. Duarte
Cite this article:   
João M. N. Duarte. Metabolic Alterations Associated to Brain Dysfunction in Diabetes[J]. Aging and disease, 2015, 6(5): 304-321.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2014.1104     OR     http://www.aginganddisease.org/EN/Y2015/V6/I5/304
Figure 1.  Events associated to impaired insulin signalling and leading to cognitive deterioration. Insulin regulates synaptic activity and glucose metabolism. Thus impaired insulin signalling leads to synaptic dysfunction and altered glucose homeostasis that impacts energy metabolism, osmolarity and redox balance. Furthermore, Aβ clearance and tau phosphorylation are under control of insulin/IGF-1 receptors. Hence, T2D leads to increased amount of amyloid precursor protein (APP), Aβ accumulation and tau hyperphosphorylation, leading to the formation of neurofibrillary tangles. Increased oxidative stress upon redox imbalance further affects mitochondrial metabolism and favours protein aggregation. In fact, advanced glycation end-products (AGE) in oxidative stress lead to a number of protein modifications that have functional consequences on metabolic pathways for signaling and energy production. While impaired energy metabolism may directly impact synaptic efficiency due to impaired membrane repolarisation and neurotransmitter synthesis/recycling, neurofibrillary tangles resulting from protein aggregation lead to degeneration of nerve terminals. This leads to cognitive impairment and is accompanied by astrogliosis and possibly by neuroinflamation.
[1] World Health Organization(1999). Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Geneva: World Health Organization.
[2] International Diabetes Federation (2013). Diabetes Atlas, 6th ed. Brussels, Belgium: International Diabetes Federation.
[3] Malecki MT (2004). Type 2 Diabetes mellitus and its complications: from the molecular biology to the clinical practice. Rev Diabet Stud, 1: 5-8.
[4] Miles WR, Root HF (1922). Psychologic tests applied to diabetic patients. Arch Int Med, 30: 767-777.
[5] DeJong RN (1950). The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. J Nerv Ment Dis, 111: 181-206.
[6] Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC (2005). The effects of type 1 diabetes on cognitive performance. Diabetes Care, 28: 726-735.
[7] Holmes CS, Richman LC (1985). Cognitive profiles of children with insulin-dependent diabetes. J Dev Behav Pediatr, 6: 323-326.
[8] Ryan CM, Williams TM (1993). Effects of insulin-dependent diabetes on learning and memory efficiency in adults. J Clin Exp Neuropsychol, 15: 685-700.
[9] Ryan CM, Williams TM, Finegold DN, Orchard TJ (1993). Cognitive dysfunction in adults with type 1 insulin-dependent diabetes mellitus of long duration: effects of recurrent hypoglycaemia and other chronic complications. Diabetologia, 36: 329-334.
[10] Ryan CM (1988). Neurobehavioral complications of type I diabetes. Examination of possible risk factors. Diabetes Care, 11: 86-93.
[11] Deary IJ, Crawford JR, Hepburn DA, Langan SJ, Blackmore LM, Frier BM (1993). Severe hypoglycemia and intelligence in adult patients with insulin-treated diabetes. Diabetes, 42: 341-344.
[12] Gold AE, Deary IJ, Jones RW, O'Hare JP, Reckless JP, Frier BM (1994). Severe deterioration in cognitive function and personality in five patients with long-standing diabetes: a complication of diabetes or a consequence of treatment? Diabet Med, 11: 499-505.
[13] DeJong RN (1977). CNS manifestations of diabetes mellitus. Postgrad Med, 61, 101-107.
[14] Araki Y, Nomura M, Tanaka H, Yamamoto H, Yamamoto T, Tsukaguchi I, Nakamura H (1994). MRI of the brain in diabetes mellitus. Neuroradiology, 36: 101-103.
[15] Lunetta M, Damanti AR, Fabbri G, Lombardo M, Di Mauro M, Mughini L (1994). Evidence by magnetic resonance imaging of cerebral alterations of atrophy type in young insulin-dependent diabetic patients. J Endocrinol Invest, 17: 241-245.
[16] Perros P, Deary IJ, Sellar RJ, Best JJ, Frier BM (1997). Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care, 20: 1013-1018.
[17] Gradman TJ, Laws A, Thompson LW, Reaven GM (1993). Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc, 41: 1305-1312.
[18] Perlmuter LC, Hakami MK, Hodgson-Harrington C, Ginsberg J, Katz J, Singer DE, Nathan DM (1984). Decreased cognitive function in aging non-insulin-dependent diabetic patients. Am J Med, 77: 1043-1048.
[19] Reaven GM, Thomson LW, Nahum P, Haskins E (1990). Relationship between hyperglycemia and cognitive junction in older NIDDM patients. Diabetes Care, 13: 16-21.
[20] Ryan CM, Geckle M (2000). Why is learning and memory dysfunction in Type 2 diabetes limited to older adults?. Diabetes Metab Res Rev, 16: 308-315.
[21] Strachan MW, Deary IJ, Ewing FM, Frier BM (1997). Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 20, 438-445.
[22] Worrall G, Moulton N, Briffett E (1993). Effect of type II diabetes mellitus on cognitive function. J Fam Pract, 36: 639-643.
[23] Sinclair AJ, Girling AJ, Bayer AJ (2000). Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. All Wales Research into Elderly AWARE Study. Diabetes Res Clin Pract, 50: 203-212.
[24] Tun PA, Nathan DM, Perlmuter LC (1990). Cognitive and affective disorders in elderly diabetics. Clin Geriatr Med, 6: 731-746.
[25] Cummings JL (2004). Alzheimer’s disease. N Engl J Med, 351: 56-67.
[26] Alzheimer's Association (2012). 2012 Alzheimer's disease facts and figures. Alzheimers Dement, 8: 131-168.
[27] Kloppenborg RP, van den Berg E, Kappelle LJ, Biessels GJ (2008). Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. Eur J Pharmacol, 585: 97-108.
[28] Biessels GJ, Kappelle LJ; Utrecht Diabetic Encephalopathy Study Group (2005). Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans, 33(Pt 5): 1041-1044.
[29] Sima AA (2010) Encephalopathies: the emerging diabetic complications. Acta Diabetol, 47: 279-293.
[30] de Galan BE, Zoungas S, Chalmers J, Anderson C, Dufouil C, Pillai A, Cooper M, Grobbee DE, Hackett M, Hamet P, Heller SR,et al. (2009). Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia, 52: 2328-2336.
[31] Punthakee Z, Miller ME, Launer LJ, Williamson JD, Lazar RM, Cukierman-Yaffee T, Seaquist ER, Ismail-Beigi F, Sullivan MD, Lovato LC,et al. (2012). Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes Care, 35: 787-793.
[32] Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr (1998). Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology, 50(1): 164-8.
[33] Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis, 7(1): 63-80.
[34] Lanz B, Gruetter R, Duarte JMN (2013). Metabolic flux and compartmentation analysis in the brain in vivo. Front Endocrinol, 4: 156.
[35] McNay EC, Fries TM, Gold PE (2000). Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA, 97: 2881-2885.
[36] McNay EC, McCarty RC, Gold PE (2001). Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem, 75(3): 325-337.
[37] Gibbs ME, Hutchinson D, Hertz L (2008). Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev, 32: 927-944.
[38] Swanson RA, Morton MM, Sagar SM, Sharp FR (1992). Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience, 51: 451-461.
[39] Harley CW, Milway JS, Fara-On M (1995). Medial forebrain bundle stimulation in rats activates glycogen phosphorylase in layers 4, 5b and 6 of ipsilateral granular neocortex. Brain Res, 685: 217-223.
[40] Cruz NF, Dienel GA (2002). High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab, 22: 1476-1489.
[41] Dienel GA, Ball KK, Cruz NF (2007). A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem, 102: 466-478
[42] Duarte JMN, Schuck PF, Wenk GL, Ferreira GC (2014). Metabolic disturbances in diseases with neurological involvement. Aging and Disease, 5(4): 238-255.
[43] Duarte JMN, Do KQ, Gruetter R (2014). Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H MRS. Neurobiol Aging, 35(7): 1660-1668.
[44] Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010). Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30(1): 211-221.
[45] Bizon JL, Foster TC, Alexander GE and Glisky EL (2012). Characterizing Cognitive Aging of Working Memory and Executive Function in Animal Models. Front Ag Neurosci, 4: 19.
[46] Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman RH, Derenzo SE (1983). Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose. J Comput Assist Tomogr, 7(4): 590-598.
[47] Haley AP, Knight-Scott J, Simnad VI, Manning CA (2006). Increased glucose concentration in the hippocampus in early Alzheimer's disease following oral glucose ingestion. Magn Reson Imaging, 24: 715-720.
[48] Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, Weiner MW, Jagust WJ; Alzheimer's Disease Neuroimaging Initiative(2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol, 72(4): 578-586.
[49] Adriaanse SM, van Dijk KR, Ossenkoppele R, Reuter M, Tolboom N, Zwan MD, Yaqub M, Boellaard R, Windhorst AD, van der Flier WM, Scheltens P, Lammertsma AA, Barkhof F, van Berckel BN (2014). The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer's disease. Eur J Nucl Med Mol Imaging, In press
[50] Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, Ellis KA, Szoeke C, Martins RN, O'Keefe GJ, Salvado O, Masters CL, Rowe CC; Australian Imaging Biomarkers and Lifestyle Research Group(2010). Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol, 67(3): 317-324.
[51] Shin J, Tsui W, Li Y, Lee SY, Kim SJ, Cho SJ, Kim YB, de Leon MJ (2011). Resting-state glucose metabolism level is associated with the regional pattern of amyloid pathology in Alzheimer's disease. Int J Alzheimers Dis, 2011: 759780.
[52] Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Peña V (2014). Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer's Disease? Oxid Med Cell Longev. 2014: 497802.
[53] Lin AP, Shic F, Enriquez C, Ross BD (2003). Reduced glutamate neurotransmission in patients with Alzheimer's disease - an in vivo 13C magnetic resonance spectroscopy study. MAGMA. 16(1): 29-42.
[54] Nilsen LH, Witter MP, Sonnewald U (2014). Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease. J Cereb Blood Flow Metab, 34(5): 906-914
[55] Tiwari V, Patel AB (2014). Pyruvate Carboxylase and Pentose Phosphate Fluxes are Reduced in AβPP-PS1 Mouse Model of Alzheimer's Disease: A 13C NMR Study. J Alzheimers Dis, 41(2): 387-399.
[56] Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011). Brain glutamate levels are decreased in Alzheimer's disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen, 26(6): 450-456.
[57] Penner J, Rupsingh R, Smith M, Wells JL, Borrie MJ, Bartha R (2010). Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 34(1): 104-10.
[58] Duarte JMN, Lei H, Mlynárik V, Gruetter R (2012). The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage, 61(2): 342-362
[59] Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer JH, Mastrianni JA, Fein G, Weiner MW (1997). Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic imaging and MRI study. Neurology, 49(6): 1513-1521.
[60] Ding B, Chen KM, Ling HW, Zhang H, Chai WM, Li X, Wang T (2008). Diffusion tensor imaging correlates with proton magnetic resonance spectroscopy in posterior cingulate region of patients with Alzheimer's disease. Dement Geriatr Cogn Disord, 25(3): 218-225.
[61] Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, Plácido AI, Perry G, Moreira PI (2012). The impairment of insulin signaling in Alzheimer's disease. IUBMB Life, 64(12): 951-957.
[62] Duarte AI, Moreira PI, Oliveira CR (2012). Insulin in central nervous system: more than just a peripheral hormone. J Aging Res, 2012: 1-21.
[63] Musi N, Goodyear LJ (2006). Insulin resistance and improvements in signal transduction. Endocrine, 29: 73-80.
[64] Wada A, Yokoo H, Yanagita T, Kobayashi H (2005). New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci, 99: 128-143.
[65] Mielke JG, Wang YT (2011). Insulin, synaptic function, and opportunities for neuroprotection. Prog Mol Biol Transl Sci, 98: 133-186.
[66] Brewer GJ (2010). Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories. Exp Gerontol, 45: 173-179.
[67] Burns JM, Honea RA, Vidoni ED, Hutfles LJ, Brooks WM, Swerdlow RH (2012). Insulin is differentially related to cognitive decline and atrophy in Alzheimer's disease and aging. Biochim Biophys Acta, 1822(3): 333-339.
[68] Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004). Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci, 24(49): 11120-11126.
[69] Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A, 100: 4162-4167.
[70] Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002). Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci, 22(10): RC221.
[71] Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Brüning JC (2004). Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A, 101(9): 3100-3105.
[72] Trueba-Sáiz A, Cavada C, Fernandez AM, Leon T, González DA, Fortea Ormaechea J, Lleó A, Del Ser T, Nuñez A, Torres-Aleman I (2013). Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice. Transl Psychiatry, 3:e330.
[73] Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012). Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest, 122(4): 1316-38.
[74] Benedict C, Frey WH 2nd, Schiöth HB, Schultes B, Born J, Hallschmid M (2011). Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol, 46: 112-115.
[75] Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008).Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology, 70(6): 440-448
[76] Park CR, Seeley RJ, Craft S, Woods SC (2000). Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav, 68: 509-514.
[77] Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, Marsden PK, Amiel SA (2002). The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes, 51: 3384-3390.
[78] Freude S, Hettich MM, Schumann C, Stöhr O, Koch L, Köhler C, Udelhoven M, Leeser U, Müller M, Kubota N, Kadowaki T, Krone W, Schröder H, Brüning JC, Schubert M (2009). Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J, 23(10): 3315-3324.
[79] Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, Kerr F, Al-Qassab H, Stephenson J, Yilmaz Z, Giese KP, Brion JP, Withers DJ, Lovestone S (2009). Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem Biophys Res Commun, 386(1): 257-262.
[80] Cohen E1, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009). Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell, 139(6): 1157-1169.
[81] Stöhr O, Schilbach K, Moll L, Hettich MM, Freude S, Wunderlich FT, Ernst M, Zemva J, Brüning JC, Krone W, Udelhoven M, Schubert M (2013). Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer's disease. Age (Dordr), 35(1): 83-101.
[82] de la Monte SM (1989). Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer's disease. Ann Neurol, 25: 450-459.
[83] Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging, 18: 131-138.
[84] De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, De Santi S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997). Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiol Aging, 18: 1-11.
[85] Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala EL, Vainio P, Vanninen R, Partanen K, Soininen H (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging, 25: 303-310.
[86] Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, Tsui W, Richardson S, Javier E, Convit A (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50: 711-719.
[87] Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002). Ageing and diabetes: implications for brain function. Eur J Pharmacol, 441: 1-14.
[88] Trudeau F, Gagnon S, Massicotte G (2004). Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol, 490: 177-186.
[89] Flood JF, Mooradian AD, Morley JE (1990). Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes, 39: 1391-1398.
[90] Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45: 1259-1266.
[91] Kamal A, Biessels GJ, Duis SE, Gispen WH (2000). Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia, 43: 500-506.
[92] Luesse HG, Schiefer J, Spruenken A, Puls C, Block F, Kosinski CM (2001). Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington's disease: behavioral testing and impact of diabetes mellitus. Behav Brain Res, 126: 185-195.
[93] Li X, Aou S, Hori T, Oomura Y (2002). Spatial memory deficit and emotional abnormality in OLETF rats. Physiol Behav, 75: 15-23.
[94] Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, Furukawa Y, Furukawa S (2002). Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol, 24: 695-701.
[95] Duarte JMN, Agostinho PM, Carvalho RA, Cunha RA (2012). Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcNZO10/LtJ mice. PLoS ONE, 7: e21899
[96] Rönnemaa E, Zethelius B, Sundelöf J, Sundström J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L (2008). Impaired insulin secretion increases the risk of Alzheimer disease. Neurology, 71: 1065-1071.
[97] Duarte JMN, Oliveira CR, Ambrosio AF & Cunha RA(2006). Modification of adenosine A1 and A2A receptor density in the hippocampus of streptozotocin-induced diabetic rats. Neurochem Int, 48: 144-150.
[98] Duarte JMN, Carvalho RA, Cunha RA, Gruetter R (2009). Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem, 111: 368-379.
[99] Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP. (2005). Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience, 136: 477-486.
[100] Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV (2003). Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol, 462: 67-71.
[101] Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002). Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res, 957: 345-353.
[102] Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, Turkoz Y, Yologlu S (2007). Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci, 14: 256-260.
[103] Wang WT, Lee P, Yeh HW, Smirnova IV, Choi IY (2012). Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo ¹H MR spectroscopy at 9.4 T. J Neurochem, 121(3): 407-417.
[104] Duarte JMN, Oses JP, Rodrigues RJ, Cunha RA (2007). Modification of purinergic signalling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience, 149: 382-391
[105] Duarte JMN, Nogueira C, Mackie K, Oliveira CR, Cunha RA, Köfalvi A (2007). Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Experimental Neurology, 204: 479-484
[106] Mooradian AD (1997). Central nervous system complications of diabetes mellitus - a perspective from the blood-brain barrier. Brain Res Brain Res Rev, 23: 210-218.
[107] Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I (2003). Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry, 74: 70-76.
[108] Beauquis J, Saravia F, Coulaud J, Roig P, Dardenne M, Homo-Delarche F, De Nicola A (2008). Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse. Exp Neurol, 210: 359-367.
[109] Beauquis J, Roig P, Homo-Delarche F, De Nicola A, Saravia F (2006). Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur J Neurosci, 23: 1539-1546.
[110] Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11: 309-317.
[111] Jakobsen J, Sidenius P, Gundersen HJ, Østerby R (1987). Quantitative changes of cerebral neocortical structure in insulin-treated long-term streptozocin-induced diabetes in rats. Diabetes, 36: 597-601.
[112] Li ZG, Zhang W, Grunberger G, Sima AAF (2002). Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res, 946: 221-231.
[113] Luse SA (1970). The ultrastructure of the brain in the diabetic Chinese hamster with special reference to synaptic abnormalities. Electroencephalogr Clin Neurophysiol, 29: 410.
[114] Trulson ME, Jacoby JH, MacKenzie RG (1986). Streptozotocin-induced diabetes reduces brain serotonin synthesis in rats. J Neurochem, 46: 1068-1072.
[115] Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SM, MohanKumar PS (2003). Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res, 964: 128-135.
[116] Galanopoulos E, Lellos V, Papadakis M, Philippidis H, Palaiologos G (1998). Effects of fasting and diabetes on some enzymes and transport of glutamate in cortex slices or synaptosomes from rat brain. Neurochem Res, 13(3): 243-248.
[117] Kulikov AV, Arkhipova LV, Tretyak TM, Bragin AG (1986). Serotonin and norepinephrine content in brain structures of rats with experimental and transplantation-compensated diabetes. J Hirnforsch, 27: 495-499.
[118] Biessels GJ, Cristino NA, Rutten GJ, Hamers FP, Erkelens DW, Gispen WH (1999). Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment. Brain, 122 Pt 4: 757-768.
[119] Rubini R, Biasiolo F, Fogarolo F, Magnavita V, Martini A, Fiori MG (1992). Brainstem auditory evoked potentials in rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract, 16: 19-25.
[120] Chakrabarti S, Zhang WX, Sima AAF (1991). Optic neuropathy in the diabetic BB-rat. Adv Exp Med Biol, 291: 257-264.
[121] Sima AAF, Zhang WX, Cherian PV, Chakrabarti S (1992). Impaired visual evoked potential and primary axonopathy of the optic nerve in the diabetic BB/W-rat. Diabetologia, 35: 602-607.
[122] Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998). Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res, 800: 125-135.
[123] Kamal A, Biessels GJ, Urban IJ, Gispen WH (1999). Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90: 737-745.
[124] Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008). Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain, 131: 3311-3334.
[125] Baskin DG, Stein LJ, Ikeda H, Woods SC, Figlewicz DP, Porte D Jr, Greenwood MR, Dorsa DM (1985). Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci, 36(7): 627-633.
[126] Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW (2000). Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes, 49(9): 1525-1533.
[127] Baker LD, Cross D, Minoshima S, Belongia D, Watson GS, Craft S (2011). Insulin resistance is associates with Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively impaired normal adults with pre-diabetes or early type 2 diabetes. Arch Neurol, 68: 51-57.
[128] Canas PM, Duarte JMN, Rodrigues RJ, Köfalvi A, Cunha RA (2009). Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 30: 1877-1884
[129] Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009). Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci, 29: 14741-14751.
[130] Canas PM, Simões AP, Rodrigues RJ, Cunha RA (2014). Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology, 76 Pt A: 51-56.
[131] Duarte JMN, Carvalho RA, Cunha RA, Gruetter R (2009). Effect of long-term caffeine consumption on glucose transport and osmolarity alterations in the hippocampus of STZ-induced and Goto-Kakizaki diabetic rats: in vivo 1H MRS study at 9.4 T. Proc Intl Soc Mag Reson Med, 17: 1084.
[132] Abdul-Rahman O, Sasvari-Szekely M, Ver A, Rosta K, Szasz BK, Kereszturi E, Keszler G (2012). Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics, 13: 81.
[133] Li XH, Xin X, Wang Y, Wu JZ, Jin ZD, Ma LN, Nie CJ, Xiao X, Hu Y, Jin MW (2013). Pentamethylquercetin Protects Against Diabetes-Related Cognitive Deficits in Diabetic Goto-Kakizaki Rats. J Alzheimers Dis, 34(3): 755-767.
[134] Pereira C, Moreira P, Seiça R, Santos MS, Oliveira CR (2000). Susceptibility to beta-amyloid-induced toxicity is decreased in goto-kakizaki diabetic rats: involvement of oxidative stress. Exp Neurol, 161: 383-391.
[135] Moreira PI, Santos MS, Moreno AM, Seiça R, Oliveira CR (2003). Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes, 52: 1449-1456.
[136] Li ZG, Zhang W, Sima AA (2007). Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes, 56(7): 1817-1824.
[137] Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003). Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci, 23(18): 7084-7092.
[138] Selkoe DJ (2002). Alzheimer's disease is a synaptic failure. Science, 298(5594): 789-791.
[139] Krantic S, Isorce N, Mechawar N, Davoli MA, Vignault E, Albuquerque M, Chabot JG, Moyse E, Chauvin JP, Aubert I, McLaurin J, Quirion R (2012). Hippocampal GABAergic neurons are susceptible to amyloid-β toxicity in vitro and are decreased in number in the Alzheimer's disease TgCRND8 mouse model. J Alzheimers Dis, 29(2): 293-308.
[140] Limon A, Reyes-Ruiz JM, Miledi R (2012). Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A, 109(25): 10071-10076.
[141] van Der Graaf M, Janssen SW, van Asten JJ, Hermus AR, Sweep CG, Pikkemaat JA, Martens GJ, Heerschap A (2004). Metabolic profile of the hippocampus of Zucker Diabetic Fatty rats assessed by in vivo 1H magnetic resonance spectroscopy. NMR Biomed, 17: 405-410.
[142] Geissler A, Frund R, Scholmerich J, Feuerbach S, Zietz B (2003). Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp Clin Endocrinol Diabetes, 111: 421-427.
[143] Kreis R, Ross BD (1992). Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology, 184: 123-130.
[144] Choi JK, Jenkins BG, Carreras I, Kaymakcalan S, Cormier K, Kowall NW, Dedeoglu A (2010). Anti-inflammatory treatment in AD mice protects against neuronal pathology. Exp Neurol, 223: 377-384.
[145] Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005). Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A, 102: 11906-11910.
[146] Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, Norinder U, Klason T, Wahlund LO, Lindberg M (2008). Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging, 29:1423-1433.
[147] Jack CR Jr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M (2007). Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: a new tool in Alzheimer's disease research. Neuroscientist, 13: 38-48.
[148] Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC (2009). Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer's disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord, 28: 558-566.
[149] Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004). Magnetic resonance spectroscopic analysis of Alzheimer's disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res, 1012: 60-65.
[150] Ferguson SC, Blane A, Wardlaw J, Frier BM, Perros P, McCrimmon RJ, Deary IJ (2005). Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care, 28: 1431-1437.
[151] Warren RE, Frier BM (2005) Hypoglycemia and cognitive function. Diabetes Obes Metab 7: 493-503.
[152] Cox DJ, Gonder-Frederick LA, Schroeder DB, Cryer PE, Clarke WL (1993). Disruptive effects of acute hypoglycemia on speed of cognitive and motor performance. Diabetes Care, 16: 1391-1393.
[153] Deary IJ, Sommerfield AJ, McAulay V, Frier BM (2003). Moderate hypoglycaemia obliterates working memory in humans with and without insulin treated diabetes. J Neurol Neurosurg Psychiatry, 74: 278-279.
[154] Draelos MT, Jacobson AM, Weinger K, Widom B, Ryan CM, Finkelstein DM, Simonson DC (1995). Cognitive function in patients with insulin-dependent diabetes mellitus during hyperglycemia and hypoglycaemia. Am J Med, 98: 135-144.
[155] Gold AE, Deary IJ, MacLeod KM, Thomson KJ, Frier BM (1995). Cognitive function during insulin-induced hypoglycemia in humans: short-term cerebral adaptation does not occur. Psychopharmacology (Berl), 119: 325-333.
[156] Maran A, Lomas J, Macdonald IA, Amiel SA (1995). Lack of preservation of higher brain function during hypoglycaemia in patients with intensively-treated IDDM. Diabetologia, 38: 1412-1418.
[157] Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, Norinder U, Klason T, Wahlund LO, Lindberg M (2008). Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging, 29: 1423-1433.
[158] McAulay V, Deary IJ, Ferguson SC, Frier BM (2001). Acute hypoglycemia in humans causes attentional dysfunction while nonverbal intelligence is preserved. Diabetes Care, 24: 1745-1750.
[159] Sommerfield AJ, Deary IJ, McAulay V, Frier BM (2003). Short-term, delayed, and working memory are impaired during hypoglycemia in individuals with type 1 diabetes. Diabetes Care, 26: 390-396.
[160] Fanelli CG, Paramore DS, Hershey T, Terkamp C, Ovalle F, Craft S, Cryer PE (1998). Impact of nocturnal hypoglycemia on hypoglycemic cognitive dysfunction in type 1 diabetes. Diabetes, 47: 1920-1927.
[161] Langan SJ, Deary IJ, Hepburn DA, Frier BM (1991). Cumulative cognitive impairment following recurrent severe hypoglycaemia in adult patients with insulin-treated diabetes mellitus. Diabetologia, 34: 337-344.
[162] Lincoln NB, Faleiro RM, Kelly C, Kirk BA, Jeffcoate WJ (1996). Effect of long-term glycemic control on cognitive function. Diabetes Care, 19: 656-658.
[163] Wredling R, Levander S, Adamson U, Lins PE (1990). Permanent neuropsychological impairment after recurrent episodes of severe hypoglycaemia in man. Diabetologia, 33: 152-157.
[164] Lewis LD, Ljunggren B, Norberg K, Siesjö BK (1974). Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem, 23: 659-671.
[165] Engelsen B, Fonnum F (1993). Effects of hypoglycemia on the transmitter pool and the metabolic pool of glutamate in rat brain. Neurosci Lett, 42: 317-322.
[166] Dawson RM (1950). Studies on the glutamine and glutamic acid content of the rat brain during insulin hypoglycaemia. Biochem J, 47: 386-391.
[167] Behar KL, den Hollander JA, Petroff OA, Hetherington HP, Prichard JW, Shulman RG (1985). Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: detection by sequential 1H and 31P NMR spectroscopy. J Neurochem, 44: 1045-1055.
[168] Davis JM, Himwich WA, Pederson VC (1970). Hypoglycemia and developmental changes in free amino acids of rat brain. J Appl Physiol, 29: 219-222.
[169] Rao R, Ennis K, Long JD, Ugurbil K, Gruetter R, Tkac I (2010). Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. J Neurochem, 114: 728-738.
[170] Dagogo-Jack SE, Craft S, Cryer PE (1993). Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest, 91, 819-828.
[171] Cryer PE (2004). Diverse causes of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med, 350: 2272-2279.
[172] Fanelli CG, Pampanelli S, Porcellati F, Bolli GB (1998). Shift of glycaemic thresholds for cognitive function in hypoglycemia unawareness in humans. Diabetologia, 41: 720-723.
[173] Marty N, Dallaporta M, Thorens B (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22: 241-251
[174] Boyle PJ, Nagy RJ, O’Connor AM, Kempers SF, Yeo RA, Qualls C (1994). Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA, 91: 9352-9356.
[175] Criego AB, Tkáč I, Kumar A, Thomas W, Gruetter R, Seaquist ER (2005). Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res, 79: 42-47.
[176] McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB (1986). Chronic hypoglycemia increases brain glucose transport. Am J Physiol Endocrinol Metab, 251: E442-E447.
[177] Gulanski BI, De Feyter HM, Page KA, de Aguiar RB, Mason GF, Rothman DL, Sherwin RS (2013). Increased Brain Transport and Metabolism of Acetate in Hypoglycemia Unawareness. J Clin Endocrinol Metab, 98(9): 3811-3820.
[178] Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI (2006). Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes, 55: 929-934
[179] Kumagai AK, Kang YS, Boado RJ, Pardridge WM (1995). Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes, 44: 1399-1404.
[180] Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR (1999). Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem, 72: 238-247.
[181] Choi IY, Seaquist ER, Gruetter R (2003). Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res, 72: 25-32.
[182] Canada SE, Weaver SA, Sharpe SN, Pederson BA (2011). Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res, 89: 585-591.
[183] Brown AM, Ransom BR (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55: 1263-1271.
[184] Saez I, Duran J, Sinadinos C, Beltran A, Yanes O, Tevy MF, Martínez-Pons C, Milán M, Guinovart JJ (2014). Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab, 34: 945-955.
[185] Gruetter R (2003). Glycogen: the forgotten cerebral energy store. J Neurosci Res, 74(2): 179-183.
[186] Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R (2007). Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab, 292(3): E946-951.
[187] Alquier T, Kawashima J, Tsuji Y, Kahn BB (2007). Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology, 148: 1367-1375
[188] Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428: 569-574
[189] Han SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU, Kim MS (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycemia in rats. Diabetologia, 48: 2170-2178
[190] Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS (2008). Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology, 149: 1499-1504.
[191] Lei H, Gruetter R (2006). Effect of chronic hypoglycemia on glucose concentration and glycogen content in rat brain: A localized 13C NMR study. J Neurochem, 99: 260-268
[192] Oz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE, Seaquist ER (2012). Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab, 32(2): 256-63
[193] Matsui T, Ishikawa T, Ito H, Okamoto M, Inoue K, Lee MC, Fujikawa T, Ichitani Y, Kawanaka K, Soya H (2012). Brain glycogen supercompensation following exhaustive exercise. J Physiol, 590(Pt 3): 607-616.
[194] Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007). Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther, 321: 45-50
[195] Nelson SR, Schulz DW, Passonneau JV, Lowry OH (1968). Control of glycogen levels in brain. J Neurochem, 15: 1271-1279.
[196] Wagner SR 4th, Lanier WL (1994). Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats. Anesthesiology, 81: 1516-1526.
[197] Sánchez-Chávez G, Hernández-Berrones J, Luna-Ulloa LB, Coffe V, Salceda R (2008). Effect of diabetes on glycogen metabolism in rat retina. Neurochem Res, 33: 1301-1308.
[198] Lanier WL, Hofer RE, Gallagher WJ (1996). Metabolism of glucose, glycogen, and high-energy phosphates during transient forebrain ischemia in diabetic rats: effect of insulin treatment. Anesthesiology, 84: 917-925.
[199] Deary IJ, Frier BM (1996). Severe hypoglycemia and cognitive impairment in diabetes: link not proven. Br Med J, 313: 767-780.
[200] Austin EJ, Deary IJ (1999). Effects of repeated hypoglycaemia on cognitive function. A psychometrically validated reanalysis of the Diabetes Control and Complications Trial data. Diabetes Care, 22: 1273-1277.
[201] Kramer L, Fasching P, Madl C, Schneider B, Damjancic P, Waldhäusl W, Irsigler K, Grimm G (1998). Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes, 47: 1909-1914.
[202] Schoenle EJ, Schoenle D, Molinari L, Largo RH (2002). Impaired intellectual development in children with Type I diabetes: association with HbA1c, age at diagnosis and sex. Diabetologia, 45: 108-114.
[1] Jong Bin Bae,Ji Won Han,Kyung Phil Kwak,Bong Jo Kim,Shin Gyeom Kim,Jeong Lan Kim,Tae Hui Kim,Seung-Ho Ryu,Seok Woo Moon,Joon Hyuk Park,Jong Chul Youn,Dong Young Lee,Dong Woo Lee,Seok Bum Lee,Jung Jae Lee,Jin Hyeong Jhoo,Ki Woong Kim. Is Dementia More Fatal Than Previously Estimated? A Population-based Prospective Cohort Study[J]. Aging and disease, 2019, 10(1): 1-11.
[2] Tseng Chin-Hsiao. Metformin and the Risk of Dementia in Type 2 Diabetes Patients[J]. Aging and disease, 2019, 10(1): 37-48.
[3] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[4] Changhong Ren, Hang Wu, Dongjie Li, Yong Yang, Yuan Gao, Yunneng Jizhang, Dachuan Liu, Xunming Ji, Xuxiang Zhang. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation[J]. Aging and disease, 2018, 9(6): 1122-1133.
[5] Maxime Fournet, Frederic Bonte, Alexis Desmouliere. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging[J]. Aging and disease, 2018, 9(5): 880-900.
[6] Sone Daichi, Imabayashi Etsuko, Maikusa Norihide, Ogawa Masayo, Sato Noriko, Matsuda Hiroshi, Japanese-Alzheimer’s Disease Neuroimaging Initiative. Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD) on 3-tesla Normal Database: Diagnostic Accuracy in Two Independent Cohorts with Early Alzheimer’s Disease[J]. Aging and disease, 2018, 9(4): 755-760.
[7] Morroni Fabiana, Sita Giulia, Graziosi Agnese, Turrini Eleonora, Fimognari Carmela, Tarozzi Andrea, Hrelia Patrizia. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer’s Disease Involves Nrf2/HO-1 Pathway[J]. Aging and disease, 2018, 9(4): 605-622.
[8] Yang Yao-Chih, Tsai Cheng-Yen, Chen Chien-Lin, Kuo Chia-Hua, Hou Chien-Wen, Cheng Shi-Yann, Aneja Ritu, Huang Chih-Yang, Kuo Wei-Wen. Pkcδ Activation is Involved in ROS-Mediated Mitochondrial Dysfunction and Apoptosis in Cardiomyocytes Exposed to Advanced Glycation End Products (Ages)[J]. Aging and disease, 2018, 9(4): 647-663.
[9] Li Wenjun, Roy Choudhury Gourav, Winters Ali, Prah Jude, Lin Wenping, Liu Ran, Yang Shao-Hua. Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation[J]. Aging and disease, 2018, 9(4): 674-684.
[10] Xu Yangqi, Liu Xiaoli, Shen Junyi, Tian Wotu, Fang Rong, Li Binyin, Ma Jianfang, Cao Li, Chen Shengdi, Li Guanjun, Tang Huidong. The Whole Exome Sequencing Clarifies the Genotype- Phenotype Correlations in Patients with Early-Onset Dementia[J]. Aging and disease, 2018, 9(4): 696-705.
[11] Yan Tao, Venkat Poornima, Chopp Michael, Zacharek Alex, Yu Peng, Ning Ruizhuo, Qiao Xiaoxi, Kelley Mark R., Chen Jieli. APX3330 Promotes Neurorestorative Effects after Stroke in Type One Diabetic Rats[J]. Aging and disease, 2018, 9(3): 453-466.
[12] Ding Qiong, Tanigawa Kitora, Kaneko Jun, Totsuka Mamoru, Katakura Yoshinori, Imabayashi Etsuko, Matsuda Hiroshi, Hisatsune Tatsuhiro. Anserine/Carnosine Supplementation Preserves Blood Flow in the Prefrontal Brain of Elderly People Carrying APOE e4[J]. Aging and disease, 2018, 9(3): 334-345.
[13] Shen Ting, You Yuyi, Joseph Chitra, Mirzaei Mehdi, Klistorner Alexander, Graham Stuart L., Gupta Vivek. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders[J]. Aging and disease, 2018, 9(3): 523-536.
[14] Zhen Jie, Lin Tong, Huang Xiaochen, Zhang Huiqiang, Dong Shengqi, Wu Yifan, Song Linlin, Xiao Rong, Yuan Linhong. Association of ApoE Genetic Polymorphism and Type 2 Diabetes with Cognition in Non-Demented Aging Chinese Adults: A Community Based Cross-Sectional Study[J]. Aging and disease, 2018, 9(3): 346-357.
[15] Peng Fangyu, Xie Fang, Muzik Otto. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. Aging and disease, 2018, 9(1): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd