Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2017, Vol. 8 Issue (2) : 176-195     DOI: 10.14336/AD.2016.0901
Review |
Is Technology Present in Frailty? Technology a Back-up Tool for Dealing with Frailty in the Elderly: A Systematic Review
Iranzu Mugueta-Aguinaga1,Begonya Garcia-Zapirain2,3
1Rehabilitation Service, Cruces Universitary Hospital, Plaza Cruces s/n, 48903, Barakaldo, Spain.
2DeustoTech - Deusto Foundation, Avda Universidades, 24, 48007, Bilbao, Spain
3Engineering Faculty, University of Deusto, Avda. Universidades, 24, 48007, Bilbao, Spain
Download: PDF(1256 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

This study analyzes the technologies used in dealing with frailty within the following areas: prevention, care, diagnosis and treatment. The aim of this paper is, on the one hand, to analyze the extent to which technology is present in terms of its relationship with frailty and what technological resources are used to treat it. Its other purpose is to define new challenges and contributions made by physiotherapy using technology. Eighty documents related to research, validation and/or the ascertaining of different types of hardware, software or both were reviewed in prominent areas. The authors used the following scales: in the area of diagnosis, Fried’s phenotype model of frailty and a model based on trials for the design of devices. The technologies developed that are based on these models accounted for 55% and 45% of cases respectively. In the area of prevention, the results proved similar regarding the use of wireless sensors with cameras (35.71%), and Kinect™ sensors (28.57%) to analyze movements and postures that indicate a risk of falling. In the area of care, results were found referring to the use of different motion, physiological and environmental wireless sensors (46,15%), i.e. so-called smart homes. In the area of treatment, the results show with a percentage of 37.5% that the Nintendo® Wii™ console is the most used tool for treating frailty in elderly persons. Further work needs to be carried out to reduce the gap existing between technology, frail elderly persons, healthcare professionals and carers to bring together the different views about technology. This need raises the challenge of developing and implementing technology in physiotherapy via serious games that may via play and connectivity help to improve the functional capacity, general health and quality of life of frail individuals.

Keywords Frailty      kinect      exergaming      serious games      robots      virtual reality     
Corresponding Authors: Iranzu Mugueta-Aguinaga   
Just Accepted Date: 16 September 2016   Issue Date: 22 March 2017
E-mail this article
E-mail Alert
Articles by authors
Iranzu Mugueta-Aguinaga
Begonya Garcia-Zapirain
Cite this article:   
Iranzu Mugueta-Aguinaga,Begonya Garcia-Zapirain. Is Technology Present in Frailty? Technology a Back-up Tool for Dealing with Frailty in the Elderly: A Systematic Review[J]. A&D, 2017, 8(2): 176-195.
URL:     OR
Figure 1.  Prevalence of frailty in Spain. Data from cohorts of longitudinal aging studies in Spain.
Figure 2.  Percentage of results according to the data base that was reviewed.
Figure 3.  Flow Diagram. Strategy carried out in this review
Figure 4.  Results found between 2005-2015 for specific areas
Figure 5.  Results found for selected areas when reviewing 2005-2015 and yearly results and selected areas found for the review.
Figure 6.  Results found by year and by area: Diagnosis, Prevention, Care, Treatment.
AuthorYearCountryClinic GroupControl GroupAge(Years)DiagnosisAreaMethodClassification
Ganea et al., 2011[29]2011Switzerland7927≥65FrailtyDiagnosisPortable inertial sensorHardware
Martínez-Ramirez et al., 2011[30]2011Spain322475-83FrailtyDiagnosisTriaxial inertial guidance sensorHardware
Chang et al., 2013[32]2013Taiwan160149≥65FrailtyDiagnosisWireless sensors and artificial neural networks integratedHardwareSoftware
Fontecha et al., 2013[33]2013Spain20--78-86FrailtyDiagnosisAccelerometer sensor integrated into smartphoneHardwareSoftware
Galan-Mercant et al.,2013;2014 y 2015[34-36]2013Spain30--≥65FrailtyDiagnosisInertial sensor in iPhone4®Hardware
Zaffarana et al., 2014[37]2014Italy94--65-90FrailtyDiagnosisInertial sensors in Samsung Galaxy SII/IIIHardware
Castro et al., 2015[38]2015Mexico15--73-79FrailtyDiagnosisIncense application in smartphoneHardwareSoftware
Gallego et al., 2011[40]2011Spain387--≥80FrailtyDiagnosisHand gripHardwareSoftware
Chang et al.,2011[41]2011Taiwan160149≥65FrailtyDiagnosisElectronicpressure grip force and distanceHardwareSoftware
Zavala et al., 2012[42]2012Mexico11--65-85FrailtyDiagnosisWii™ console using remote sensorHardwareSoftware
Chkeir et al., 2013[43]2013France360--SeniorFrailtyDiagnosisGrip-ball DynamometerHardwareSoftware
Hewson et al., 2013[45]2013France----SeniorFrailtyDiagnosisGrip-ball DynamometerDigital bathroom scale AcelerometerHardwareSoftware
Jaber et al., 2013[46]2013France150--≥75FrailtyDiagnosisARPEGE ProjectHardwareSoftware
Dapp et al., 2013[47]2013Switzerland3326--≥60FrailtyDiagnosisGAITRite®-SystemHardwareSoftware
Drubbel et al., 2013 [48,49]2013Netherlands1580--≥60FrailtyDiagnosisSoftware GFIdataSoftware
Table 1  Results in area: Diagnosis
AuthorYearCountryClinic GroupControl GroupAge(Years)DiagnosisAreaMethodClassification
Lee et al., 2005[53]2005Canada21--20-40FrailtyPreventionVideocamerasHardwareSoftware
Reeves et al., 2007[54]2007United Kingdom--21 municipios--SeniorFrailtyPrevention20 Wireless environmental sensorsHardwareSoftware
Jun et al., 2009[55]2009USA----Healthy young adultsFrailtyPreventionVicon 3D system6 markersHardwareSoftware
Zouba et al., 2009[56]2009France2--64-85FrailtyPreventionGERHOME:Cameras and sensorsHardwareSoftware
Tolkiehn et al., 2011[57]2011United Kingdom12--x¯26FrailtyPreventionAcelerometerBarometric pressure sensorHardwareSoftware
Menelas et al., 2012[58]2012Canada----Only laboratory testsFrailtyPreventionKinect™Interactive shoeHadwareSoftware
Nakajima et al., 2012[59]2012Japan498--x¯74FrailtyPreventionManipulated inner solesHadwareSoftware
Tchalla et al., 2012[60]2012France9698≥65FrailtyPreventionTelecareHardwareSoftware
Sadasivam et al., 2014[61]2014USA9--71-90FrailtyPreventionRobot with videocameraHardwareSoftware
Ando et al., 2015[62]2015Italy10--25-44FrailtyPreventionSmartphoneHardwareSoftware
Chaccour et al., 2015[63]2015France----Young adults in laboratoryFrailtyPreventionOptical sensorsInertial acelerometer Audio notification module Location module Infrared sensors Ultrasonic sensorHardwareSoftware
Dubois et al., 2015[64]2015Switzerland12--21-54FrailtyPreventionSensor KinectHardwareSoftware
Table 2  Results in area: Prevention
AuthorYearCountryClinic GroupControl GroupAge(Years)DiagnosisAreaMethodClassification
Savenstedt et al., 2005[67]2005Sweden18..SeniorFrailtyCareTelecareHardwareSoftware
Finkelstein et al., 2006[68]2006USA4040≥60FrailtyCareTelecare:VALUE programHardwareSoftware
Vincent et al., 2006[69]2006Canadá38--≥65FrailtyCareTelecareHardware
Savolainen et al., 2008 y Magnusson et al., 2012[70,71]2008Sweden----SeniorFrailtyCareTechnology of the information and communication. (TICs)HardwareSoftware
Lin et al., 2008[72]2008Taiwan----≥60FrailtyCareWireless physiological sensorsHardwareSoftware
Mahoney et al., 2009[73]2009USA13--x¯79FrailtyCareAT EASE ProjectHardwareSoftware
Vacher et al., 2011 y 2013[74.75]2011France13--x¯35FrailtyCareSWEET-HOME ProjectHardwareSoftware
Robben et al., 2012[76]2012Netherlands290--≥70FrailtyCaree-salud web siteSoftware
Pigini et al., 2012[77]2012Italy63--75-91FrailtyCareRobot ShadowHardwareSoftware
Clarke et al., 2013[78]2013United Kingdom11--45-82FrailtyCareIntegrated sensor platformHardwareSoftware
De Folter et al., 2014[79]2014United Kingdom----SeniorFrailtyCareinCASA (integrated network)HardwareSoftware
Man et al., 2015[80]2015Netherlands73--≥65FrailtyCareInteractive Software with 11 functionsSoftware
Table 3  Results in area: Care
AuthorYearCountryClinic GroupControl GroupAge(Years)DiagnosisAreaMethodClassification
Ganea et al., 2007[81]2007Switzerland30--74-86FrailtyTreatmentInertial sensor systemHardwareSoftware
Bondoc et al.,2011 [82]2011USA2020SeniorFrailtyTreatmentWii™ sports and Wii Fit programHardware
Kwok et al., 2011[83]2011Singapore4040≥60FrailtyTreatmentNintendo® Wii™ consoleHardware
Szturm et al., 2011[84]2011Canada141665-85FrailtyTreatmentPressure and motion sensorsHardwareSoftware
Daniel et al., 2011[85]2011USA1211≥65FrailtyTreatmentGeri-Fit® programWii™ consoleHardwareSoftware
Daniel et al., 2012[86]2012USA167≥70FrailtyTreatmentWii FitNintendo®Wii™ consoleHardware
Tsai et al., 2013[87]2013Taiwan101--≥60FrailtyTreatmentiFit fitness testing platformHardwareSoftware
Jorgensen et al., 2013[88]2013Denmark2830≥65FrailtyTreatmentNintendo®Wii™ consoleHardware
Kim et al., 2013[89]2013South Korea181465-72FrailtyTreatmentVirtual realityHardwareSoftware
Lauritzen et al., 2013[90]2013Sapin18--81-9025-45FrailtyTreatmentFitbit UltraSamsung Galaxy S3Hardware
Padala et al., 2014[91]2014USA6363≥70FrailtyTreatmentWii FitHardware
Kubicki et al., 2014[92]2014France2323≥70FrailtyTreatmentBased on 2D virtual realityFovea Interactive® and markerHardware
Geraedts et al., 2014[93]2014Netherlands50--70-85FrailtyTreatmentWireless motion sensorHardwareSoftware
Geraedts et al., 2015[94]2015USA20--≥70FrailtyTreatmentHybrid sensor: acelerometer and barometric pressure sensorHardware
Fairhall et al., 2015[95]2015Australia115115≥70FrailtyTreatmentMultifactorial intervention program with online exercisesInteractive computer software
Table 4  Results in area: Treatment
Figure 7.  Percentage of results according to the scales on which the authors base for the design of technology in the area: Diagnosis.
Figure 8.  Percentage of devices used in studies for fall prevention.
Figure 9.  Percentage of tools used in the study for care.
Figure 10.  Percentage of devices used in the studies for treatment.
[1] Abellán García A, Pujol Rodríguez R (2016). Un perfil de las personas mayores en España, 2016. Indicadores estadísticos básicos. Madrid: Informes Envejecimiento en red nº 14. [Publication data:22/01/2016]; Available on:
[2] Topinkova E (2008). Aging, disability and frailty. Ann Nutr Metab, 52 (Suppl 1):6-11.
[3] Bousquet J, Kuh D, Bewick M, Standberg T, Farrell J, Pengelly R, et al. (2015). Operational Definition of Active and Healthy Ageing (AHA): A Conceptual Framework. J Nutr Health Aging, 19: 955-960.
[4] Stambler I (2015). Stop Aging Disease! ICAD 2014. Aging Dis, 6: 76-94.
[5] Rowe JW, Fried LP (2013). Incorporating frailty into clinical practice and clinical research. J Frailty Aging, 2: 126-127.
[6] Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013). Frailty in elderly people. Lancet, 381: 752-762.
[7] Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. (2013). Frailty consensus: a call to action. J Am Med Dir Assoc, 14: 392-397.
[8] Vermeulen J, Neyens JC, van Rossum E, Spreeuwenberg MD, de Witte LP (2011). Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: a systematic review. BMC Geriatr, 11:33.
[9] Graham JE, Snih SA, Berges IM, Ray LA, Markides KS, Ottenbacher KJ (2009). Frailty and 10-year mortality in community-living Mexican American older adults. Gerontology, 55: 644-651.
[10] Wong CH, Weiss D, Sourial N, Karunananthan S, Quail JM, Wolfson C, et al. (2010). Frailty and its association with disability and comorbidity in a community-dwelling sample of seniors in Montreal: a cross-sectional study. Aging clin Exp Res, 22: 54-62.
[11] Collard RM, Boter H, Schoevers RA, Oude Voshaar RC (2012). Prevalence of Frailty in Community-Dwelling Older Persons: A Systematic Review. J Am Geriatr Soc, 60: 1487-1492.
[12] Abizanda P, Sánchez Jurado PM, Romero L, Paterna G, Martínez-Sánchez E, Atienzar-Nuñuz P (2011). Prevalence of frailty population: The Frailty and Dependence in Albacete Study. J Am Geriatr Soc, 59: 1356-9.
[13] Garcia FJ, Gutiérrez G, Alfaro A, Amor MS, de los Ängeles M, Escribano MV. (2011). The prevalence of frailty síndrome in an older population from Spain. The Toledo study for healthy aging. J Nutr Health Aging, 15: 852-6.
[14] Castell MV, et al. (2010). Prevalencia de fragilidad en una población urbana mayor de 65 años y su relación con comorbilidad y discapacidad. Aten Primaria, 42: 520-27.
[15] Fernández-Bolaños M, Otero A, Zunzunegui MV, Beland F, Alarcón T, De Hoyos C et al. (2008). Sex differences in the prevalence of frailty in a population aged 75 and older in Spain. J Am Geriatr Soc, 56: 2370-1.
[16] Formiga F, Ferrer A, Chivite D, Montero A, Sanz H, Pujol R; Octabaix Study Members (2013). Utility of geriatric assessment to predict mortality in the oldest old: The Octabaix Study 3-year follow-up. Rejuvenation Res, 16: 279-84.
[17] Jürschik P, Nuin C, Botigué T, Escobar MA, et al. (2012). Prevalence of frailty and factors associated with frailty in the elderly population of Lleida, Spain: The FRALLE survey. Arch Geront Geriat, 55: 625-31.
[18] Ng YS, Chew E, Samuel GS, Tan YL, Kong KH (2013). Advances in rehabilitation medicine. Singapore Med J, 54: 538-551.
[19] Lacas A, Rockwood K (2012). Frailty in primary care: a review of its conceptualization and implications for practice. BMC Med, 10:4.
[20] Liu CK, Fielding RA (2011). Exercise as an intervention for frailty. Clin Geriatr Med, 27(1):101-110.
[21] Chin A Paw MJ, van Uffelen JG, Riphagen I, van Mechelen W (2008). The functional effects of physical exercise training in frail older people. Sports Med, 38(9):781-793.
[22] Greenspan AI, Wolf SL, Kelley ME, O’Grady M (2007). Tai chi and perceived health status in older adults who are transitionally frail: a randomized controlled trial. Phys Ther, 87(5):525-535.
[23] Cherniack EP, Florez HJ, Troen BR (2007). Emerging therapies to treat frailty syndrome in the elderly. Altern Med Rev, 12(3):246.
[24] Cadore EL, Pinto RS, Bottaro M, Izquierdo M (2014). Strength and endurance training prescription in healthy and frail elderly. Aging Dis, 5(3):183-195.
[25] Hida T, Harada A, Imagama S, Ishiguro N (2013). Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis, 5(4):226-237.
[26] Illario M, Vollenbroek-Hutten M, Molloy DW (2015). Active and healthy ageing and independent living. J Aging Res, 2015:542183
[27] Pilotto A, Sancarlo D, Marcus K, Pistoia M, Novak D (2011). Advanced technology solutions in older people. European Geriatric Medicine, 4: S5.
[28] Goodman, Clifford & Statens Beredning för Utvärdering av Medicinsk Metodik (Sweden) 1993, Literature searching and evidence interpretation for assessing health care practices, Swedish Council on Technology Assessment in Health Care, Stockholm, Sweden
[29] Ganea R, Paraschiv-Ionescu A, Buela C, Rochat S, Aminian K (2011). Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys, 33(9):1086-1093.
[30] Martinez-Ramirez A, Lecumberri P, Gomez M, Rodriguez-Mañas L, Garcia FJ, Izquierdo M (2011). Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech, 44(12):2213-2220.
[31] Mallat SG (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell, 11(7):674-693.
[32] Chang YC, Lin CC, Lin PH, Chen CC, Lee RG, Huang JS, et al. (2013). eFurniture for home-based frailty detection using artificial neural networks and wireless sensors. Med Eng Phys, 35(2):263-268.
[33] Fontecha J, Hervás R, Bravo J, Navarro FJ (2013). A Mobile and Ubiquitous Approach for Supporting Frailty Assessment in Elderly People. J Med Internet Res, 15(9):305-317.
[34] Galan-Mercant A, Cuesta-Vargas AI (2013). Differences in Trunk Accelerometry Between Frail and Nonfrail Elderly Persons in Sit-to-Stand and Stand-to-Sit Transitions Based on a Mobile Inertial Sensor. JMIR Mhealth Uhealth, 1(2): e21.
[35] Galan-Mercant A, Cuesta-Vargas AI (2014). Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res Notes, 7:100.
[36] Galan-Mercant A, Cuesta-Vargas AI (2015). Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol Meas, 36(9):1929-1942.
[37] Zaffarana N, Colpo M, Iacopozzi P, Mellone S, Chiari L, Bandinelli S (2014). P127: Instrumented Timed Up and Go test identifies frail older persons in a community-dwelling population: The InCHIANTI-FARSEEING study. European Geriatric Medicine, 5: S122-S123.
[38] Castro LA, Favela J, Quintana E, Perez M (2015). Behavioral data gathering for assessing functional status and health in older adults using mobile phones. Pers Ubiquit Comput, 19(2):379-391.
[39] Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. (2001). Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 56(3): M146-156.
[40] Gallego E, Garcia-Cardenas V, Omonte J (2011). Hand-grip strength predicts 6-months mortality in older adults after hospitalization for acute illness. J Am Geriatr Soc, 59: S91-S92.
[41] Chang Y, Lin C, Huang J, Chen C, Lee R (2011). Development of a Home-Based Frailty Detection Device using Wireless Sensor Networks and Artificial Neural Networks.
[42] Zavala-Ibarra I, Favela J (2012). Ambient Videogames for Health Monitoring in Older Adults. Proceedings of the 2012 eighth international conference on intelligent environments, 27-33.
[43] Chkeir A, Jaber R, Hewson DJ, Duchene J (2013). Estimation of grip force using the Grip-ball dynamometer. Med Eng Phys, 35(11):1698-1702.
[44] Hogrel JY, Duchêne J (2008). Device for evaluating and/or reinforcing gripping strength. Patent# FR08/05193.
[45] Hewson DJ, Jaber R, Chkeir A, Hammoud A, Gupta D, Bassement J, et al. (2013). Development of a monitoring system for physical frailty in independent elderly. Conf Proc IEEE Eng Med Biol Soc, 6215-6218.
[46] Jaber R, Chkeir A, Hewson D, Duchêne J (2013). ARPEGE: Assessment of frailty at home. 2013 IEEE 15th International Conference on e-Health Networking, Applications &, Services, 434-438.
[47] Dapp U, Anders J, Santos-Eggimann B (2013). Correlates of frailty, prediction of functional decline and preventative approaches-selected results from the Lausanne cohort 65+ (Lc65+) study (Switzerland) (Lausanne) and the longitudinal urban cohort ageing study (Lucas) (Germany). European Geriatric Medicine, 4:S3-S4.
[48] Drubbel I, Bleijenberg N, Kranenburg G, Eijkemans RJC, Schuurmans MJ, de Wit NJ, et al. (2013). Identifying frailty: do the Frailty Index and Groningen Frailty Indicator cover different clinical perspectives? a cross-sectional study. BMC Fam Pract, 14:64.
[49] Drubbel I, de Wit NJ, Bleijenberg N, Eijkemans RJC, Schuurmans MJ, Numans ME (2013). Prediction of Adverse Health Outcomes in Older People Using a Frailty Index Based on Routine Primary Care Data. J Gerontol A Biol Sci Med Sci, 68(3):301-308.
[50] Toosizadeh N, Mohler J, Najafi B (2014). A Novel Upper Limb Kinematics Assessment Using Wearable Sensors to Identify Frailty. J Am Geriatr Soc, 62: S121-S121.
[51] Toosizadeh N, Mohler J, Najafi B (2015). Assessing Upper Extremity Motion: An Innovative Method to Identify Frailty. J Am Geriatr Soc, 63(6):1181-1186.
[52] Toosizadeh N, Mohler J, Wendel C, Najafi B (2015). Influences of frailty syndrome on open-loop and closed-loop postural control strategy. Gerontology, 61(1):51-60.
[53] Lee T, Mihailidis A (2005). An intelligent emergency response system: preliminary development and testing of automated fall detection. J Telemed Telecare, 11(4):194-198.
[54] Reeves AA, Barnes NM, Mizutani T, Brown SJ (2007). A trial of telecare for supporting care to the elderly in Liverpool. J Telemed Telecare, 13: S48-S50.
[55] Liang J, Abbott CC, Skubic M, Keller J (2009). Investigation of gait features for stability and risk identification in elders. Conf Proc IEEE Eng Med Biol Soc, 6139-6142.
[56] Zouba N, Bremond F, Thonnat M, Anfosso A, Pascual E, Mallea P, et al. (2009). A computer system to monitor older adults at home: preliminary results. Gerontechnology, 8(3):129-139.
[57] Tolkiehn M, Atallah L, Lo B, Yang G (2011). Direction Sensitive Fall Detection Using a Triaxial Accelerometer and a Barometric Pressure Sensor. Conf Proc IEEE Eng Med Biol Soc, 369-372.
[58] Menelas BAJ, Otis MJD (2012). A Serious Game for Training Balance Control over Different Types of Soil. Proceedings of the 3th international conference on Serious Games Development and Applications, 31-42.
[59] Nakajima K, Saito M, Kodama M, Iwakami Y, Ino S, Ifukube T, et al. (2012). Evaluation of Ambulatory Function by Using the Shoe Device. 5th European IFMBE Conference. IFMBE Procceedings. Ákos Jobbágy, 37:868-871.
[60] Tchalla AE, Lachal F, Cardinaud N, Saulnier I, Bhalla D, Roquejoffre A, et al. (2012). Efficacy of simple home-based technologies combined with a monitoring assistive center in decreasing falls in a frail elderly population (results of the Esoppe study). Arch Gerontol Geriatr, 55(3):683-689.
[61] Sadasivam RS, Luger TM, Coley HL, Taylor BB, Padir T, Ritchie CS, et al. (2014). Robot-assisted home hazard assessment for fall prevention: a feasibility study. J Telemed Telecare, 20(1):3-10.
[62] Ando B, Baglio S, Lombardo CO, Marletta V (2015). An Event Polarized Paradigm for ADL Detection in AAL Context. IEEE Trans Instrum Meas, 64(7):1814-1825.
[63] Chaccour K, Eid J, Darazi R, Hajjam el Hassani A, Andres E (2015). Multisensor guided walker for visually impaired elderly people. International Conference on Advances in Biomedical Engineering (ICABME), 158-161.
[64] Dubois A, Bresciani JP (2015). Person identification from gait analysis with a depth camera at home. 37thConf Proc IEEE Eng Med Biol Soc, 4999-5002.
[65] Dubois A, Charpillet F (2013). Human activities recognition with RGB-Depth camera using HMM. 35thConf Proc IEEE Eng Med Biol Soc, 4666-4669.
[66] Dubois A, Charpillet F (2014). A gait analysis method based on a depth camera for fall prevention. 36thConf Proc IEEE Eng Med Biol Soc, 4515-4518.
[67] Sävenstedt S, Zingmark K, Hydén L, Brulin C (2005). Establishing joint attention in remote talks with the elderly about health: a study of nurses’ conversation with elderly persons in teleconsultations. Scand J Caring Sci, 19(4): 317-324.
[68] Finkelstein SM, Speedie SM, Zhou X, Ratner E, Potthoff S (2006). VALUE: Virtual Assisted Living Umbrella for the Elderly—user patterns. Conf Proc IEEE Eng Med Biol Soc, 1: 3294-3296.
[69] Vincent C, Reinharz D, Deaudelin I, Garceau M, Talbot LR (2006). Public telesurveillance service for frail elderly living at home, outcomes and cost evolution: a quasi experimental design with two follow-ups. Health Qual Life Outcomes, 4:41.
[70] Savolainen L, Hanson E, Magnusson L, Gustavsson T (2008). An Internet-based videoconferencing system for supporting frail elderly people and their carers. J Telemed Telecare, 14(2):79-82.
[71] Magnusson L, Hanson E (2012). Partnership working: The key to the AT-technology transfer process of the ACTION service (Assisting Carers using Telematics Interventions to meet Older People’s Needs) in Sweden. Technol Disabil, 24(3):219-232.
[72] Lin Y, Su M, Chen H, Lin C (2008). A Study of Integrating Digital Health Network with UPnP in an Elderly Nursing Home. Computer Systems Architecture Conference. ACSAC 2008. 13th Asia-Pacific, 1-7.
[73] Mahoney DF, Mahoney EL, Liss E (2009). AT EASE: Automated Technology for Elder Assessment, Safety, and Environmental monitoring. Gerontechnology, 8(1):11-25.
[74] Vacher M, Istrate D, Portet F, Joubert T, Chevalier T, Smidtas S, et al. (2011). The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance. Conf Proc IEEE Eng Med Biol Soc, 5291-5294.
[75] Vacher M, Chahuara P, Lecouteux B, Istrate D, Portet F, Joubert T, et al. (2013). The Sweet-Home project: Audio processing and decision making in smart home to improve well-being and reliance. Conf Proc IEEE Eng Med Biol Soc, 7298-7301.
[76] Robben SHM, Perry M, Huisjes M, van Nieuwenhuijzen L, Schers HJ, van Weel C, et al. (2012). Implementation of an innovative web-based conference table for community-dwelling frail older people, their informal caregivers and professionals: a process evaluation. BMC Health Serv Res, 12:251.
[77] Pigini L, Facal D, Garcia A, Burmester M, Andrich R (2012). The Proof of Concept of a Shadow Robotic System for Independent Living at Home. Comput Help People Spec Needs, Pt i;7382:634-641.
[78] Clarke M, Folter J. Palmer C, Verma V (2013). Building point of care health technologies on the IEEE 11073 health device standards. 2013 IEEE Point-of-Care Healthcare Technologies (PHT), 117-119.
[79] de Folter J, Gokalp H, Fursse J, Sharma U, Clarke M (2014). Designing effective visualizations of habits data to aid clinical decision making. BMC Med Inform Decis Mak, 14:102.
[80] Man YP, Cremers G, Spreeuwenberg M, de Witte L (2015). Platform for frail elderly people supporting information and communication. Stud Health Technol Inform, 217:311-318.
[81] Ganea R, Paraschiv-Ionescu A, Salarian A, Büla C, Martin E, Rochat S, et al. (2007). Kinematics and dynamic complexity of postural transitions in frail elderly subjects. Conf Proc IEEE Eng Med Biol Soc, 1-16: 6118-6121.
[82] Bondoc S, Hewitt P, Frey N (2011). The effect of wii-based interventions on physical, cognitive and social functioning among pre-frail elderly persons. Arch Phys Med Rehabil, 92(10):1700.
[83] Kwok BC, Mamun K, Chandran M, Wong CH (2011). Evaluation of the Frails’ Fall Efficacy by Comparing Treatments (EFFECT) on reducing fall and fear of fall in moderately frail older adults: study protocol for a randomized control trial. Trials, 12:155.
[84] Szturm T, Betker AL, Moussavi Z, Desai A, Goodman V (2011). Effects of an interactive computer game exercise regimen on balance impairment in frail community-dwelling older adults: a randomized controlled trial. Phys Ther, 91(10):1449-1462.
[85] Daniel K (2011). Progressive functional wii-hab in pre-frail older adults. J Am Geriatr Soc, 59: S157.
[86] Daniel K (2012). Wii-hab for pre-frail older adults. Rehabil Nurs, 37(4):195-201.
[87] Tsai T, Wong AM, Hsu C, Tseng KC (2013). Research on a community-based platform for promoting health and physical fitness in the elderly community. PLoS ONE, 8(2): e57452.
[88] Jorgensen MG, Laessoe U, Hendriksen C, Nielsen OBF, Aagaard P (2013). Efficacy of Nintendo® Wii™ training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J Gerontol A Biol Sci Med Sci, 68(7):845-852.
[89] Kim J, Son J, Ko N, Yoon B (2013). Unsupervised Virtual Reality-Based Exercise Program Improves Hip Muscle Strength and Balance Control in Older Adults: A Pilot Study. Arch Phys Med Rehabil, 94(5):937-943.
[90] Lauritzen J, Munoz A, Luis Sevillano J, Civit A (2013). The Usefulness of Activity Trackers in Elderly with Reduced Mobility: A Case Study. Stud Health Technol Inform, 192:759-762.
[91] Padala KP, Padala PR, Dennis RA (2014). Impact of Wii Fit on rehab in real world setting: A case control study. J Am Geriatr Soc, 62: S238.
[92] Kubicki A, Bonnetblanc F, Petrement G, Mourey F (2014). Motor-prediction improvements after virtual rehabilitation in geriatrics: Frail patients reveal different learning curves for movement and postural control. Neurophysiol Clin, 44(1):109-118.
[93] Geraedts HAE, Zijlstra W, Zhang W, Bulstra S, Stevens M (2014). Adherence to and effectiveness of an individually tailored home-based exercise program for frail older adults, driven by mobility monitoring: design of a prospective cohort study. BMC Public Health, 14:570.
[94] Geraedts HAE, Zijlstra W (2015). Validation and user evaluation of a sensor-based method for detecting mobility-related activities in older adults. PLoS ONE, 10(9): e0137668.
[95] Fairhall N, Kurrle SE (2015). Effectiveness of a multifactorial intervention on preventing development of frailty in pre-frail older people: Study protocol for a randomized controlled trial. BMJ Open, 5(2): e007091.
[96] Nesenbergs K, Selavo L (2015). Smart textiles for wearable sensor networks: Review and early lessons. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 402-6.
[97] Kojima G, Kendrick D, Skelton DA, Morris RW, Gawler S, Iliffe S (2015). Frailty predicts short-term incidence of future falls among British community-dwelling older people: a prospective cohort study nested within a randomized controlled trial. BMC geriatr, 15:155.
[1] Hongxia Zhang,Fen Sun,Jixian Wang,Luokun Xie,Chenqi Yang,Mengxiong Pan,Bei Shao,Guo-Yuan Yang,Shao-Hua Yang,Qichuan ZhuGe,Kunlin Jin. Combining Injectable Plasma Scaffold with Mesenchymal Stem/Stromal Cells for Repairing Infarct Cavity after Ischemic Stroke[J]. A&D, 2017, 8(2): 203-214.
[2] Ahmed H Abdelhafiz,Alan J Sinclair. Low HbA1c and Increased Mortality Risk-is Frailty a Confounding Factor?[J]. A&D, 2015, 6(4): 262-270.
[3] Ahmed H Abdelhafiz,Leocadio Rodríguez-Mañas,John E. Morley,Alan J Sinclair. Hypoglycemia in Older People - A Less Well Recognized Risk Factor for Frailty[J]. A&D, 2015, 6(2): 156-167.
[4] Eduardo Lusa Cadore,Ronei Silveira Pinto,Martim Bottaro,Mikel Izquierdo. Strength and Endurance Training Prescription in Healthy and Frail Elderly[J]. Aging and Disease, 2014, 5(3): 183-195.
[5] Ahmed H Abdelhafiz,Boon Eng Loo,Nicola Hensey,Claire Bailey,Alan Sinclair. The U-shaped Relationship of Traditional Cardiovascular Risk Factors and Adverse Outcomes in Later Life[J]. Aging and Disease, 2012, 3(6): 454-464.
[6] Kristin A. Lowry,Abbe N. Vallejo,Stephanie A. Studenski. Successful Aging as a Continuum of Functional Independence: Lessons from Physical Disability Models of Aging[J]. Aging and Disease, 2012, 3(1): 5-15.
[7] Huifen Li,Bhavish Manwani,Sean X. Leng. Frailty, Inflammation, and Immunity[J]. Aging and Disease, 2011, 2(6): 466-473.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd