Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2017, Vol. 8 Issue (5) : 590-610     DOI: 10.14336/AD.2017.0430
Review |
Age-related Impairment of Vascular Structure and Functions
Xianglai Xu1,2,*,Brian Wang2,Changhong Ren2,4,Jiangnan Hu2,David A. Greenberg5,Tianxiang Chen6,Liping Xie3,*,Kunlin Jin2,*
1Zhongshan Hospital, Fudan University, Shanghai 200032, China.
2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China.
4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China.
5Buck Institute for Research on Aging, Novato, CA 94945, USA.
6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
Download: PDF(1248 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.

Keywords vascular aging      vascular remodeling      endothelial dysfunction      arterial stiffness     
Corresponding Authors: Xianglai Xu,Liping Xie,Kunlin Jin   
Just Accepted Date: 02 May 2017   Issue Date: 26 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xianglai Xu
Brian Wang
Changhong Ren
Jiangnan Hu
David A. Greenberg
Tianxiang Chen
Liping Xie
Kunlin Jin
Cite this article:   
Xianglai Xu,Brian Wang,Changhong Ren, et al. Age-related Impairment of Vascular Structure and Functions[J]. A&D, 2017, 8(5): 590-610.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2017.0430     OR     http://www.aginganddisease.org/EN/Y2017/V8/I5/590
Figure 1.  Illustrated histology of the normal vessel and histological alterations of vascular aging and atherosclerosis

Cross sectional view of the arterial wall. (A) Normal artery. (B) Aged artery. It is characterized by a thickened vessel wall, thickened subendothelial layer, elastin fragments, VSMCs migration and invasion. (C) Atherosclerosis. It is characterized by the accumulation of plaque and the invasion of macrophages and foam cells.

[1] Kelly DT (1997). Paul Dudley White International Lecture. Our future society. A global challenge. Circulation, 95: 2459-2464
http://dx.doi.org/10.1161/01.CIR.95.11.2459
[2] Christensen K, Doblhammer G, Rau R, Vaupel JW (2009). Ageing populations: the challenges ahead. Lancet, 374: 1196-1208
http://dx.doi.org/10.1016/S0140-6736(09)61460-4
[3] El AM, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer CF, Rodriguez-Manas L (2012). Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol, 3: 132
[4] Csiszar A, Podlutsky A, Wolin MS, Losonczy G, Pacher P, Ungvari Z (2009). Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci (Landmark Ed), 14: 3128-3144
[5] Kalaria RN (1996). Cerebral vessels in ageing and Alzheimer’s disease. Pharmacol Ther, 72: 193-214
http://dx.doi.org/10.1016/S0163-7258(96)00116-7
[6] Riddle DR, Sonntag WE, Lichtenwalner RJ (2003). Microvascular plasticity in aging. Ageing Res Rev, 2: 149-168
http://dx.doi.org/10.1016/S1568-1637(02)00064-8
[7] Burns EM, Kruckeberg TW, Gaetano PK (1981). Changes with age in cerebral capillary morphology. Neurobiol Aging, 2: 283-291
[8] Klein AW, Michel ME (1977). A morphometric study of the neocortex of young adult and old maze-differentiated rats. Mech Ageing Dev, 6: 441-452
http://dx.doi.org/10.1016/0047-6374(77)90045-8
[9] Knox CA, Oliveira A (1980). Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature. Acta Neuropathol, 52: 17-25
http://dx.doi.org/10.1007/BF00687224
[10] Wilkinson JH, Hopewell JW, Reinhold HS (1981). A quantitative study of age-related changes in the vascular architecture of the rat cerebral cortex. Neuropathol Appl Neurobiol, 7: 451-462
http://dx.doi.org/10.1111/j.1365-2990.1981.tb00245.x
[11] Shaul ME, Hallacoglu B, Sassaroli A, Shukitt-Hale B, Fantini S, Rosenberg IH, et al. (2014). Cerebral blood volume and vasodilation are independently diminished by aging and hypertension: a near infrared spectroscopy study. J Alzheimers Dis, 42 (Suppl 3): S189-S198
[12] Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997). Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology, 138: 3515-3520
http://dx.doi.org/10.1210/endo.138.8.5330
[13] Jucker M, Meier-Ruge W (1989). Effects of brovincamine on stereological capillary parameters in adult and old Fischer-344 rats. Microvasc Res, 37: 298-307
http://dx.doi.org/10.1016/0026-2862(89)90048-4
[14] Jucker M, Battig K, Meier-Ruge W (1990). Effects of aging and vincamine derivatives on pericapillary microenvironment: stereological characterization of the cerebral capillary network. Neurobiol Aging, 11: 39-46
http://dx.doi.org/10.1016/0197-4580(90)90060-D
[15] Casey MA, Feldman ML (1985). Aging in the rat medial nucleus of the trapezoid body. III. Alterations in capillaries. Neurobiol Aging, 6: 39-46
http://dx.doi.org/10.1016/0197-4580(85)90070-3
[16] Amenta F, Ferrante F, Mancini M, Sabbatini M, Vega JA, Zaccheo D (1995). Effect of long-term treatment with the dihydropyridine-type calcium channel blocker darodipine (PY 108-068) on the cerebral capillary network in aged rats. Mech Ageing Dev, 78: 27-37
http://dx.doi.org/10.1016/0047-6374(94)01513-L
[17] Amenta F, Cavallotti D, Del VM, Mancini M, Naves FJ, Vega JA, et al. (1995). Age-related changes in brain microanatomy: sensitivity to treatment with the dihydropyridine calcium channel blocker darodipine (PY 108-068). Brain Res Bull, 36: 453-460
http://dx.doi.org/10.1016/0361-9230(94)00210-R
[18] Zhang R, Kadar T, Sirimanne E, MacGibbon A, Guan J (2012). Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behav Brain Res, 235: 210-217
http://118.145.16.217/magsci/article/article?id=24341353
[19] Hinds JW, McNelly NA (1982). Capillaries in aging rat olfactory bulb: a quantitative light and electron microscopic analysis. Neurobiol Aging, 3: 197-207
http://dx.doi.org/10.1016/0197-4580(82)90040-9
[20] Irving R, Harrison JM (1967). The superior olivary complex and audition: a comparative study. J Comp Neurol, 130: 77-86
http://dx.doi.org/10.1002/cne.901300105
[21] Shao WH, Li C, Chen L, Qiu X, Zhang W, Huang CX, et al. (2010). Stereological investigation of age-related changes of the capillaries in white matter. Anat Rec (Hoboken), 293: 1400-1407
http://dx.doi.org/10.1002/ar.21184
[22] Murugesan N, Demarest TG, Madri JA, Pachter JS (2012). Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol Aging, 33: 1001-1004
[23] Desjardins M, Berti R, Lefebvre J, Dubeau S, Lesage F (2014). Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiol Aging, 35: 1947-1955
http://118.145.16.217/magsci/article/article?id=23446093
[24] Mann DM, Eaves NR, Marcyniuk B, Yates PO (1986). Quantitative changes in cerebral cortical microvasculature in ageing and dementia. Neurobiol Aging, 7: 321-330
http://dx.doi.org/10.1016/0197-4580(86)90158-2
[25] Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA (2007). Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci, 257: 62-66
http://dx.doi.org/10.1016/j.jns.2007.01.015
[26] Moody DM, Thore CR, Anstrom JA, Challa VR, Langefeld CD, Brown WR (2004). Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis. Radiology, 233: 883-890
http://dx.doi.org/10.1148/radiol.2333020981
[27] Bullitt E, Zeng D, Mortamet B, Ghosh A, Aylward SR, Lin W, et al. (2010). The effects of healthy aging on intracerebral blood vessels visualized by magnetic resonance angiography. Neurobiol Aging, 31: 290-300
http://118.145.16.217/magsci/article/article?id=15269795
[28] Farkas E, Luiten PG (2001). Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol, 64: 575-611
http://dx.doi.org/10.1016/S0301-0082(00)00068-X
[29] Farkas E, de Vos RA, Donka G, Jansen SE, Mihaly A, Luiten PG (2006). Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol, 111: 150-157
http://118.145.16.217/magsci/article/article?id=16698822
[30] Hunter JM, Kwan J, Malek-Ahmadi M, Maarouf CL, Kokjohn TA, Belden C, et al. (2012). Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer’s disease. Plos One, 7: e36893
http://dx.doi.org/10.1371/journal.pone.0036893
[31] Villena A, Vidal L, Diaz F, Perez DVI (2003). Stereological changes in the capillary network of the aging dorsal lateral geniculate nucleus. Anat Rec A Discov Mol Cell Evol Biol, 274: 857-861
[32] Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497: 332-337
http://dx.doi.org/10.1038/nature12107
[33] Yao J, Wang L, Yang JM, Maslov KI, Wong TT, Li L, et al. (2015). High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods, 12: 407-410
http://dx.doi.org/10.1038/nmeth.3336
[34] Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA (2002). Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci, 203-204: 159-163
http://dx.doi.org/10.1016/S0022-510X(02)00283-6
[35] Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, Brown WR (2007). Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol, 66: 337-345
http://dx.doi.org/10.1097/nen.0b013e3180537147
[36] Spangler KM, Challa VR, Moody DM, Bell MA (1994). Arteriolar tortuosity of the white matter in aging and hypertension. A microradiographic study. J Neuropathol Exp Neurol, 53: 22-26
http://dx.doi.org/10.1097/00005072-199401000-00003
[37] Nonaka H, Akima M, Hatori T, Nagayama T, Zhang Z, Ihara F (2003). The microvasculature of the cerebral white matter: arteries of the subcortical white matter. J Neuropathol Exp Neurol, 62: 154-161
http://dx.doi.org/10.1093/jnen/62.2.154
[38] Hong-tao Z, Shu-ling Z, Dao-pei Z (2014). Two case reports of bilateral vertebral artery tortuosity and spiral twisting in vascular vertigo. Bmc Neurol, 14: 14
http://dx.doi.org/10.1186/1471-2377-14-14
[39] Akima M, Nonaka H, Kagesawa M, Tanaka K (1986). A study on the microvasculature of the cerebral cortex. Fundamental architecture and its senile change in the frontal cortex. Lab Invest, 55: 482-489
[40] Hassler O (1967). Arterial deformities in senile brains. The occurrence of the deformities in a large autopsy series and some aspects of their functional significance. Acta Neuropathol, 8: 219-229
http://dx.doi.org/10.1007/BF00688824
[41] Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, et al. (2011). Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol, 31: 1748-1756
http://dx.doi.org/10.1161/ATVBAHA.111.227314
[42] Chesnutt JK, Han HC (2011). Tortuosity triggers platelet activation and thrombus formation in microvessels. J Biomech Eng, 133: 121004
http://dx.doi.org/10.1115/1.4005478
[43] Chesnutt JK, Han HC (2013). Platelet size and density affect shear-induced thrombus formation in tortuous arterioles. Phys Biol, 10: 56003
http://dx.doi.org/10.1088/1478-3975/10/5/056003
[44] Kang HM, Sohn I, Jung J, Jeong JW, Park C (2016). Age-related changes in pial arterial structure and blood flow in mice. Neurobiol Aging, 37: 161-170
http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.008
[45] Hiroki M, Miyashita K, Oda M (2002). Tortuosity of the white matter medullary arterioles is related to the severity of hypertension. Cerebrovasc Dis, 13: 242-250
http://dx.doi.org/10.1159/000057850
[46] Kalaria RN (2002). Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis, 13 (Suppl 2): 48-52
http://dx.doi.org/10.1159/000049150
[47] Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, et al. (1996). Vascular remodeling. Hypertension, 28: 505-506
[48] van Varik BJ, Rennenberg RJ, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ (2012). Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet, 3: 290
[49] Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Cornhill JF, et al. (1991). Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol, 139: 1119-1129
[50] Nagai Y, Metter EJ, Earley CJ, Kemper MK, Becker LC, Lakatta EG, et al. (1998). Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation, 98: 1504-1509
http://dx.doi.org/10.1161/01.CIR.98.15.1504
[51] Laurent S (2012). Defining vascular aging and cardiovascular risk. J Hypertens, 30 (Suppl): S3-S8
http://dx.doi.org/10.1097/HJH.0b013e328353e501
[52] Gerstenblith G, Frederiksen J, Yin FC, Fortuin NJ, Lakatta EG, Weisfeldt ML (1977). Echocardiographic assessment of a normal adult aging population. Circulation, 56: 273-278
http://dx.doi.org/10.1161/01.CIR.56.2.273
[53] Samila ZJ, Carter SA (1981). The effect of age on the unfolding of elastin lamellae and collagen fibers with stretch in human carotid arteries. Can J Physiol Pharmacol, 59: 1050-1057
http://dx.doi.org/10.1139/y81-160
[54] Toda T, Tsuda N, Nishimori I, Leszczynski DE, Kummerow FA (1980). Morphometrical analysis of the aging process in human arteries and aorta. Acta Anat (Basel), 106: 35-44
http://dx.doi.org/10.1159/000145167
[55] Collins JA, Munoz JV, Patel TR, Loukas M, Tubbs RS (2014). The anatomy of the aging aorta. Clin Anat, 27: 463-466
http://118.145.16.217/magsci/article/article?id=22651921
[56] Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM, et al. (2010). The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging, 3: 1247-1255
http://dx.doi.org/10.1016/j.jcmg.2010.09.016
[57] Martin C, Sun W, Primiano C, McKay R, Elefteriades J (2013). Age-dependent ascending aorta mechanics assessed through multiphase CT. Ann Biomed Eng, 41: 2565-2574
http://dx.doi.org/10.1007/s10439-013-0856-9
[58] Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME (1993). Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb, 13: 90-97
http://dx.doi.org/10.1161/01.ATV.13.1.90
[59] Bonithon-Kopp C, Touboul PJ, Berr C, Magne C, Ducimetiere P (1996). Factors of carotid arterial enlargement in a population aged 59 to 71 years: the EVA study. Stroke, 27: 654-660
http://dx.doi.org/10.1161/01.STR.27.4.654
[60] Lakatta EG, Levy D (2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation, 107: 139-146
http://dx.doi.org/10.1161/01.CIR.0000048892.83521.58
[61] Michel JB, Heudes D, Michel O, Poitevin P, Philippe M, Scalbert E, et al. (1994). Effect of chronic ANG I-converting enzyme inhibition on aging processes. II. Large arteries. Am J Physiol, 267: R124-R135
[62] Gaballa MA, Jacob CT, Raya TE, Liu J, Simon B, Goldman S (1998). Large artery remodeling during aging: biaxial passive and active stiffness. Hypertension, 32: 437-443
http://dx.doi.org/10.1161/01.HYP.32.3.437
[63] Schmidt-Trucksass A, Grathwohl D, Schmid A, Boragk R, Upmeier C, Keul J, et al. (1999). Structural, functional, and hemodynamic changes of the common carotid artery with age in male subjects. Arterioscler Thromb Vasc Biol, 19: 1091-1097
http://dx.doi.org/10.1161/01.ATV.19.4.1091
[64] van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Boudier HA, van Bortel LM (2000). Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension, 35: 637-642
http://dx.doi.org/10.1161/01.HYP.35.2.637
[65] Bortolotto LA, Hanon O, Franconi G, Boutouyrie P, Legrain S, Girerd X (1999). The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension, 34: 889-892
http://dx.doi.org/10.1161/01.HYP.34.4.889
[66] Green DJ, Swart A, Exterkate A, Naylor LH, Black MA, Cable NT, et al. (2010). Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans. Atherosclerosis, 210: 525-530
http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.048
[67] Mitchell GF (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985), 105: 1652-1660
http://dx.doi.org/10.1152/japplphysiol.90549.2008
[68] James MA, Watt PA, Potter JF, Thurston H, Swales JD (1995). Pulse pressure and resistance artery structure in the elderly. Hypertension, 26: 301-306
http://dx.doi.org/10.1161/01.HYP.26.2.301
[69] Moreau P, D’Uscio LV, Luscher TF (1998). Structure and reactivity of small arteries in aging. Cardiovasc Res, 37: 247-253
http://dx.doi.org/10.1016/S0008-6363(97)00225-3
[70] Hajdu MA, Heistad DD, Siems JE, Baumbach GL (1990). Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res, 66: 1747-1754
http://dx.doi.org/10.1161/01.RES.66.6.1747
[71] Muller-Delp JM, Spier SA, Ramsey MW, Delp MD (2002). Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol, 283: H1662-H1672
http://dx.doi.org/10.1152/ajpheart.00004.2002
[72] Muller-Delp J, Spier SA, Ramsey MW, Lesniewski LA, Papadopoulos A, Humphrey JD, et al. (2002). Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol, 282: H1843-H1854
http://dx.doi.org/10.1152/ajpheart.00666.2001
[73] Anversa P, Li P, Sonnenblick EH, Olivetti G (1994). Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am J Physiol, 267: H1062-H1073
[74] Wang H, Listrat A, Meunier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, et al. (2014). Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell, 13: 254-262
http://118.145.16.217/magsci/article/article?id=18896238
[75] Kilo C, Vogler N, Williamson JR (1972). Muscle capillary basement membrane changes related to aging and to diabetes mellitus. Diabetes, 21: 881-905
http://dx.doi.org/10.2337/diab.21.8.881
[76] Asai K, Kudej RK, Shen YT, Yang GP, Takagi G, Kudej AB, et al. (2000). Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol, 20: 1493-1499
http://dx.doi.org/10.1161/01.ATV.20.6.1493
[77] Lakatta EG, Wang M, Najjar SS (2009). Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am, 93: 583-604
http://118.145.16.217/magsci/article/article?id=15251277
[78] Wang M, Zhang J, Jiang LQ, Spinetti G, Pintus G, Monticone R, et al. (2007). Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension, 50: 219-227
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.089409
[79] Yeh HI, Dupont E, Coppen S, Rothery S, Severs NJ (1997). Gap junction localization and connexin expression in cytochemically identified endothelial cells of arterial tissue. J Histochem Cytochem, 45: 539-550
http://dx.doi.org/10.1177/002215549704500406
[80] Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, Montague CR, et al. (2011). Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med, 3: 112r-122r
[81] Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, Schultzberg M, et al. (2009). Blood-brain barrier alterations in ageing and dementia. J Neurol Sci, 283: 99-106
http://dx.doi.org/10.1016/j.jns.2009.02.321
[82] Shah GN, Mooradian AD (1997). Age-related changes in the blood-brain barrier. Exp Gerontol, 32: 501-519
http://dx.doi.org/10.1016/S0531-5565(96)00158-1
[83] Stewart PA, Magliocco M, Hayakawa K, Farrell CL, Del MR, Girvin J, et al. (1987). A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc Res, 33: 270-282
http://dx.doi.org/10.1016/0026-2862(87)90022-7
[84] Cavallaro U, Castelli V, Del MU, Soria MR (2000). Phenotypic alterations in senescent large-vessel and microvascular endothelial cells. Mol Cell Biol Res Commun, 4: 117-121
http://dx.doi.org/10.1006/mcbr.2000.0263
[85] Hohensinner PJ, Kaun C, Buchberger E, Ebenbauer B, Demyanets S, Huk I, et al. (2016). Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta, 1863: 360-367
http://dx.doi.org/10.1016/j.bbamcr.2015.11.034
[86] Wang M, Wang HH, Lakatta EG (2013). Milk fat globule epidermal growth factor VIII signaling in arterial wall remodeling. Curr Vasc Pharmacol, 11: 768-776
http://118.145.16.217/magsci/article/article?id=19705047
[87] Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Durr P (2001). Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol, 36: 1327-1347
http://dx.doi.org/10.1016/S0531-5565(01)00105-X
[88] Wu X, Zhou Q, Huang L, Sun A, Wang K, Zou Y, et al. (2008). Ageing-exaggerated proliferation of vascular smooth muscle cells is related to attenuation of Jagged1 expression in endothelial cells. Cardiovasc Res, 77: 800-808
http://dx.doi.org/10.1093/cvr/cvm105
[89] Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G (2004). Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics, 17: 21-30
http://dx.doi.org/10.1152/physiolgenomics.00136.2003
[90] Kontogeorgos G, Kontogeorgou CN (2003). Hormone regulation of endothelial apoptosis and proliferation in vessel regression and angiogenesis. Microsc Res Tech, 60: 59-63
http://dx.doi.org/10.1002/jemt.10243
[91] Wang M, Khazan B, Lakatta EG (2010). Central Arterial Aging and Angiotensin II Signaling. Curr Hypertens Rev, 6: 266-281
http://dx.doi.org/10.2174/157340210793611668
[92] Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, et al. (2001). Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res, 89: 709-715
http://dx.doi.org/10.1161/hh2001.097796
[93] Csiszar A, Wang M, Lakatta EG, Ungvari Z (2008). Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol (1985), 105: 1333-1341
http://dx.doi.org/10.1152/japplphysiol.90470.2008
[94] Qian L, Yuanshao L, Wensi H, Yulei Z, Xiaoli C, Brian W, et al. (2016). Serum IL-33 Is a Novel Diagnostic and Prognostic Biomarker in Acute Ischemic Stroke. Aging Dis, 7: 614-622
http://dx.doi.org/10.14336/AD.2016.0207
[95] Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Alvarez DSM (2010). Endothelial dysfunction and aging: an update. Ageing Res Rev, 9: 142-152
http://dx.doi.org/10.1016/j.arr.2009.07.002
[96] Kisseleva T, Song L, Vorontchikhina M, Feirt N, Kitajewski J, Schindler C (2006). NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J Clin Invest, 116: 2955-2963
http://dx.doi.org/10.1172/JCI27392
[97] Foreman KE, Tang J (2003). Molecular mechanisms of replicative senescence in endothelial cells. Exp Gerontol, 38: 1251-1257
http://dx.doi.org/10.1016/j.exger.2003.09.005
[98] Goldstein S (1990). Replicative senescence: the human fibroblast comes of age. Science, 249: 1129-1133
http://dx.doi.org/10.1126/science.2204114
[99] Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002). Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation, 105: 1541-1544
http://dx.doi.org/10.1161/01.CIR.0000013836.85741.17
[100] El AM, Angulo J, Rodriguez-Manas L (2013). Oxidative stress and vascular inflammation in aging. Free Radic Biol Med, 65: 380-401
http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.003
[101] Erusalimsky JD (2009). Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol (1985), 106: 326-332
[102] von Zglinicki T (2002). Oxidative stress shortens telomeres. Trends Biochem Sci, 27: 339-344
http://dx.doi.org/10.1016/S0968-0004(02)02110-2
[103] Harman D (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci, 1067: 10-21
http://dx.doi.org/10.1196/annals.1354.003
[104] Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF (2001). Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension, 37: 529-534
http://dx.doi.org/10.1161/01.HYP.37.2.529
[105] Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. (2010). Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol, 299: H18-H24
http://dx.doi.org/10.1152/ajpheart.00260.2010
[106] Chen JS, Huang PH, Wang CH, Lin FY, Tsai HY, Wu TC, et al. (2011). Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract. Atherosclerosis, 214: 301-309
http://118.145.16.217/magsci/article/article?id=21204016
[107] Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, et al. (2011). Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol, 301: H363-H372
http://dx.doi.org/10.1152/ajpheart.01134.2010
[108] Okouchi M, Okayama N, Alexander JS, Aw TY (2006). NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Curr Neurovasc Res, 3: 249-261
http://dx.doi.org/10.2174/156720206778792876
[109] Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, et al. (2007). Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol, 293: H37-H47
http://dx.doi.org/10.1152/ajpheart.01346.2006
[110] Yoder MC (2012). Human endothelial progenitor cells. Cold Spring Harb Perspect Med, 2: a6692
http://dx.doi.org/10.1101/cshperspect.a006692
[111] Urbich C, Dimmeler S (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 95: 343-353
http://dx.doi.org/10.1161/01.RES.0000137877.89448.78
[112] Park KJ, Park E, Liu E, Baker AJ (2014). Bone marrow-derived endothelial progenitor cells protect postischemic axons after traumatic brain injury. J Cereb Blood Flow Metab, 34: 357-366
http://dx.doi.org/10.1038/jcbfm.2013.216
[113] Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA (2007). Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol (1985), 102: 847-852
[114] Thum T, Hoeber S, Froese S, Klink I, Stichtenoth DO, Galuppo P, et al. (2007). Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ Res, 100: 434-443
http://dx.doi.org/10.1161/01.RES.0000257912.78915.af
[115] Williamson K, Stringer SE, Alexander MY (2012). Endothelial progenitor cells enter the aging arena. Front Physiol, 3: 30
[116] Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S (2002). Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res, 90: E89-E93
http://dx.doi.org/10.1161/01.RES.0000020861.20064.7E
[117] Zhu G, Song M, Wang H, Zhao G, Yu Z, Yin Y, et al. (2009). Young environment reverses the declined activity of aged rat-derived endothelial progenitor cells: involvement of the phosphatidylinositol 3-kinase/Akt signaling pathway. Ann Vasc Surg, 23: 519-534
http://118.145.16.217/magsci/article/article?id=14879490
[118] Mikirova NA, Jackson JA, Hunninghake R, Kenyon J, Chan KW, Swindlehurst CA, et al. (2009). Circulating endothelial progenitor cells: a new approach to anti-aging medicine?. J Transl Med, 7: 106
http://dx.doi.org/10.1186/1479-5876-7-106
[119] He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, et al. (2004). Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol, 24: 2021-2027
http://dx.doi.org/10.1161/01.ATV.0000142810.27849.8f
[120] Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S (2004). Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood, 104: 3591-3597
http://dx.doi.org/10.1182/blood-2003-12-4103
[121] Ingram DA, Krier TR, Mead LE, McGuire C, Prater DN, Bhavsar J, et al. (2007). Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells, 25: 297-304
http://dx.doi.org/10.1634/stemcells.2006-0340
[122] Imanishi T, Hano T, Nishio I (2005). Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens, 23: 97-104
http://dx.doi.org/10.1097/00004872-200501000-00018
[123] Wang M, Zhang J, Spinetti G, Jiang LQ, Monticone R, Zhao D, et al. (2005). Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol, 167: 1429-1442
http://dx.doi.org/10.1016/S0002-9440(10)61229-1
[124] Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al. (2006). Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arterioscler Thromb Vasc Biol, 26: 1503-1509
http://dx.doi.org/10.1161/01.ATV.0000225777.58488.f2
[125] Wang M, Takagi G, Asai K, Resuello RG, Natividad FF, Vatner DE, et al. (2003). Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension, 41: 1308-1316
http://dx.doi.org/10.1161/01.HYP.0000073843.56046.45
[126] Neltner JH, Abner EL, Baker S, Schmitt FA, Kryscio RJ, Jicha GA, et al. (2014). Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing. Brain, 137: 255-267
http://118.145.16.217/magsci/article/article?id=22484939
[127] Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A (2014). Ageing and microvasculature. Vasc Cell, 6: 19
http://dx.doi.org/10.1186/2045-824X-6-19
[128] Flora G, Dahl E, Nelson E (1967). Electron microscopic observations on human intracranial arteries. Changes seen with aging and atherosclerosis. Arch Neurol, 17: 162-173
http://dx.doi.org/10.1001/archneur.1967.00470260052006
[129] Wang M, Lakatta EG (2002). Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension, 39: 865-873
http://dx.doi.org/10.1161/01.HYP.0000014506.13322.66
[130] Wang M, Zhang J, Telljohann R, Jiang L, Wu J, Monticone RE, et al. (2012). Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension, 60: 459-466
http://118.145.16.217/magsci/article/article?id=24584070
[131] Cox RH (1977). Effects of age on the mechanical properties of rat carotid artery. Am J Physiol, 233: H256-H263
[132] Nagasawa S, Handa H, Okumura A, Naruo Y, Moritake K, Hayashi K (1979). Mechanical properties of human cerebral arteries. Part 1: Effects of age and vascular smooth muscle activation. Surg Neurol, 12: 297-304
[133] Spina M, Garbisa S, Hinnie J, Hunter JC, Serafini-Fracassini A (1983). Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta. Arteriosclerosis, 3: 64-76
http://dx.doi.org/10.1161/01.ATV.3.1.64
[134] Fonck E, Feigl GG, Fasel J, Sage D, Unser M, Rufenacht DA, et al. (2009). Effect of aging on elastin functionality in human cerebral arteries. Stroke, 40: 2552-2556
http://dx.doi.org/10.1161/STROKEAHA.108.528091
[135] Hodis S, Zamir M (2009). Mechanical events within the arterial wall: The dynamic context for elastin fatigue. J Biomech, 42: 1010-1016
http://dx.doi.org/10.1016/j.jbiomech.2009.02.010
[136] O’Rourke MF (2007). Arterial aging: pathophysiological principles. Vasc Med, 12: 329-341
http://dx.doi.org/10.1177/1358863X07083392
[137] Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980). Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech, 13: 175-184
http://dx.doi.org/10.1016/0021-9290(80)90191-8
[138] Gerrity RG, Cliff WJ (1972). The aortic tunica intima in young and aging rats. Exp Mol Pathol, 16: 382-402
http://dx.doi.org/10.1016/0014-4800(72)90012-3
[139] Gennaro G, Menard C, Giasson E, Michaud SE, Palasis M, Meloche S, et al. (2003). Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation. Arterioscler Thromb Vasc Biol, 23: 204-210
http://dx.doi.org/10.1161/01.ATV.0000053182.58636.BE
[140] Moon SK, Cha BY, Kim CH (2003). In vitro cellular aging is associated with enhanced proliferative capacity, G1 cell cycle modulation, and matrix metalloproteinase-9 regulation in mouse aortic smooth muscle cells. Arch Biochem Biophys, 418: 39-48
http://dx.doi.org/10.1016/S0003-9861(03)00402-8
[141] Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, et al. (2012). MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell, 11: 500-508
http://dx.doi.org/10.1111/j.1474-9726.2012.00813.x
[142] Hariri RJ, Hajjar DP, Coletti D, Alonso DR, Weksler ME, Rabellino E (1988). Aging and arteriosclerosis. Cell cycle kinetics of young and old arterial smooth muscle cells. Am J Pathol, 131: 132-136
[143] Moon SK, Thompson LJ, Madamanchi N, Ballinger S, Papaconstantinou J, Horaist C, et al. (2001). Aging, oxidative responses, and proliferative capacity in cultured mouse aortic smooth muscle cells. Am J Physiol Heart Circ Physiol, 280: H2779-H2788
[144] Rivard A, Principe N, Andres V (2000). Age-dependent increase in c-fos activity and cyclin A expression in vascular smooth muscle cells. A potential link between aging, smooth muscle cell proliferation and atherosclerosis. Cardiovasc Res, 45: 1026-1034
http://dx.doi.org/10.1016/S0008-6363(99)00385-5
[145] Brown MR, Miller FJ, Li WG, Ellingson AN, Mozena JD, Chatterjee P, et al. (1999). Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res, 85: 524-533
http://dx.doi.org/10.1161/01.RES.85.6.524
[146] Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, et al. (2013). Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells. Lab Invest, 93: 880-887
http://118.145.16.217/magsci/article/article?id=19380948
[147] Ferlosio A, Arcuri G, Doldo E, Scioli MG, De Falco S, Spagnoli LG, et al. (2012). Age-related increase of stem marker expression influences vascular smooth muscle cell properties. Atherosclerosis, 224: 51-57
http://118.145.16.217/magsci/article/article?id=24275100
[148] Ruiz-Torres A, Gimeno A, Melon J, Mendez L, Munoz FJ, Macia M (1999). Age-related loss of proliferative activity of human vascular smooth muscle cells in culture. Mech Ageing Dev, 110: 49-55
http://dx.doi.org/10.1016/S0047-6374(99)00042-1
[149] Ruiz-Torres A, Lozano R, Melon J, Carraro R (2003). Age-dependent decline of in vitro migration (basal and stimulated by IGF-1 or insulin) of human vascular smooth muscle cells. J Gerontol A Biol Sci Med Sci, 58: B1074-B1077
http://dx.doi.org/10.1093/gerona/58.12.B1074
[150] Goubko CA, Cao X (2009). Patterning multiple cell types in co-cultures: A review. Materials Science and Engineering: C, 29: 1855-1868
http://dx.doi.org/10.1016/j.msec.2009.02.016
[151] Dingemans KP, Teeling P, Lagendijk JH, Becker AE (2000). Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec, 258: 1-14
http://dx.doi.org/10.1002/(SICI)1097-0185(20000101)258:1<1::AID-AR1>3.0.CO;2-7
[152] Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V (2004). Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg, 38: 11-23
http://dx.doi.org/10.1177/153857440403800102
[153] Goodall S, Porter KE, Bell PR, Thompson MM (2002). Enhanced invasive properties exhibited by smooth muscle cells are associated with elevated production of MMP-2 in patients with aortic aneurysms. Eur J Vasc Endovasc Surg, 24: 72-80
http://dx.doi.org/10.1053/ejvs.2002.1675
[154] Bendeck MP, Irvin C, Reidy MA (1996). Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res, 78: 38-43
http://dx.doi.org/10.1161/01.RES.78.1.38
[155] Pratt B, Curci J (2010). Arterial elastic fiber structure. Function and potential roles in acute aortic dissection. J Cardiovasc Surg (Torino), 51: 647-656
[156] Fu Z, Wang M, Gucek M, Zhang J, Wu J, Jiang L, et al. (2009). Milk fat globule protein epidermal growth factor-8: a pivotal relay element within the angiotensin II and monocyte chemoattractant protein-1 signaling cascade mediating vascular smooth muscle cells invasion. Circ Res, 104: 1337-1346
http://dx.doi.org/10.1161/CIRCRESAHA.108.187088
[157] Lee GL, Chang YW, Wu JY, Wu ML, Wu KK, Yet SF, et al. (2012). TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler Thromb Vasc Biol, 32: 2751-2760
http://dx.doi.org/10.1161/ATVBAHA.112.300302
[158] Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG (2004). Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol, 24: 1397-1402
http://dx.doi.org/10.1161/01.ATV.0000134529.65173.08
[159] Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, et al. (1999). Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem, 274: 19814-19822
http://dx.doi.org/10.1074/jbc.274.28.19814
[160] Havelka GE, Kibbe MR (2011). The vascular adventitia: its role in the arterial injury response. Vasc Endovascular Surg, 45: 381-390
http://118.145.16.217/magsci/article/article?id=21091830
[161] Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, et al. (2009). Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med, 206: 233-248
http://dx.doi.org/10.1084/jem.20080752
[162] Moos MP, John N, Grabner R, Nossmann S, Gunther B, Vollandt R, et al. (2005). The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 25: 2386-2391
http://dx.doi.org/10.1161/01.ATV.0000187470.31662.fe
[163] Patel S, Shi Y, Niculescu R, Chung EH, Martin JL, Zalewski A (2000). Characteristics of coronary smooth muscle cells and adventitial fibroblasts. Circulation, 101: 524-532
http://dx.doi.org/10.1161/01.CIR.101.5.524
[164] Urabe G, Hoshina K, Shimanuki T, Nishimori Y, Miyata T, Deguchi J (2015). Structural analysis of adventitial collagen to feature aging and aneurysm formation in human aorta. J Vasc Surg
[165] Fleenor BS, Eng JS, Sindler AL, Pham BT, Kloor JD, Seals DR (2014). Superoxide signaling in perivascular adipose tissue promotes age-related artery stiffness. Aging Cell, 13: 576-578
http://dx.doi.org/10.1111/acel.12196
[166] Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR (2010). Arterial stiffening with ageing is associated with transforming growth factor-beta1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol, 588: 3971-3982
http://dx.doi.org/10.1113/jphysiol.2010.194753
[167] Pacilli A, Pasquinelli G (2009). Vascular wall resident progenitor cells: a review. Exp Cell Res, 315: 901-914
http://dx.doi.org/10.1016/j.yexcr.2008.12.018
[168] Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, et al. (2007). Biomechanical properties of native basement membranes. Febs J, 274: 2897-2908
http://dx.doi.org/10.1111/j.1742-4658.2007.05823.x
[169] Carlson EC, Brendel K, Hjelle JT, Meezan E (1978). Ultrastructural and biochemical analyses of isolated basement membranes from kidney glomeruli and tubules and brain and retinal microvessels. J Ultrastruct Res, 62: 26-53
http://dx.doi.org/10.1016/S0022-5320(78)80028-8
[170] McKee KK, Capizzi S, Yurchenco PD (2009). Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly. J Biol Chem, 284: 8984-8994
http://dx.doi.org/10.1074/jbc.M809719200
[171] Timpl R (1996). Macromolecular organization of basement membranes. Curr Opin Cell Biol, 8: 618-624
http://dx.doi.org/10.1016/S0955-0674(96)80102-5
[172] Miner JH (1999). Renal basement membrane components. Kidney Int, 56: 2016-2024
http://dx.doi.org/10.1046/j.1523-1755.1999.00785.x
[173] Weber M (1992). Basement membrane proteins. Kidney Int, 41: 620-628
http://dx.doi.org/10.1038/ki.1992.95
[174] Yurchenco PD, Schittny JC (1990). Molecular architecture of basement membranes. Faseb J, 4: 1577-1590
[175] Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001). Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol, 153: 933-946
http://dx.doi.org/10.1083/jcb.153.5.933
[176] Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. (2009). Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med, 15: 519-527
http://dx.doi.org/10.1038/nm.1957
[177] Zlokovic BV (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57: 178-201
http://118.145.16.217/magsci/article/article?id=14350879
[178] Morris AW, Carare RO, Schreiber S, Hawkes CA (2014). The Cerebrovascular Basement Membrane: Role in the Clearance of beta-amyloid and Cerebral Amyloid Angiopathy. Front Aging Neurosci, 6: 251
[179] Alba C, Vidal L, Diaz F, Villena A, de Vargas IP (2004). Ultrastructural and quantitative age-related changes in capillaries of the dorsal lateral geniculate nucleus. Brain Res Bull, 64: 145-153
http://dx.doi.org/10.1016/j.brainresbull.2004.06.006
[180] Keuker JI, Luiten PG, Fuchs E (2000). Capillary changes in hippocampal CA1 and CA3 areas of the aging rhesus monkey. Acta Neuropathol, 100: 665-672
http://118.145.16.217/magsci/article/article?id=16007145
[181] Castejon OJ (2014). Ultrastructural alterations of human cortical capillary basement membrane in human brain oedema. Folia Neuropathol, 52: 10-21
http://118.145.16.217/magsci/article/article?id=22876016
[182] Perlmutter LS, Chui HC (1990). Microangiopathy, the vascular basement membrane and Alzheimer’s disease: a review. Brain Res Bull, 24: 677-686
http://dx.doi.org/10.1016/0361-9230(90)90007-M
[183] Mancardi GL, Perdelli F, Rivano C, Leonardi A, Bugiani O (1980). Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropathol, 49: 79-83
http://dx.doi.org/10.1007/BF00692225
[184] Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. (2004). Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension, 43: 1239-1245
http://dx.doi.org/10.1161/01.HYP.0000128420.01881.aa
[185] AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. (2013). Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension, 62: 934-941
http://118.145.16.217/magsci/article/article?id=19893334
[186] Vaitkevicius PV, Fleg JL, Engel JH, O’Connor FC, Wright JG, Lakatta LE, et al. (1993). Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation, 88: 1456-1462
http://dx.doi.org/10.1161/01.CIR.88.4.1456
[187] Shirai K, Song M, Suzuki J, Kurosu T, Oyama T, Nagayama D, et al. (2011). Contradictory effects of beta1- and alpha1- aderenergic receptor blockers on cardio-ankle vascular stiffness index (CAVI)--CAVI independent of blood pressure. J Atheroscler Thromb, 18: 49-55
http://118.145.16.217/magsci/article/article?id=21872134
[188] Choi SY, Oh BH, Bae PJ, Choi DJ, Rhee MY, Park S (2013). Age-associated increase in arterial stiffness measured according to the cardio-ankle vascular index without blood pressure changes in healthy adults. J Atheroscler Thromb, 20: 911-923
http://118.145.16.217/magsci/article/article?id=20050386
[189] O’Rourke MF, Blazek JV, Morreels CJ, Krovetz LJ (1968). Pressure wave transmission along the human aorta. Changes with age and in arterial degenerative disease. Circ Res, 23: 567-579
http://dx.doi.org/10.1161/01.RES.23.4.567
[190] Kelly R, Hayward C, Avolio A, O’Rourke M (1989). Noninvasive determination of age-related changes in the human arterial pulse. Circulation, 80: 1652-1659
http://dx.doi.org/10.1161/01.CIR.80.6.1652
[191] O’Rourke MF, Safar ME (2005). Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension, 46: 200-204
http://dx.doi.org/10.1161/01.HYP.0000168052.00426.65
[192] Hashimoto J, Ito S (2010). Pulse pressure amplification, arterial stiffness, and peripheral wave reflection determine pulsatile flow waveform of the femoral artery. Hypertension, 56: 926-933
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.159368
[193] Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen MH, Vasan RS, et al. (2005). Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: the Framingham Heart Study. Circulation, 112: 194-199
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.530675
[194] Tarasov KV, Sanna S, Scuteri A, Strait JB, Orru M, Parsa A, et al. (2009). COL4A1 is associated with arterial stiffness by genome-wide association scan. Circ Cardiovasc Genet, 2: 151-158
http://dx.doi.org/10.1161/CIRCGENETICS.108.823245
[195] Tarnoki AD, Tarnoki DL, Stazi MA, Medda E, Cotichini R, Nistico L, et al. (2012). Heritability of central blood pressure and arterial stiffness: a twin study. J Hypertens, 30: 1564-1571
http://118.145.16.217/magsci/article/article?id=24822306
[196] Medda E, Fagnani C, Schillaci G, Tarnoki AD, Tarnoki DL, Baracchini C, et al. (2014). Heritability of arterial stiffness and carotid intima-media thickness: an Italian twin study. Nutr Metab Cardiovasc Dis, 24: 511-517
http://dx.doi.org/10.1016/j.numecd.2013.10.031
[197] Seidlerova J, Bochud M, Staessen JA, Cwynar M, Dolejsova M, Kuznetsova T, et al. (2008). Heritability and intrafamilial aggregation of arterial characteristics. J Hypertens, 26: 721-728
http://dx.doi.org/10.1097/HJH.0b013e3282f4d1e7
[198] Tsao CW, Seshadri S, Beiser AS, Westwood AJ, Decarli C, Au R, et al. (2013). Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology, 81: 984-991
http://118.145.16.217/magsci/article/article?id=19731434
[199] Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. (2006). Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation, 113: 657-663
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.555235
[200] Hansen TW, Li Y, Staessen JA, Jeppesen J, Rasmussen S, Wang JG, et al. (2008). Independent prognostic value of the ambulatory arterial stiffness index and aortic pulse wave velocity in a general population. J Hum Hypertens, 22: 214-216
http://dx.doi.org/10.1038/sj.jhh.1002295
[201] Izzo JJ, Shykoff BE (2001). Arterial stiffness: clinical relevance, measurement, and treatment. Rev Cardiovasc Med, 2: 29-34, 37-40
[202] Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, et al. (2005). Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation, 111: 3384-3390
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.483628
[203] Rodriguez-Manas L, El-Assar M, Vallejo S, Lopez-Doriga P, Solis J, Petidier R, et al. (2009). Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell, 8: 226-238
http://dx.doi.org/10.1111/j.1474-9726.2009.00466.x
[204] Egashira K, Inou T, Hirooka Y, Kai H, Sugimachi M, Suzuki S, et al. (1993). Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation, 88: 77-81
http://dx.doi.org/10.1161/01.CIR.88.1.77
[205] Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE (1994). Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol, 24: 471-476
http://dx.doi.org/10.1016/0735-1097(94)90305-0
[206] Hatake K, Kakishita E, Wakabayashi I, Sakiyama N, Hishida S (1990). Effect of aging on endothelium-dependent vascular relaxation of isolated human basilar artery to thrombin and bradykinin. Stroke, 21: 1039-1043
http://dx.doi.org/10.1161/01.STR.21.7.1039
[207] Taddei S, Virdis A, Mattei P, Ghiadoni L, Gennari A, Fasolo CB, et al. (1995). Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation, 91: 1981-1987
http://dx.doi.org/10.1161/01.CIR.91.7.1981
[208] Kung CF, Luscher TF (1995). Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension, 25: 194-200
http://dx.doi.org/10.1161/01.HYP.25.2.194
[209] Chinellato A, Pandolfo L, Ragazzi E, Zambonin MR, Froldi G, De Biasi M, et al. (1991). Effect of age on rabbit aortic responses to relaxant endothelium-dependent and endothelium-independent agents. Blood Vessels, 28: 358-365
[210] Blackwell KA, Sorenson JP, Richardson DM, Smith LA, Suda O, Nath K, et al. (2004). Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol, 287: H2448-H2453
http://dx.doi.org/10.1152/ajpheart.00248.2004
[211] Wallace SM, Yasmin , McEniery CM, Maki-Petaja KM, Booth AD, Cockcroft JR, et al. (2007). Isolated systolic hypertension is characterized by increased aortic stiffness and endothelial dysfunction. Hypertension, 50: 228-233
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.089391
[212] Burnett AL (2006). The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich), 8: 53-62
[213] Csiszar A, Toth J, Peti-Peterdi J, Ungvari Z (2007). The aging kidney: role of endothelial oxidative stress and inflammation. Acta Physiol Hung, 94: 107-115
http://dx.doi.org/10.1556/APhysiol.94.2007.1-2.10
[214] Coleman HR, Chan CC, Ferris FR, Chew EY (2008). Age-related macular degeneration. Lancet, 372: 1835-1845
http://dx.doi.org/10.1016/S0140-6736(08)61759-6
[215] Ahluwalia A, Jones MK, Szabo S, Tarnawski AS (2014). Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival. J Physiol Pharmacol, 65: 209-215
http://118.145.16.217/magsci/article/article?id=23243555
[216] Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, et al. (2005). The origins of age-related proinflammatory state. Blood, 105: 2294-2299
http://dx.doi.org/10.1182/blood-2004-07-2599
[217] Natarajan V (1995). Oxidants and signal transduction in vascular endothelium. J Lab Clin Med, 125: 26-37
[218] Stampfli SF, Akhmedov A, Gebhard C, Lohmann C, Holy EW, Rozenberg I, et al. (2010). Aging induces endothelial dysfunction while sparing arterial thrombosis. Arterioscler Thromb Vasc Biol, 30: 1960-1967
http://dx.doi.org/10.1161/ATVBAHA.110.206920
[219] Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DJ, Lerman A (2000). Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 101: 948-954
http://dx.doi.org/10.1161/01.CIR.101.9.948
[220] Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, et al. (2001). Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation, 104: 191-196
http://dx.doi.org/10.1161/01.CIR.104.2.191
[221] Widlansky ME, Gokce N, Keaney JJ, Vita JA (2003). The clinical implications of endothelial dysfunction. J Am Coll Cardiol, 42: 1149-1160
http://dx.doi.org/10.1016/S0735-1097(03)00994-X
[222] Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. (2002). Prognostic value of coronary vascular endothelial dysfunction. Circulation, 106: 653-658
http://dx.doi.org/10.1161/01.CIR.0000025404.78001.D8
[223] Jaruchart T, Suwanwela NC, Tanaka H, Suksom D (2016). Arterial stiffness is associated with age-related differences in cerebrovascular conductance. Exp Gerontol, 73: 59-64
http://dx.doi.org/10.1016/j.exger.2015.11.006
[224] Tarumi T, Ayaz KM, Liu J, Tseng BY, Parker R, Riley J, et al. (2014). Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab, 34: 971-978
http://dx.doi.org/10.1038/jcbfm.2014.44
[225] Ackerstaff RG, Keunen RW, van Pelt W, Montauban VSA, Stijnen T (1990). Influence of biological factors on changes in mean cerebral blood flow velocity in normal ageing: a transcranial Doppler study. Neurol Res, 12: 187-191
http://dx.doi.org/10.1080/01616412.1990.11739941
[226] Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A (1999). Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol, 172: 213-218
http://dx.doi.org/10.2214/ajr.172.1.9888770
[227] Chen JJ, Rosas HD, Salat DH (2011). Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage, 55: 468-478
http://118.145.16.217/magsci/article/article?id=15242233
[228] Pagani M, Salmaso D, Jonsson C, Hatherly R, Jacobsson H, Larsson SA, et al. (2002). Regional cerebral blood flow as assessed by principal component analysis and (99m)Tc-HMPAO SPET in healthy subjects at rest: normal distribution and effect of age and gender. Eur J Nucl Med Mol Imaging, 29: 67-75
http://118.145.16.217/magsci/article/article?id=15797742
[229] Borghammer P, Jonsdottir KY, Cumming P, Ostergaard K, Vang K, Ashkanian M, et al. (2008). Normalization in PET group comparison studies--the importance of a valid reference region. Neuroimage, 40: 529-540
http://118.145.16.217/magsci/article/article?id=14349163
[230] Akiyama H, Meyer JS, Mortel KF, Terayama Y, Thornby JI, Konno S (1997). Normal human aging: factors contributing to cerebral atrophy. J Neurol Sci, 152: 39-49
http://dx.doi.org/10.1016/S0022-510X(97)00141-X
[231] Yalcin A, Atmis V, Cengiz OK, Cinar E, Aras S, Varli M, et al. (2016). Evaluation of Cardiac Autonomic Functions in Older Parkinson’s Disease Patients: a Cross-Sectional Study. Aging Dis, 7: 28-35
http://dx.doi.org/10.14336/AD.2015.0819
[232] Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, et al. (1996). The metabolic topography of normal aging. J Cereb Blood Flow Metab, 16: 385-398
http://dx.doi.org/10.1097/00004647-199605000-00005
[233] Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE (1995). Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med, 36: 1141-1149
[234] De Santi S, de Leon MJ, Convit A, Tarshish C, Rusinek H, Tsui WH, et al. (1995). Age-related changes in brain: II. Positron emission tomography of frontal and temporal lobe glucose metabolism in normal subjects. Psychiatr Q, 66: 357-370
http://dx.doi.org/10.1007/BF02238755
[235] Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. (2002). Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage, 17: 302-316
http://dx.doi.org/10.1006/nimg.2002.1208
[236] Aliev G, Smith MA, Obrenovich ME, de la Torre JC, Perry G (2003). Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox Res, 5: 491-504
http://118.145.16.217/magsci/article/article?id=16173790
[237] Faraci FM (2006). Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol (1985), 100: 739-743
http://dx.doi.org/10.1152/japplphysiol.01044.2005
[238] Al AA, Gassmann M, Ogunshola OO (2012). Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res, 84: 222-225
http://118.145.16.217/magsci/article/article?id=25039267
[239] Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, et al. (2012). Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem, 120: 147-156
http://118.145.16.217/magsci/article/article?id=24930505
[240] Wu JS, Chen XC, Chen H, Shi YQ (2006). A study on blood-brain barrier ultrastructural changes induced by cerebral hypoperfusion of different stages. Neurol Res, 28: 50-58
http://dx.doi.org/10.1179/016164106X91870
[241] Abbott NJ (2004). Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int, 45: 545-552
http://118.145.16.217/magsci/article/article?id=14684729
[242] Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, et al. (2015). Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing, 12: 2
http://dx.doi.org/10.1186/s12979-015-0029-9
[243] Buchweitz-Milton E, Weiss HR (1987). Perfused capillary morphometry in the senescent brain. Neurobiol Aging, 8: 271-276
http://dx.doi.org/10.1016/0197-4580(87)90012-1
[244] Rudick RA, Buell SJ (1983). Integrity of blood-brain barrier to peroxidase in senescent mice. Neurobiol Aging, 4: 283-287
http://dx.doi.org/10.1016/0197-4580(83)90004-0
[245] Rapoport SI, Ohno K, Pettigrew KD (1979). Blood-brain barrier permeability in senescent rats. J Gerontol, 34: 162-169
http://dx.doi.org/10.1093/geronj/34.2.162
[246] Farrall AJ, Wardlaw JM (2009). Blood-brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging, 30: 337-352
http://118.145.16.217/magsci/article/article?id=15268548
[247] Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. (2015). Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 85: 296-302
http://dx.doi.org/10.1016/j.neuron.2014.12.032
[248] Vorbrodt AW, Dobrogowska DH, Ueno M, Tarnawski M (1995). A quantitative immunocytochemical study of blood-brain barrier to endogenous albumin in cerebral cortex and hippocampus of senescence-accelerated mice (SAM). Folia Histochem Cytobiol, 33: 229-237
[249] Pelegri C, Canudas AM, Del VJ, Casadesus G, Smith MA, Camins A, et al. (2007). Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence. Mech Ageing Dev, 128: 522-528
http://dx.doi.org/10.1016/j.mad.2007.07.002
[250] Blau CW, Cowley TR, O’Sullivan J, Grehan B, Browne TC, Kelly L, et al. (2012). The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol Aging, 33: 1005-1023
[251] Hosokawa M, Ueno M (1999). Aging of blood-brain barrier and neuronal cells of eye and ear in SAM mice. Neurobiol Aging, 20: 117-123
http://dx.doi.org/10.1016/S0197-4580(99)00029-9
[252] Chan-Ling T, Hughes S, Baxter L, Rosinova E, McGregor I, Morcos Y, et al. (2007). Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging. Microcirculation, 14: 63-76
http://dx.doi.org/10.1080/10739680601073451
[253] Banks WA, Moinuddin A, Morley JE (2001). Regional transport of TNF-alpha across the blood-brain barrier in young ICR and young and aged SAMP8 mice. Neurobiol Aging, 22: 671-676
http://dx.doi.org/10.1016/S0197-4580(01)00220-2
[254] Bake S, Sohrabji F (2004). 17beta-estradiol differentially regulates blood-brain barrier permeability in young and aging female rats. Endocrinology, 145: 5471-5475
http://dx.doi.org/10.1210/en.2004-0984
[1] Xianglai Xu,Brian Wang,Changhong Ren,Jiangnan Hu,David A. Greenberg,Tianxiang Chen,Liping Xie,Kunlin Jin. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases[J]. A&D, 2017, 8(4): 486-505.
[2] Xavier Castellon,Vera Bogdanova. Chronic Inflammatory Diseases and Endothelial Dysfunction[J]. A&D, 2016, 7(1): 81-89.
[3] Peter M Nilsson. Hemodynamic Aging as the Consequence of Structural Changes Associated with Early Vascular Aging (EVA)[J]. Aging and Disease, 2014, 5(2): 109-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd