Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2015, Vol. 6 Issue (5) : 390-399     DOI: 10.14336/AD.2015.0827
Review Article |
Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations
Patrícia Fernanda Schuck1,*(), Fernanda Malgarin1, José Henrique Cararo1, Fabiola Cardoso2, Emilio Luiz Streck3, Gustavo Costa Ferreira2
1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
2 Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
3 Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Download: PDF(874 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism caused by the deficiency of phenylalanine hydroxylase. This deficiency leads to the accumulation of Phe and its metabolites in tissues and body fluids of PKU patients. The main signs and symptoms are found in the brain but the pathophysiology of this disease is not well understood. In this context, metabolic alterations such as oxidative stress, mitochondrial dysfunction, and impaired protein and neurotransmitters synthesis have been described both in animal models and patients. This review aims to discuss the main metabolic disturbances reported in PKU and relate them with the pathophysiology of this disease. The elucidation of the pathophysiology of brain damage found in PKU patients will help to develop better therapeutic strategies to improve quality of life of patients affected by this condition.

Keywords brain      hyperphenylalaninemia      metabolic alterations      phenylalanine      phenylketonuria     
Corresponding Authors: Patrícia Fernanda Schuck     E-mail: patricia.schuck@pq.cnpq.br
About author:

present address: Kunming Biomed International, Kunming, Yunnan, 650500, China

Issue Date: 01 October 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Patrícia Fernanda Schuck
Fernanda Malgarin
José Henrique Cararo
Fabiola Cardoso
Emilio Luiz Streck
Gustavo Costa Ferreira
Cite this article:   
Patrícia Fernanda Schuck,Fernanda Malgarin,José Henrique Cararo, et al. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations[J]. Aging and disease, 2015, 6(5): 390-399.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2015.0827     OR     http://www.aginganddisease.org/EN/Y2015/V6/I5/390
Figure 1.  Phenylalanine metabolism. Most of phenylalanine obtained from diet or endogenous proteolysis is hydroxylated producing tyrosine by phenylalanine hydroxylase, which is deficient in PKU. Additional routes include transamination to phenylpyruvate and decarboxylation in order to synthesize phenylethylamine.
ReferenceSampleFindings
Schulpis et al., 2005PKU Patients Blood↓ TAS
↑ 8-OH-DG
Sitta et al., 2009PKU patients leucocytes; normal Individuals leukocytes↑ DNA damage index in vivo
↑ DNA damage index in vitro
Sirtori et al., 2005PKU patients plasma and erythrocytes↓ TAR, GPx
↑ TBA-RS
Sitta et al., 2009PKU Patients Blood↓ TAR
↑ TBA-RS
Sitta et al., 2009PKU patients plasma and erythrocytes↓ GSH, GPx, TAR, SH
↑ TBA-RS, protein carbonyl
Sanayama et al., 2011PKU patients plasma and erythrocytes↓ TAR, GPx, beta-carotene, Q10
↑ TBA-RS, MDA-modified LDL, CAT, SOD
Ercal et al., 2002Mice brain and red blood cells↑ MDA, G6PD, CAT
↓ GSH/GSSG, NADPH
Kienzle Hagen et al., 2002Rat brain↑ chemiluminescence
↓ TRAP, CAT, GPx
Martinez-Cruz et al., 2002Rat brain and cerebellum↑ Ehrlich adducts, MDA, GSSG, HO-1
↓ GPx, GR, MAPK 1/2
Fernandes et al., 2010Rat brain↑ TBA-RS
↓ SH, GSH
Moraes et al., 2010Rat brain↓ CAT, SOD, GPx, G6PD, GSH, TRAP
↑ TBA-RS, ROS
Moraes et al., 2013Rat brain↑ TBA-RS, protein carbonyl, SOD, ROS
↓ CAT
Deon et al., 2015Normal individuals plasma; PKU patients plasma and urine↑ DNA damage index
↑ 8-OH-DG
Simon et al., 2013Rat brain and blood↑ DNA damage index in vivo
↑ DNA damage index in vitro
Rosa et al., 2012Rat brain↓ G6PD
Table 1  Landmark studies showing oxidative stress in phenylketonuria.
ReferenceSampleFindings
Güttler and Lou, 1986PKU patients urine and CSF↓ dopamine, serotonine, HVA, 5-HIAA
Yano et al., 2013PKU patients urine and serum↓ melatonin, 6-sulfatoxymelatonin, dopamine
Pascucci et al., 2002Mouse brain↓ serotonin, Trp, 5-HT
Landvogt et al., 2007PKU patients↓ fluoro-L-dopamine uptake
Sawin et al., 2014Mouse brain↓ catecholamines, serotonin
Harding et al., 2014Mouse brain↓ TH
Justice and Hsia, 1965Mouse brain↓ 5THD
Table 2  Landmarks studies showing impaired neurotransmitter metabolism in phenylketonuria.
Figure 2.  Metabolic alterations involved in the pathophysiology of the brain damage found in phenylketonuric patients. Phenylalanine and its metabolites elicit oxidation of lipids, proteins, and DNA by increasing ROS production and decreasing antioxidant defenses. Bioenergetics is also impaired due to decreased glucose oxidation and alterations of activities of enzymes such as respiratory chain complexes, Krebs cycle enzymes, and creatine kinase. Toxic metabolites also decrease protein, neurotransmitter, and cholesterol synthesis and alter Ca2+ metabolism. ATP, adenosine triphosphate; CAT, catalase; cyt-CK, cytosolic creatine kinase; DNA, desoxiribonucleic acid; G6PD, glucose-6-phosphate dehydrogenase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; MDA, malondialdehyde, mit-CK, mitochondrial creatine kinase; PUFAS, polyunsaturated fatty acid; ROS, reactive oxygen species; SOD, superoxide dismutase.
[1] Williams RA, Mamotte CD, Burnett JR (2008). Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev, 29:390-41.
[2] Velema M, Boot E, Engelen M, Hollak C (2015). Parkinsonism in phenylketonuria: a consequence of dopamine depletion? JIMD Rep, 20:35-8.
[3] Kaufman S (1976). The phenylalanine hydroxylating system in phenylketonuria and its variants. Biochem Med, 15:42-54.
[4] Scriver CR, Kaufman S (2001). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly SW, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 1667-724.
[5] Scriver CR, Rosenberg LE (1973). Amino acid metabolism and its disorders. Major Probl Clin Pediatr, 10:1-478.
[6] Rampini S, Völlmin JA, Bosshard HR, Müller M, Curtius HC (1974). Aromatic acids in urine of healthy infants, persistent hyperphenylalaninemia, and phenylketonuria, before and after phenylalanine load. Pediatr Res, 8:704-9.
[7] Scriver CR, Donlon J, Levy H (2008). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, editors. The Online Metabolic and Molecular Bases of Inherited Disease.New York: McGraw-Hill.
[8] Lidsky AS, Law ML, Morse HG, Kao FT, Rabin M, Ruddle FHet al (1985). Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome. Proc Natl Acad Sci U S A, 82:6221-5.
[9] Réblová K, Kulhánek P, Fajkusová L (2015). Computational study of missense mutations in phenylalanine hydroxylase. J Mol Model, 21:70.
[10] Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau Net al (2014). Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab, 112:87-122.
[11] Pimentel FB, Alves RC, Oliva-Teles MT, Costa AS, Fernandes TJ, Almeida MFet al (2014). Targeting specific nutrient deficiencies in protein-restricted diets: some practical facts in PKU dietary management. Food Funct, 5:3151-9.
[12] Trefz F, Maillot F, Motzfeldt K, Schwarz M (2011). Adult phenylketonuria outcome and management. Mol Genet Metab, 104 Suppl:S26-30.
[13] Berry SA, Brown C, Grant M, Greene CL, Jurecki E, Koch Jet al (2013). Newborn screening 50 years later: access issues faced by adults with PKU. Genet Med, 15:591-9.
[14] Robert M, Rocha JC, van Rijn M, Ahring K, Bélanger-Quintana A, MacDonald Aet al (2013). Micronutrient status in phenylketonuria. Mol Genet Metab, 110 Suppl:S6-17.
[15] Ragsdale S (2010). Metal-carbon bonds in enzymes and cofactors. Coord Chem Rev, 254:1948-9.
[16] McMurry MP, Chan GM, Leonard CO, Ernst SL (1992). Bone mineral status in children with phenylketonuria--relationship to nutritional intake and phenylalanine control. Am J Clin Nutr, 55:997-1004.
[17] Wilke BC, Vidailhet M, Richard MJ, Ducros V, Arnaud J, Favier A (1993). Trace elements balance in treated phenylketonuria children. Consequences of selenium deficiency on lipid peroxidation. Arch Latinoam Nutr, 43:119-22.
[18] Dyer CA (2000). Comments on the neuropathology of phenylketonuria. Eur J Pediatr, 159 Suppl 2:S107-8.
[19] Huttenlocher PR (2000). The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr, 159 Suppl 2:S102-6.
[20] Rocha JC, Martel F (2009). Large neutral amino acids supplementation in phenylketonuric patients. J Inherit Metab Dis, 32:472-80.
[21] Duarte JM, Schuck PF, Wenk GL, Ferreira GC (2013). Metabolic disturbances in diseases with neurological involvement. Aging Dis, 5:238-55.
[22] Halliwell B, Gutteridge JMC, editors. Free radicals in biology and medicine. New York: Oxford University Press Inc; 2007.
[23] Pérez-Severiano F, Ríos C, Segovia J (2000). Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res, 862:234-7.
[24] Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001). Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem, 79:1246-9.
[25] Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar Tet al (2001). The cerebrocortical areas in normal brain aging and Alzheimer’s disease: noticeable differences in the lipid peroxidation level and antioxidant defense. Neurochem Res, 26:353-61.
[26] Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Martín ME, Labandeira-García JL (2001). Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med, 31:986-98.
[27] Behl C, Moosmann B (2002). Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med, 33:182-91.
[28] Behl C, Moosmann B (2002). Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compunds. Biol Chem, 383:521-36.
[29] Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TWet al (2005). Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem, 93:611-23.
[30] Berg D, Youdim MB (2006). Role of iron in neurodegenerative disorders. Top Magn Reson Imaging, 17:5-17.
[31] Schulpis KH, Tsakiris S, Traeger-Synodinos J, Papassotiriou I (2005). Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem, 38:239-42.
[32] Sitta A, Manfredini V, Biasi L, Treméa R, Schwartz IV, Wajner Met al (2005). Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res, 679:13-6.
[33] Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AGet al (2005). Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta, 1740:68-73.
[34] Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PRet al (2009). Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci, 27:243-7.
[35] Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CSet al (2009). L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol, 29:211-8.
[36] Sanayama Y, Nagasaka H, Takayanagi M, Ohura T, Sakamoto O, Ito Tet al (2011). Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab, 103:220-5.
[37] Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CAet al (2011). Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol, 31:429-36.
[38] Ercal N, Aykin-Burns N, Gurer-Orhan H, McDonald JD (2002). Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med, 32:906-11.
[39] Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CMet al (2002). Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta, 1586:344-52.
[40] Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002). Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E, and vitamin C. J Neurosci Res, 69:550-8.
[41] Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CRet al (2010). Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol, 30:317-26.
[42] Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo Fet al (2010). Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci, 292:89-95.
[43] Moraes TB, Jacques CE, Rosa AP, Dalazen GR, Terra M, Coelho JGet al (2013). Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid. Cell Mol Neurobiol, 33:253-60.
[44] Deon M, Landgraf SS, Lamberty JF, Moura DJ, Saffi J, Wajner Met al (2015). Protective effect of L-carnitine on Phenylalanine-induced DNA damage. Metab Brain Dis, 30:925-33.
[45] Simon KR, Dos Santos RM, Scaini G, Leffa DD, Damiani AP, Furlanetto CBet al (2013). DNA damage induced by phenylalanine and its analogue p-chlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia. Biochem Cell Biol, 91:319-24.
[46] Rosa AP, Jacques CE, Moraes TB, Wannmacher CM, Dutra Ade M, Dutra-Filho CS (2012). Phenylpyruvic acid decreases glucose-6-phosphate dehydrogenase activity in rat brain. Cell Mol Neurobiol, 32:1113-8.
[47] Yuwiler A, Geller E, Slater GG (1965). On the mechanism of the brain serotonin depletion in experimental phenylketonuria. J Biol Chem, 240:1170-4.
[48] Güttler F, Lou H (1986). Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis, 9 Suppl 2:169-77.
[49] Yano S, Moseley K, Azen C (2013). Large neutral amino acid supplementation increases melatonin synthesis in phenylketonuria: a new biomarker. J Pediatr, 162:999-1003.
[50] Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002). Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport, 13:2561-4.
[51] Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier Tet al (2008). Reduced cerebral fluoro-L-dopamine uptake in adult patients suffering from phenylketonuria. J Cereb Blood Flow Metab, 28:824-31.
[52] Sawin EA, Murali SG, Ney DM (2014). Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57BI/6-Pah(enu2) mice. Mol Genet Metab, 111:452-61.
[53] Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch Cet al (1999). Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest, 103:1169-78.
[54] McKean CM (1972). The effects of high phenylalanine concentrations on serotinin and catecholamine metabolism in the human brain. Brain Res, 47:469-76.
[55] Sandler M (1982). Inborn errors and disturbances of central neurotransmission (with special reference to phenylketonuria). J Inherit Metab Dis, 5:65-70.
[56] Christensen HN, Streicher JA, Elbinger RL (1948). Effects of feeding individual amino acids upon the distribution of other amino acids between cells and extracellular fluid. J Biol Chem, 172:515-24.
[57] Choi TB, Pardridge WM (1986). Phenylalanine transport at the human blood-brain barrier. Studies with isolated human brain capillaries. J Biol Chem, 261:6536-41.
[58] Diamond A, Herzberg C (1996). Impaired sensitivity to visual contrast in children treated early and continuously for phenylketonuria. Brain, 119:523-38.
[59] Gramer G, Förl B, Springer C, Weimer P, Haege G, Mackensen Fet al (2013). Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses. Mol Genet Metab, 108:1-7.
[60] Harding CO, Winn SR, Gibson MK, Arning E, Bottiglieri T, Grompe M (2014). Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU). J Inherit Metab Dis, 37:735-43.
[61] Justice P, Hsia DY (1965). Studies on inhibition of brain 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Proc Soc Exp Biol Med, 118:326-8.
[62] Agrawal HC, Bone AH, Davison AN (1970). Effect of phenylalanine on protein synthesis in the developing rat brain. Biochem J, 117:325-31.
[63] Elsliger MA, Thériault GR, Gauthier D (1989). In vitro localization of the protein synthesis defect associated with experimental phenylketonuria. Neurochem Res, 14:81-4.
[64] Pardridge WM (1998). Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res, 23:635-44.
[65] de Groot MJ, Hoeksma M, Reijngoud DJ, de Valk HW, Paans AM, Sauer PJet al (2013). Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis, 8:133.
[66] de Groot MJ, Sijens PE, Reijngoud DJ, Paans AM, van Spronsen FJ (2015). Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis. J Cereb Blood Flow Metab, 35:200-5.
[67] Smith CB, Kang J (2000). Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci U S A, 97:11014-9.
[68] Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ (2009). Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab, 96:177-82.
[69] Gropper SS, Chaung HC, Bernstein LE, Trahms C, Rarback S, Weese SJ (1995). Immune status of children with phenylketonuria. J Am Coll Nutr, 14:264-70.
[70] Imperlini E, Orrù S, Corbo C, Daniele A, Salvatore F (2014). Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model. J Neurochem, 129:1002-12.
[71] Rocha JC, Martins MJ (2012). Oxidative stress in phenylketonuria: future directions. J Inherit Metab Dis, 35:381-98.
[72] Nagasaka H, Tsukahara H, Okano Y, Hirano K, Sakurai T, Hui SPet al (2014). Changes of lipoproteins in phenylalanine hydroxylase-deficient children during the first year of life. Clin Chim Acta, 433:1-4.
[73] Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LBet al (2000). Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res, 61:549-63.
[74] Castillo M, Martinez-Cayuela M, Zafra MF, Garcia-Peregrin E (1991). Effect of phenylalanine derivatives on the main regulatory enzymes of hepatic cholesterogenesis. Mol Cell Biochem, 105:21-5.
[75] Nagasaka H, Okano Y, Kimura A, Mizuochi T, Sanayama Y, Takatani Tet al (2013). Oxysterol changes along with cholesterol and vitamin D changes in adult phenylketonuric patients diagnosed by newborn mass-screening. Clin Chim Acta, 416:54-9.
[76] Giovannini M, Verduci E, Radaelli G, Lammardo A, Minghetti D, Cagnoli Get al (2011). Long-chain polyunsaturated fatty acids profile in plasma phospholipids of hyperphenylalaninemic children on unrestricted diet. Prostaglandins Leukot Essent Fatty Acids, 84:39-42.
[77] Cockburn F, Clark BJ, Caine EA, Harvie A, Farquharson J, Jamieson EC (1996). Fatty acids in the stability of the neuronal membrane: relevance to PKU. Int Pediatr, 11:56-60.
[78] Lohner S, Fekete K, Decsi T (2013). Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis. Nutr Res, 33:513-20.
[79] Infante JP, Huszagh VA (2001). Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol Genet Metab, 72:185-98.
[80] Schuck PF, Ferreira GC, Moura AP, Busanello EN, Tonin AM, Dutra-Filho CSet al (2009). Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat rain. Neurochem Int, 548:519-25.
[81] Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M. Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res, 1324:75-84.
[82] Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011). Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr, 43:39-46.
[83] Wajner M, Goodman SI (2011). Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr, 43:31-8.
[84] Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2002). Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res, 27:353-7.
[85] Artuch R, Vilaseca MA, Moreno J, Lambruschini N, Cambra FJ, Campistol J (1999). Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr, 70:892-5.
[86] Kyprianou N, Murphy E, Lee P, Hargreaves I (2009). Assessment of mitochondrial respiratory chain function in hyperphenylalaninaemia. J Inherit Metab Dis, 32:289-96.
[87] Hargreaves IP, Heales SJ, Briddon A, Land JM, Lee PJ (2002). Blood mononuclear cell coenzyme Q10 concentration and mitochondrial respiratory chain succinate cytochrome-c reductase activity in phenylketonuric patients. J Inherit Metab Dis, 25:673-9.
[88] Wallimann T, Tokarska-Schlattner M, Schlattner U (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 40:1271-96.
[89] Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003). Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci, 21:111-6.
[90] Berti SL, Nasi GM, Garcia C, Castro FL, Nunes ML, Rojas DBet al (2012). Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis, 27:79-89.
[91] Bortoluzzi VT, de Franceschi ID, Rieger E, Wannmacher CM (2014). Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res, 39:1594-602.
[92] Benavides J, Gimenez C, Valdivieso F, Mayor F (1976). Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats. Biochem J, 160:217-22.
[93] Swierczyński J, Aleksandrowicz Z, Zydowo M (1976). Inhibition of pyruvate oxidation by skeletal muscle mitochondria by phenylpyruvate. Acta Biochim Pol, 23:85-92.
[94] Weber G (1969). Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpyruvate: possible relevance to phenylketonuric brain damage. Proc Natl Acad Sci U S A, 63:1365-9.
[95] Lütz Mda G, Feksa LR, Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2003). Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metab Brain Dis, 18:87-94.
[96] Bortoluzzi VT, de Franceschi ID, Rieger E, Wannmacher CM (2014). Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res, 39:1594-602.
[97] Broderick JB, editor. Coenzymes and cofactors. Chichester: John Wiley & Sons; 2001.
[98] Brown DA, Cook RA (1981). Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Biochemistry, 20:2503-12.
[99] Bushueva TV, Ladodo KS, Spirichev VB, Denisova SN, Rybakova EP (1993). Calcium homeostasis and calcium-regulating hormones in young children with phenylketonuria. Vopr Pitan, 16-21.
[100] Yu YG, Tang FG, Pan J, Gu XF (2007). Effects of phenylalanine and its metabolites on cytoplasmic free calcium in cortical neurons. Neurochem Res, 32:1292-301.
[101] Hanley WB (2004). Adult phenylketonuria. Am J Med, 117:590-5.
[102] Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS. Cerebral glucose metabolism in adults with early treated classic phenylketonuria(2006). Mol Genet Metab, 87:272-7.
[1] Chen Yali, Yin Mengmei, Cao Xuejin, Hu Gang, Xiao Ming. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. Aging and disease, 2018, 9(3): 374-390.
[2] Zhang Can, Brandon Nicole R., Koper Kerryann, Tang Pei, Xu Yan, Dou Huanyu. Invasion of Peripheral Immune Cells into Brain Parenchyma after Cardiac Arrest and Resuscitation[J]. Aging and disease, 2018, 9(3): 412-425.
[3] Zhang Lin-Yuan, Lin Pan, Pan Jiaji, Ma Yuanyuan, Wei Zhenyu, Jiang Lu, Wang Liping, Song Yaying, Wang Yongting, Zhang Zhijun, Jin Kunlin, Wang Qian, Yang Guo-Yuan. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. Aging and disease, 2018, 9(2): 262-272.
[4] Peng Fangyu, Xie Fang, Muzik Otto. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. Aging and disease, 2018, 9(1): 109-118.
[5] Farokhian Farnaz, Yang Chunlan, Beheshti Iman, Matsuda Hiroshi, Wu Shuicai. Age-Related Gray and White Matter Changes in Normal Adult Brains[J]. Aging and disease, 2017, 8(6): 899-909.
[6] Wang Rongliang, Li Jincheng, Duan Yunxia, Tao Zhen, Zhao Haiping, Luo Yumin. Effects of Erythropoietin on Gliogenesis during Cerebral Ischemic/Reperfusion Recovery in Adult Mice[J]. Aging and disease, 2017, 8(4): 410-419.
[7] Pasqualetti Giuseppe, Seghieri Marta, Santini Eleonora, Rossi Chiara, Vitolo Edoardo, Giannini Livia, Malatesta Maria Giovanna, Calsolaro Valeria, Monzani Fabio, Solini Anna. P2X7 Receptor and APOE Polymorphisms and Survival from Heart Failure: A Prospective Study in Frail Patients in a Geriatric Unit[J]. Aging and disease, 2017, 8(4): 434-441.
[8] Castillo-Carranza Diana L, Nilson Ashley N, Van Skike Candice E, Jahrling Jordan B, Patel Kishan, Garach Prajesh, Gerson Julia E, Sengupta Urmi, Abisambra Jose, Nelson Peter, Troncoso Juan, Ungvari Zoltan, Galvan Veronica, Kayed Rakez. Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer’s Disease and Related Tauopathies[J]. Aging and disease, 2017, 8(3): 257-266.
[9] Lv Deyong, Li Jingbo, Li Hongfu, Fu Yu, Wang Wei. Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI[J]. Aging and disease, 2017, 8(1): 1-6.
[10] Lin Yunpeng, Luo Lan Lan, Sun Jian, Gao Weiwei, Tian Ye, Park Eugene, Baker Andrew, Chen Jieli, Jiang Rongcai, Zhang Jianning. Relationship of Circulating CXCR4+ EPC with Prognosis of Mild Traumatic Brain Injury Patients[J]. Aging and disease, 2017, 8(1): 115-127.
[11] Kim Minjoo, Lee Sang-Hyun, Lee Jong Ho. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects[J]. Aging and disease, 2016, 7(6): 721-733.
[12] Liu Mei-Yan, Ren Yan-Ping, Zhang Li-Jun, Ding Jamie Y.. Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression[J]. Aging and disease, 2016, 7(6): 680-686.
[13] Su Lei, Han Yujuan, Xue Rong, Wood Kristofer, Shi Fu-Dong, Liu Yaou, Fu Ying. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder[J]. Aging and disease, 2016, 7(6): 691-696.
[14] Tang Yaohui, Wang Liuqing, Wang Jixian, Lin Xiaojie, Wang Yongting, Jin Kunlin, Yang Guo-Yuan. Ischemia-induced Angiogenesis is Attenuated in Aged Rats[J]. Aging and disease, 2016, 7(4): 326-335.
[15] Giulia Paroni, Michele Lauriola, Andrea Fontana, Grazia D’Onofrio, Filomena Ciccone, Francesco Paris, Leandro Cascavilla, Maria Urbano, Carolina Gravina, Massimiliano Copetti, Antonio Greco. Brain Atrophy, Anti-Smooth Muscle Antibody and Cognitive Impairment: An Association Study[J]. Aging and disease, 2016, 7(4): 318-325.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd