Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2015, Vol. 6 Issue (5) : 300-303     DOI: 10.14336/AD.2014.1211
Mini-review |
Possible Benefit of Dietary Carnosine towards Depressive Disorders
Alan R. Hipkiss*()
School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Download: PDF(489 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Many stress-related and depressive disorders have been shown to be associated with one or more of the following; shortened telomeres, raised cortisol levels and increased susceptibility to age-related dysfunction. It is suggested here that insufficient availability of the neurological peptide, carnosine, may provide a biochemical link between stress- and depression-associated phenomena: there is evidence that carnosine can enhance cortisol metabolism, suppress telomere shortening and exert anti-aging activity in model systems. Dietary supplementation with carnosine has been shown to suppress stress in animals, and improve behaviour, cognition and well-being in human subjects. It is therefore proposed that the therapeutic potential of carnosine dietary supplementation towards stress-related and depressive disorders should be examined.

Keywords carnosine      telomeres      human      diet      supplementation      depression      cognition      stress      cortisol      aging     
About author:

present address: Kunming Biomed International, Kunming, Yunnan, 650500, China

Issue Date: 01 October 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alan R. Hipkiss*
Cite this article:   
Alan R. Hipkiss*. Possible Benefit of Dietary Carnosine towards Depressive Disorders[J]. Aging and disease, 2015, 6(5): 300-303.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2014.1211     OR     http://www.aginganddisease.org/EN/Y2015/V6/I5/300
[1] Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Bordonali T, Ciccarese C, Castrini AI, Dei Cas A, Nodari S, Metra M (2015). Effects of oral administration of orodispersible levo-carnosine on quality of life and exercise performance in patients with chronic heart failure. Nutrition, 31:72-8.
[2] Gotlib IH, LeMoult J, Colich NL, Foland-Ross LC, Hallmayer J, Joormann J, Lin J, Wolkowitz OM (2014). Telomere length and cortisol reactivity in children of depressed mothers. Mol Psychiatry, in press
[3] Miller MW, Sadeh N (2014). Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated -aging hypothesis. Mol Psych, 19:1156-1162.
[4] Shalev I, Moffittt TE, Braithwaite AW, Danese A, Flemming NIet al. (2014). Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psych, 19:1163-1169.
[5] Boldyrev AA, Aldini G, Derav W(2013). The physiology and pathophysiology of carnosine. Physiol. Rev, 93; 1803-1845.
[6] Skulachev VP (2000). Centenary of Gulevitsch’s discovery. Biochem (Moscow), 65:749-750.
[7] Bauer K (2005). Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res, 30:1339-45.
[8] Holliday R, McFarland GA (1996). Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Brit J Cancer, 73: 966-971.
[9] Gaunitz F, Hipkiss AR (2012). Carnosine and cancer: a perspective. Amino Acids, 43:135-142.
[10] Zheng Z, Miao L, Wu X, Liu G, Peng Y, Xin Xet al. (2014). Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signalling. J Cancer, 5:382-389.
[11] McFarland GA, Holliday R (1994). Retardation of senescence in cultured human diploid fibroblasts by carnosine. Exp Cell Res, 212: 167-175.
[12] Shao L, Li Q-H, Tan ZM (2004). L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Res Cmmns, 324: 931-936.
[13] Hipkiss AR, Michaelis J, Syrris P (1995). Non-enzymic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Letts, 371: 81-85.
[14] Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988). Antioxidant activity of carnosine, homocarnosine and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA, 95: 2175-2179.
[15] Fontana M, Pinnen F, Lucente G, Pecci L (2002). Prevention of peroxynitrate-dependent damage by carnosine and related sulphonamide pseudopeptides. Cell Mol Life Sci, 59: 546-55.
[16] Calabrese V, Coombrita C, Guagliano E, Sapoenza M, Ravagna A, Cardile V,et al. (2005). Protective effect of carnosine during nitrosactive stress in astroglial cell cultures. Neurochem Res, 30: 797-807.
[17] Hipkiss AR, Worthington VC, Himsworth DT, Herwig W (1998). Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim Biophys Acta, 1380:46-54
[18] Orioli M, Aldini G, Beretta G, Mattei Facino R, Carini M (2005). LC-ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues. J Chromatogr B Analyt Technol Biomed Life Sci, 827: 109-118.
[19] Liu Y, Xu G, Sayre LM (2003) Carnosine inhibits (E)-4-hydroxy-2-nonenal-induced protein cross-linking: structural characterization of the carnosine-HNE adducts. Chem Res Toxicol, 16: 1589-1597.
[20] Hipkiss AR, Chana H(1998). Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem Biophys Res Cmmns, 248:28-32.
[21] Nagai K, Suda T, Kawasaki K, Mathuura S (1986). Action of carnosine and β-alanine on wound healing. Surgery, 100: 815-821.
[22] Ansurudeen I, Sunkari VG, Grünler J, Peters V, Schmitt CP, Catrina SB, Brismar K, Forsberg EA (2012). Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes.Amino Acids, 43:127-34.
[23] Herculano B, Tamura M, Ohba A, Shimatani M, Kutsuna N, Hisatsune T (2013). β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis, 33:983-97.
[24] Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E, Sensi SL (2011). Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One, 6(3):e17971.
[25] Afshin-Majd S, Khalili M, Roghani M, Mehranmehr N, Baluchnejadmojarad T (2014). Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in Hemiparkinsonian rat. Mol Neurobiol. In press
[26] Boldyrev AA, Stvolinsky SL, Fedorova TN, Suslina ZA (2010). Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials. Rejuvenation Res, 13:156-8.
[27] Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A, Bae ON (2014). Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke, 45:2438-43.
[28] Wang JP, Yang ZT, Liu C, He YH, Zhao SS (2013). L-Carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia. Brain Res, 1507:125-33.
[29] Brown BE, Kim CH, Torpy FR, Bursill CA, McRobb LS, Heather AK, Davies MJ, van Reyk DM (2014). Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E(-/-) mice. Atherosclerosis, 232:403-9.
[30] Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S (2013). Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol, 33:1162-70.
[31] Liao JH, Lin IL, Huang KF, Kuo PT, Wu SH, Wu TH (2014). Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation. J Agric Food Chem, 62:5932-8.
[32] Dizhevskaya AK, Muranov KO, Boldyrev AA, Ostrovsky MA (2012). Natural dipeptides as mini-chaperones: molecular mechanism of inhibition of lens βL-crystallin aggregation. Curr Aging Sci, 5:236-41.
[33] Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, Yeum KJ, Negrisoli G, Carini M (2011). The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med, 15:1339-54.
[34] Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C,et al. (2005). Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes, 54:2320-7.
[35] Hipkiss AR(2011). Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine. Mol. Aspects Med, 32:267-278.
[36] Nagai K, Suda T, Kawasaki K, Yamaguchi Y (1990). Acceleration of metabolism of stress-related substances by L-carnosine. Nihon Seirigaku Zasshi, 52:221-8.
[37] Tsoi B, He RR, Yang DH, Li YF, Li XD, Li WX, Abe K, Kurihara H (2011). Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J Pharmacol Sci, 117:223-9.
[38] Segawa Y, Tsuzuike N, Tagashira E, Yamaguchi M. (1992). Beta-alanyl-L-histidino zinc prevents hydrocortisone-induced disorder of bone metabolism in rats. Res Exp Med (Berl), 192:317-22.
[39] Popp J, Wolfsgruber S, Heuser I, Peters O, Hull M,et al. (2014). Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging, in press
[40] Tomonaga S, Tachibana T, Takagi T, Saito ES, Zhang R, Denbow DM, Furuse M (2004). Effect of central administration of carnosine and its constituents on behaviours in chicks. Brain Res Bull, 63:75-82.
[41] Li YF, He RR, Tsoi B, Li XD, Li WX, Abe K, Kurihara H (2012). Anti-stress effects of carnosine on restraint-evoked immunocompromise in mice through spleen lymphocyte number maintenance. PLoS One, 7(4):e33190.
[42] Tomonaga S, Yamane H, Onitsuka E, Yamada S, Sato M, Takahata Y, Morimatsu F, Furuse M (2008). Carnosine-induced anti-depressant-like activity in rats. Pharmacol Biochem Behav, 89:627-32.
[43] Tsuneyoshi Y, Yamane H, Tomonaga S, Morishita K, Denbow DM, Furuse M (2008). Reverse structure of carnosine-induced sedative and hypnotic effects in the chick under acute stress. Life Sci, 82; 1065-1069
[44] Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol, 17:833-7
[45] Baraniuk JN, El-Amin S, Corey R, Rayhan R, Timbol C (2013). Carnosine treatment for gulf war illness: a randomized controlled trial. Glob J Health Sci, 5:69-81.
[46] Chengappa KN, Turkin SR, DeSanti S, Bowie CR, Brar JS, Schlicht PJ, Murphy SL, Hetrick ML, Bilder R, Fleet D (2012). A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia. Schizophr Res, 142:145-52.
[47] Szczesniak D, Budzen S, Kopec W, Rymaszewska J (2014). Anserine and carnosine supplementation in the elderly: effects on cognitive functioning and physical capacity. Asch Gereontol Geriatr, 59:485-90.
[1] Tingting Sui,Di Liu,Tingjun Liu,Jichao Deng,Mao Chen,Yuanyuan Xu,Yuning Song,Hongsheng Ouyang,Liangxue Lai,Zhanjun Li. LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy[J]. Aging and disease, 2019, 10(1): 102-115.
[2] Dong Liu,Liqun Xu,Xiaoyan Zhang,Changhong Shi,Shubin Qiao,Zhiqiang Ma,Jiansong Yuan. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury[J]. Aging and disease, 2019, 10(1): 116-133.
[3] Wanying Duan, Yuehua Pu, Haiyan Liu, Jing Jing, Yuesong Pan, Xinying Zou, Yilong Wang, Xingquan Zhao, Chunxue Wang, Yongjun Wang, Ka Sing Lawrence Wong, Ling Wei, Liping Liu, . Association between Leukoaraiosis and Symptomatic Intracranial Large Artery Stenoses and Occlusions: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Aging and disease, 2018, 9(6): 1074-1083.
[4] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[5] Calvin Pak-Wing Cheng, Sheung-Tak Cheng, Cindy Woon-Chi Tam, Wai-Chi Chan, Winnie Chiu-Wing Chu, Linda Chiu-Wa Lam. Relationship between Cortical Thickness and Neuropsychological Performance in Normal Older Adults and Those with Mild Cognitive Impairment[J]. Aging and disease, 2018, 9(6): 1020-1030.
[6] Yu-Wen Huang, Ming-Fu Chiang, Che-Sheng Ho, Pi-Lien Hung, Mei-Hsin Hsu, Tsung-Han Lee, Lichieh Julie Chu, Hsuan Liu, Petrus Tang, Wailap Victor Ng, Dar-Shong Lin. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder[J]. Aging and disease, 2018, 9(6): 1043-1057.
[7] Manuel Scimeca, Federica Centofanti, Monica Celi, Elena Gasbarra, Giuseppe Novelli, Annalisa Botta, Umberto Tarantino. Vitamin D Receptor in Muscle Atrophy of Elderly Patients: A Key Element of Osteoporosis-Sarcopenia Connection[J]. Aging and disease, 2018, 9(6): 952-964.
[8] Charlene Greenwood, John Clement, Anthony Dicken, Paul Evans, Iain Lyburn, Richard M. Martin, Nick Stone, Peter Zioupos, Keith Rogers. Age-Related Changes in Femoral Head Trabecular Microarchitecture[J]. Aging and disease, 2018, 9(6): 976-987.
[9] Vinicius Alota Ignacio Pereira, Fabio Augusto Barbieri, Alessandro Moura Zagatto, Paulo Cezar Rocha dos Santos, Lucas Simieli, Ricardo Augusto Barbieri, Felipe Pivetta Carpes, Lilian Teresa Bucken Gobbi. Muscle Fatigue Does Not Change the Effects on Lower Limbs Strength Caused by Aging and Parkinson’s Disease[J]. Aging and disease, 2018, 9(6): 988-998.
[10] Ashok K. Shetty, Maheedhar Kodali, Raghavendra Upadhya, Leelavathi N. Madhu. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy[J]. Aging and disease, 2018, 9(6): 1165-1184.
[11] Changhong Ren, Hang Wu, Dongjie Li, Yong Yang, Yuan Gao, Yunneng Jizhang, Dachuan Liu, Xunming Ji, Xuxiang Zhang. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation[J]. Aging and disease, 2018, 9(6): 1122-1133.
[12] Ze Teng, Aibo Wang, Peng Wang, Rui Wang, Wei Wang, Hongbin Han. The Effect of Aquaporin-4 Knockout on Interstitial Fluid Flow and the Structure of the Extracellular Space in the Deep Brain[J]. Aging and disease, 2018, 9(5): 808-816.
[13] Stefano Rizza, Marina Cardellini, Alessio Farcomeni, Pasquale Morabito, Daniele Romanello, Giovanni Di Cola, Maria Paola Canale, Massimo Federici. Low Molecular Weight Adiponectin Increases the Mortality Risk in Very Old Patients[J]. Aging and disease, 2018, 9(5): 946-951.
[14] Linsha Ma, Liang Hu Hu, Xiaoyu Feng, Songlin Wang. Nitrate and Nitrite in Health and Disease[J]. Aging and disease, 2018, 9(5): 938-945.
[15] Stefanie Hardt, Lucie Valek, Jinyang Zeng-Brouwers, Annett Wilken-Schmitz, Liliana Schaefer, Irmgard Tegeder. Progranulin Deficient Mice Develop Nephrogenic Diabetes Insipidus[J]. Aging and disease, 2018, 9(5): 817-830.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd