Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2017, Vol. 8 Issue (6) : 812-826     DOI: 10.14336/AD.2017.0615
Review |
Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases
Wei Zuo1,Feng Yan2,3,Bo Zhang1,Jiantao Li1,Dan Mei1,*
1Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
2Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
3Department of Neurobiology, Capital Medical University, Beijing, China
Download: PDF(1446 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer’s disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications

Keywords Ginkgo biloba leaves extract      degenerative disorders      antioxidant      neuron protection      anticancer      cardiovascular     
Corresponding Authors: Dan Mei   
Just Accepted Date: 04 July 2017   Issue Date: 03 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Zuo
Feng Yan
Bo Zhang
Jiantao Li
Dan Mei
Cite this article:   
Wei Zuo,Feng Yan,Bo Zhang, et al. Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases[J]. A&D, 2017, 8(6): 812-826.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2017.0615     OR     http://www.aginganddisease.org/EN/Y2017/V8/I6/812
Figure 1.  Structures of EGb 761 constituents.
Figure 2.  Main resources and pathways for oxidant generateon in aging

O2- and NO are produced in various conditions. NOS induces protein nitrosylation as well as the generation of ONOO- by reacting with O2-. SOD detoxifies O2- to H2O2, which is converted to H2O by catalase or GSHPx. OH that is generated from H2O2 leads cell injury by oxidized lipid, protein, DNA and RNA. EGb could exert an antioxidant effect by scavenging free radical, regulating oxidase and antioxidation enzyme, inhibiting lipid/Protein/DNA/RNA peroxidation and protecting mitochondrial respiratory chain.

Figure 3.  Mitochondria mediated apoptosis

Mitochondria are the target of stress injury. The generation of ROS in mitochondria then induces the release of cyt-c by mechanisms related to Bcl-2 family proteins (Bcl-2, Bcl-Xl, Bax, and Bid). Once cyt-c released, it binds to caspase-9 to form a complex which subsequently activates caspase-3 and other caspases, such as caspase-2, -6, -8 and -10. Activated caspase-3 is known to cleave nuclear DNA repair enzymes, which then lead to nuclear DNA damage and finally result in apoptosis. EGb could prevent apoptosis by inhibiting mitochondria-mediated caspases activation.

Figure 4.  Death receptor mediated apoptosis

The extracellular Fas ligand first binds to a receptor, and then binds to FADD protein. This complex activates procaspase-8 into caspase-8. Then, caspase-8 activates caspase-3 and this effector caspase leads to DNA damage and cell death. What is more, Fas ligand such as TNF-α, can also induce NF-κB activation and transcription. EGb protects against apoptosis by decreasing the expression of FasL/FasR and inhibiting NF-κB activation.

[1] Baron-Ruppert G, Luepke NP (2001). Evidence for toxic effects of alkylphenols from Ginkgo biloba in the hen's egg test (HET). Phytomedicine, 8: 133-138
http://dx.doi.org/10.1078/0944-7113-00022
[2] Kressmann S, Muller WE, Blume HH (2002). Pharmaceutical quality of different Ginkgo biloba brands. J Pharm Pharmacol, 54: 1507-669
http://dx.doi.org/10.1211/002235702199
[3] Konczol A, Rendes K, Dekany M, Muller J, Riethmuller E, Balogh GT (2016). Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba. J Pharm Biomed Anal, 131: 167-174
http://dx.doi.org/10.1016/j.jpba.2016.08.032
[4] Liu J, Wang J, Chen X, Guo C, Guo Y, Wang H (2012). Ginkgo biloba extract EGB761 protects against aging-associated diastolic dysfunction in cardiomyocytes of D-galactose-induced aging rat. Oxid Med Cell Longev, 2012: 418748
[5] Ahmed HH, Shousha WG, El-Mezayen HA, El-Toumy SA, Sayed AH, Ramadan AR (2017). Biochemical and molecular evidences for the antitumor potential of Ginkgo biloba leaves extract in rodents. Acta Biochim Pol, 64:25-33
http://dx.doi.org/10.18388/abp.2015_1200
[6] Bucolo C, Marrazzo G, Platania CB, Drago F, Leggio GM, Salomone S (2013). Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. J Diabetes Res, 2013: 432695
[7] Afanas'ev I (2015). Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis, 6: 216-227
http://dx.doi.org/10.14336/AD.2014.0924
[8] Bonomini F, Rodella LF, Rezzani R (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis, 6: 109-120
http://dx.doi.org/10.14336/AD.2014.0305
[9] Pietri S, Maurelli E, Drieu K, Culcasi M. (1997). Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761). J Mol Cell Cardiol, 29: 733-742
http://dx.doi.org/10.1006/jmcc.1996.0316
[10] Gohil K, Packer L (2002). Bioflavonoid-rich botanical extracts show antioxidant and gene regulatory activity. Ann N Y Acad Sci, 957: 70-77
http://dx.doi.org/10.1111/j.1749-6632.2002.tb02906.x
[11] Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR (2002). Ginkgo biloba extract EGb761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol (Noisy-le-grand). 48: 725-731
[12] Shi H, Niki E (1998). Stoichiometric and kinetic studies on Ginkgo biloba extract and related antioxidants. Lipids, 33: 365-370
http://dx.doi.org/10.1007/s11745-998-0216-8
[13] Song J, Liu D, Feng L, Zhang Z, Jia X, Xiao W (2013). Protective Effect of Standardized Extract of Ginkgo biloba against Cisplatin-Induced Nephrotoxicity. Evid Based Complement Alternat Med, 2013: 846126
[14] Kaur N, Dhiman M, Perez-Polo JR, Mantha AK (2015). Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Abeta25-35 -induced neurotoxicity in human neuroblastoma cells. J Neurosci Res, 93: 938-947
http://dx.doi.org/10.1002/jnr.23565
[15] Kwon YS, Ann HS, Nabeshima T, Shin EJ, Kim WK, Jhoo JH, et al. (2004). Selegiline potentiates the effects of EGb 761 in response to ischemic brain injury. Neurochem Int, 45: 157-170
http://118.145.16.217/magsci/article/article?id=14684714
[16] Zhou X, Qi Y, Chen T (2017). Long-term pre-treatment of antioxidant Ginkgo biloba extract EGb-761 attenuates cerebral-ischemia-induced neuronal damage in aged mice. Biomed Pharmacother, 85:256-263
http://dx.doi.org/10.1016/j.biopha.2016.11.013
[17] Aydin D, Perker EG, Karakurt MD, Gurel A, Ayyildiz M, Cevher ŞC, Agar E, Dane S. (2016). Effects of Ginkgo biloba extract on brain oxidative condition after cisplatin exposure. Clin Invest Med, 39: 27511
[18] Abdel-Wahab BA, Abd El-Aziz SM (2012). Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomedicine, 19: 444-450
http://118.145.16.217/magsci/article/article?id=15283629
[19] Zhao Y, Pan R, Li S, Luo Y, Yan F, Yin J, et al. (2014). Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death. Stroke, 45: 1139-1147
http://118.145.16.217/magsci/article/article?id=23696228
[20] Kwon KJ, Lee EJ, Cho KS, Cho DH, Shin CY, Han SH (2015). Ginkgo biloba extract (Egb761) attenuates zinc-induced tau phosphorylation at Ser262 by regulating GSK3beta activity in rat primary cortical neurons. Food Funct, 6: 2058-2067
http://dx.doi.org/10.1039/C5FO00219B
[21] Yeh YC, Liu TJ, Wang LC, Lee HW, Ting CT, Lee WL, et al. (2009). A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br J Pharmacol, 156: 48-61
http://dx.doi.org/10.1111/j.1476-5381.2008.00042.x
[22] Drieu K, Vranckx R, Benassayad C, Haourigi M, Hassid J, Yoa RG, Rapin JR, Nunez EA. (2000). Effect of the extract of Ginkgo biloba (EGb 761) on the circulating and cellular profiles of polyunsaturated fatty acids: correlation with the anti-oxidant properties of the extract. Prostaglandins Leukot Essent Fatty Acids, 63: 293-300
http://dx.doi.org/10.1054/plef.2000.0217
[23] Calviello G, Palozza P, Franceschelli P, Bartoli GM (1997). Low-dose eicosapentaenoic or docosahexaenoic acid administration modifies fatty acid composition and does not affect susceptibility to oxidative stress in rat erythrocytes and tissues. Lipids, 32: 1075-1083
http://dx.doi.org/10.1007/s11745-997-0139-4
[24] Huang SZ, Luo YZ, Wang L, Cai KY. (2005). Effect of ginkgo biloba extract on livers in aged rats. World J Gastroenterol, 11: 132-135
http://dx.doi.org/10.3748/wjg.v11.i1.132
[25] Belviranli M, Okudan N (2015). The effects of Ginkgo biloba extract on cognitive functions in aged female rats: the role of oxidative stress and brain-derived neurotrophic factor. Behav Brain Res, 278: 453-461
http://dx.doi.org/10.1016/j.bbr.2014.10.032
[26] Tozan A, Sehirli O, Omurtag GZ, Cetinel S, Gedik N, Sener G (2007). Ginkgo biloba extract reduces naphthalene-induced oxidative damage in mice. Phytother Res, 21: 72-77
http://dx.doi.org/10.1002/ptr.2027
[27] He YT, Xing SS, Gao L, Wang J, Xing QC, Zhang W. (2014). Ginkgo biloba attenuates oxidative DNA damage of human umbilical vein endothelial cells induced by intermittent high glucose. Pharmazie, 69: 203-207
http://118.145.16.217/magsci/article/article?id=23552787
[28] Marques F, Azevedo F, Johansson B, Oliveira R (2011). Stimulation of DNA repair in Saccharomyces cerevisiae by Ginkgo biloba leaf extract. Food Chem Toxicol, 49: 1361-1366
http://118.145.16.217/magsci/article/article?id=15024492
[29] Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11: 298-300
http://dx.doi.org/10.1093/geronj/11.3.298
[30] Schwarzkopf TM, Koch KA, Klein J (2013). Neurodegeneration after transient brain ischemia in aged mice: beneficial effects of bilobalide. Brain Res, 1529: 178-187
http://118.145.16.217/magsci/article/article?id=19632851
[31] Sastre J, Pallardó FV, Viña J (2000). Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life, 49: 427-435
http://dx.doi.org/10.1080/152165400410281
[32] Rhein V, Eckert A (2007). Effects of Alzheimer's amyloid-beta and tau protein on mitochondrial function -- role of glucose metabolism and insulin signallin. Arch Physiol Biochem, 113: 131-141
http://dx.doi.org/10.1080/13813450701572288
[33] Rhein V, Giese M, Baysang G, Meier F, Rao S, Schulz KL, et al. (2010). Ginkgo biloba extract ameliorates oxidative phosphorylation performance and rescues abeta-induced failure. PLoS One, 5: e12359
http://dx.doi.org/10.1371/journal.pone.0012359
[34] Abdel-Kader R, Hauptmann S, Keil U, Scherping I, Leuner K, Eckert A, et al. (2007). Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761). Pharmacological Research, 56: 493-502
http://118.145.16.217/magsci/article/article?id=14369646
[35] Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder JB, et al. (2007). Mitochondrial dysfunction: the first domino in brain aging and Alzheimer's disease?. Antioxid Redox Signal, 9: 1659-1675
http://dx.doi.org/10.1089/ars.2007.1763
[36] Sastre J, Millan A, García de la Asunción J, Plá R, Juan G, Pallardó, O'Connor E, Martin JA, Droy-Lefaix MT, Viña J (1998). A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med, 24: 298-304
http://dx.doi.org/10.1016/S0891-5849(97)00228-1
[37] de la Asuncion JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J. (1996). Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J, 10: 333-338
[38] Eckert A, Keil U, Scherping I, Hauptmann S, Muller WE (2005). Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N Y Acad Sci, 1056: 474-485
http://dx.doi.org/10.1196/annals.1352.023
[39] Zhao XD, Dong N, Man HT, Fu ZL, Zhang MH, Kou S, et al. (2013). Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells. Biomed Rep, 1: 797-801
http://dx.doi.org/10.3892/br.2013.150
[40] Shi C, Xiao S, Liu J, Guo K, Wu F, Yew DT, et al. (2010). Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice. Platelets, 21: 373-379
http://dx.doi.org/10.3109/09537100903511448
[41] Nevado J, Sanz R, Sanchez-Rodriguez C, Garcia-Berrocal JR, Martin-Sanz E, Gonzalez-Garcia JA, et al. (2010). Ginkgo biloba extract (EGb761) protects against aging-related caspase-mediated apoptosis in rat cochlea. Acta Otolaryngol, 130: 1101-1112
http://dx.doi.org/10.3109/00016481003713657
[42] Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, Mattson MP. (1999). Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol, 93: 53-71
http://dx.doi.org/10.1016/S0165-5728(98)00190-8
[43] Schindowski K, Leutner S, Kressmann S, Eckert A, Müller WE (2001). Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761). J Neural Transm (Vienna), 108: 969-978
http://dx.doi.org/10.1007/s007020170016
[44] Shi C, Wu F, Yew DT, Xu J, Zhu Y (2010). Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis, 15: 715-727
http://dx.doi.org/10.1007/s10495-010-0492-x
[45] Guo M, Suo Y, Gao Q, Du H, Zeng W, Wang Y, et al. (2015). The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF-alpha induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Heliyon, 1: e00020
http://dx.doi.org/10.1016/j.heliyon.2015.e00020
[46] Kim KS, Rhee KH, Yoon JH, Lee JG, Lee JH, Yoo JB (2005). Ginkgo biloba extract (EGb 761) induces apoptosis by the activation of caspase-3 in oral cavity cancer cells. Oral Oncol, 41: 383-389
http://dx.doi.org/10.1016/j.oraloncology.2004.09.013
[47] Jiang XY, Qian LP, Zheng XJ, Xia YY, Jiang YB, Sun DY (2009). Interventional effect of Ginkgo biloba extract on the progression of gastric precancerous lesions in rats. J Dig Dis, 10: 293-299
http://dx.doi.org/10.1111/j.1751-2980.2009.00398.x
[48] Wang Y, Pei DS, Ji HX, Xing SH (2008). Protective effect of a standardized Ginkgo extract (ginaton) on renal ischemia/reperfusion injury via suppressing the activation of JNK signal pathway. Phytomedicine, 15: 923-931
http://118.145.16.217/magsci/article/article?id=14372278
[49] Longpré F, Garneau P, Christen Y, Ramassamy C. (2006). Protection by EGb 761 against β-amyloid-induced neurotoxicity: involvement of NF-κB, SIRT1, and MAPKs pathways and inhibition of amyloid fibril formation. Free Radic Biol Med, 41: 1781-1794
http://dx.doi.org/10.1016/j.freeradbiomed.2006.08.015
[50] Chen YJ, Tsai KS, Chiu CY, Yang TH, Lin TH, Fu WM, et al. (2013). EGb761 inhibits inflammatory responses in human chondrocytes and shows chondroprotection in osteoarthritic rat knee. J Orthop Res, 31: 1032-1038
http://dx.doi.org/10.1002/jor.22339
[51] Hirata BKS, Banin RM, Dornellas AP, de Andrade IS, Zemdegs JCS, Caperuto LC, et al. (2015). Ginkgo biloba Extract Improves Insulin Signaling and Attenuates Inflammation in Retroperitoneal Adipose Tissue Depot of Obese Rats. Mediators Inflamm, 2015: 419106
[52] Tanigawa S, Fujii M, Hou DX (2008). Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells. Biosci Biotechnol Biochem, 72: 797-804
http://dx.doi.org/10.1271/bbb.70680
[53] Zhang Z, Chen S, Mei H, Xuan J, Guo X, Couch L, et al. (2015). Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells. Scientific reports, 5:14633-14645
http://dx.doi.org/10.1038/srep14633
[54] You OH, Kim SH, Kim B, Sohn EJ, Lee HJ, Shim BS, et al. (2013). Ginkgetin induces apoptosis via activation of caspase and inhibition of survival genes in PC-3 prostate cancer cells. Bioorg Med Chem Lett, 23: 2692-2695
http://118.145.16.217/magsci/article/article?id=20709699
[55] Bai Y, Zhao F, Li Y, Wang L, Fang XJ, Wang CY (2015). Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells. Int J Clin Exp Med, 8: 20977-20982
[56] Chen XH, Miao YX, Wang XJ, Yu Z, Geng MY, Han YT, et al. (2011) Effects of Ginkgo biloba extract EGb761 on human colon adenocarcinoma cells. Cell Physiol Biochem, 27: 227-232
http://118.145.16.217/magsci/article/article?id=21303362
[57] Qian Y, Xia L, Shi W, Sun JJ, Sun YQ (2016). The effect of EGb on proliferation of gastric carcinoma SGC7901 cells. Clin Transl Oncol,18: 521-526
http://dx.doi.org/10.1007/s12094-015-1399-3
[58] Dutta-Roy AK, Gordon MJ, Kelly C, Hunter K, Crosbie L, Knight-Carpentar T, et al. (1999). Inhibitory effect of Ginkgo biloba extract on human platelet aggregation. Platelets, 10: 298-305
http://dx.doi.org/10.1080/09537109975933
[59] Santos RF, Galduroz JC, Barbieri A, Castiglioni ML, Ytaya LY, Bueno OF (2003). Cognitive performance, SPECT, and blood viscosity in elderly non-demented people using Ginkgo biloba. Pharmacopsychiatry, 36: 127-133
[60] Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, et al. (2007). Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci, 25: 509-514
http://118.145.16.217/magsci/article/article?id=14253581
[61] Tsai KL, Chang YL, Huang PH, Cheng YH, Liu DH, Chen HY, Kao CL. (2016). Ginkgo biloba extract inhibits oxidized low-density lipoprotein (oxLDL)-induced matrix metalloproteinase activation by the modulation of the lectin-like oxLDL receptor 1-regulated signaling pathway in human umbilical vein endothelial cells. J Vasc Surg, 63: 204-215
http://dx.doi.org/10.1016/j.jvs.2014.05.098
[62] Lin FY, Chen YH, Chen YL, Wu TC, Li CY, Chen JW, Lin SJ. (2007). Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation. J Agric Food Chem, 55: 1977-1984
http://dx.doi.org/10.1021/jf062945r
[63] Wang Y, Wang R, Wang Y, Peng R, Wu Y, Yuan Y (2015). Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-kappaB/IkappaBalpha, and Bcl-2/Bax signaling. Drug Des Devel Ther, 9: 6303-6317
[64] Tsai HY, Huang PH, Lin FY, Chen JS, Lin SJ, Chen JW (2013). Ginkgo biloba extract reduces high-glucose-induced endothelial reactive oxygen species generation and cell adhesion molecule expression by enhancing HO-1 expression via Akt/eNOS and p38 MAP kinase pathways. Eur J Pharm Sci, 48: 803-811
http://118.145.16.217/magsci/article/article?id=19841037
[65] Li Z, Ya K, Xiao-Mei W, Lei Y, Yang L, Ming QZ (2008). Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1alpha expression and HIF-1DNA-binding activity. J Cell Biochem, 103: 564-575
http://dx.doi.org/10.1002/jcb.21427
[66] Jiang M, Li J, Peng Q, Liu Y, Liu W, Luo C, Peng J, Li J, Yung KK, Mo Z. (2014). Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1_2 and p38 MAPK activation. J Neuroinflammation, 11: 167-185
http://dx.doi.org/10.1186/s12974-014-0167-6
[67] Kim MS, Bang JH, Lee J, Han JS, Baik TG, Jeon WK (2016). Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine, 23: 1356-1364
http://dx.doi.org/10.1016/j.phymed.2016.07.013
[68] Castellon X, Bogdanova V (2016). Chronic Inflammatory Diseases and Endothelial Dysfunction. Aging Dis, 7: 81-89
http://dx.doi.org/10.14336/AD.2015.0803
[69] Krieglstein J, Beck T, Seibert A (1986). Influence of an extract of Ginkgo biloba on cerebral blood flow and metabolism. Life Sci., 39: 2327-2334
http://dx.doi.org/10.1016/0024-3205(86)90663-6
[70] Cho JH, Sung JH, Cho EH, Won CK, Lee HJ, Kim MO, Koh PO (2009). Gingko biloba Extract (EGb 761) prevents ischemic brain injury by activation of the Akt signaling pathway. Am J Chin Med, 37: 547-555
http://dx.doi.org/10.1142/S0192415X09007041
[71] Urikova A, Babusikova E, Dobrota D, Drgova A, Kaplan P, Tatarkova Z, et al. (2006). Impact of Ginkgo Biloba Extract EGb 761 on ischemia/reperfusion - induced oxidative stress products formation in rat forebrain. Cell Mol Neurobiol, 26: 1343-1353
[72] Koh PO (2012). Gingko biloba extract (EGb 761) attenuates ischemic brain injury-induced reduction in Ca(2+) sensor protein hippocalcin. Lab Anim Res, 28: 199-204
http://dx.doi.org/10.5625/lar.2012.28.3.199
[73] Sung JH, Shah FA, Cho EH, Gim SA, Jeon SJ, Kim KM, et al. (2012). Ginkgo biloba extract (EGb 761) prevents the ischemic brain injury-induced decrease in parvalbumin expression. Lab Anim Res, 28: 77-82
http://dx.doi.org/10.5625/lar.2012.28.2.77
[74] Zhang Z, Peng D, Zhu H, Wang X (2012). Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull, 87: 193-198
http://118.145.16.217/magsci/article/article?id=24350911
[75] Lang D, Kiewert C, Mdzinarishvili A, Schwarzkopf TM, Sumbria R, Hartmann J, et al. (2011). Neuroprotective effects of bilobalide are accompanied by a reduction of ischemia-induced glutamate release in vivo. Brain Res, 1425: 155-163
http://118.145.16.217/magsci/article/article?id=21257629
[76] Zeng X, Liu M, Yang Y, Li Y, Asplund K (2005). Ginkgo biloba for acute ischaemic stroke. Cochrane Database Syst Rev: CD003691
[77] Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis, 6: 331-341
http://dx.doi.org/10.14336/AD.2015.0825
[78] Mix JA, Crews WD Jr (2000). An examination of the efficacy of Ginkgo biloba extract EGb761 on the neuropsychologic functioning of cognitively intact older adults. J Altern Complement Med, 6: 219-231
http://dx.doi.org/10.1089/acm.2000.6.219
[79] Christen Y, Maixent JM (2002). What is Ginkgo biloba extract EGb761? An overview-From molecular biology to clinical medicine. Cell Mol Biol (Noisy-le-grand). 48: 601-608
[80] Williams B, Watanabe CM, Schultz PG, Rimbach G, Krucker T (2004). Age-related effects of Ginkgo biloba extract on synaptic plasticity and excitability. Neurobiol Aging, 25: 955-962
http://118.145.16.217/magsci/article/article?id=14684311
[81] Wan W, Zhang C, Danielsen M, Li Q, Chen W, Chan Y, et al. (2016). EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse. Exp Gerontol, 81: 92-100
http://dx.doi.org/10.1016/j.exger.2016.05.007
[82] Bastianetto S, Quirion R (2002). Natural extracts as possible protective agents of brain aging. Neurobiol Aging, 23: 891-897
http://dx.doi.org/10.1016/S0197-4580(02)00024-6
[83] Yao ZX, Han Z, Drieu K, Papadopoulos V (2004). Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. J Nutr Biochem, 15: 749-756
http://118.145.16.217/magsci/article/article?id=14721561
[84] Stein C, Hopfeld J, Lau H, Klein J. (2015). Effects of Ginkgo biloba Extract EGb 761, Donepezil and their Combination on Central Cholinergic Function in Aged Rats. J Pharm Pharm Sci, 18: 634-646
http://dx.doi.org/10.18433/J3WC8V
[85] Cieza A, Maier P, Poppel E (2003). Effects of Ginkgo biloba on mental functioning in healthy volunteers. Arch Med Res, 34: 373-381
http://118.145.16.217/magsci/article/article?id=14486956
[86] Mix JA, Crews WDJr., (2002). A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761 in a sample of cognitively intact older adults: neuropsychological findings. Hum Psychopharmacol, 17: 267-277
http://dx.doi.org/10.1002/hup.412
[87] Kaschel R (2011). Specific memory effects of Ginkgo biloba extract EGb 761 in middle-aged healthy volunteers. Phytomedicine, 18: 1202-1207
http://118.145.16.217/magsci/article/article?id=15283240
[88] Sakatani K, Tanida M, Hirao N, Takemura N (2014). Ginkobiloba extract improves working memory performance in middle-aged women role of asymmetry of prefrontal cortex activity during a working memory task. Adv Exp Med Biol. 8: 295-301
[89] Tan MS, Yu JT, Tan CC, Wang HF, Meng XF, Wang C, et al. (2015). Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis, 43: 589-603
[90] Gauthier S, Schlaefke S (2014). Efficacy and tolerability of Ginkgo biloba extract EGb 761(R) in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging, 9: 2065-2077
[91] Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M (2015). Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci, 1: 14-25
http://dx.doi.org/10.1186/s40780-015-0014-7
[92] Vellas B, Coley N, Ousset P-J, Berrut G, Dartigues J-F, Dubois B, et al. (2012). Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol, 11: 851-859
http://118.145.16.217/magsci/article/article?id=23973366
[93] Persson J, Bringlov E, Nilsson LG, Nyberg L (2004). The memory-enhancing effects of Ginseng and Ginkgo biloba in healthy volunteers. Psychopharmacology (Berl), 172: 430-434
http://dx.doi.org/10.1007/s00213-003-1675-8
[94] Canter PH, Ernst E (2007). Ginkgo biloba is not a smart drug: an updated systematic review of randomised clinical trials testing the nootropic effects of G. biloba extracts in healthy people. Hum Psychopharmacol, 22: 265-278
http://dx.doi.org/10.1002/hup.843
[95] Kim MS, Lee JI, Lee WY, Kim SE (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease. Phytother Res, 18: 663-666
http://dx.doi.org/10.1002/ptr.1486
[96] Kang X, Chen J, Xu Z, Li H, Wang B (2007). Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol In Vitro, 21: 1003-1009
http://118.145.16.217/magsci/article/article?id=14436960
[97] Rojas P, Montes S, Serrano-Garcia N, Rojas-Castaneda J (2009). Effect of EGb761 supplementation on the content of copper in mouse brain in an animal model of Parkinson's disease. Nutrition, 25: 482-485
http://118.145.16.217/magsci/article/article?id=15284585
[98] Tanaka K, Galduroz RF, Gobbi LT, Galduróz JC (2013). Ginkgo biloba extract in an animal model of Parkinson's disease: a systematic review. Curr Neuropharmacol, 11: 430-435
http://118.145.16.217/magsci/article/article?id=19712207
[99] Han D, Cao C, Su Y, Wang J, Sun J, Chen H, et al. (2016). Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/beta-catenin-VEGF signaling pathway in Lewis lung cancer. J Ethnopharmacol, 192: 406-412
http://dx.doi.org/10.1016/j.jep.2016.09.018
[100] Cai Z, Wang C, Liu P, Shen P, Han Y, Liu N (2016). Ginkgo biloba extract in combination with sorafenib is clinically safe and tolerable in advanced hepatocellular carcinoma patients. Phytomedicine, 23: 1295-1300
http://dx.doi.org/10.1016/j.phymed.2016.07.002
[101] Qian Y, Xia L, Shi W, Sun JJ, Sun YQ (2016). The effect of EGB on proliferation of gastric carcinoma SGC7901 cells. Clin Transl Oncol, 18: 521-526
http://dx.doi.org/10.1007/s12094-015-1399-3
[102] Liu SQ, Xu CY, Qin MB, Tan L, Zhuge CF, Mao YB, et al. (2015). Ginkgo biloba extract enhances chemotherapy sensitivity and reverses chemoresistance through suppression of the KSR1-mediated ERK1/2 pathway in gastric cancer cells. Oncol Rep, 33: 2871-2882
http://dx.doi.org/10.3892/or.2015.3923
[103] Park YJ, Kim MJ, Kim HR, Yi MS, Chung KH, Oh SM (2013). Chemopreventive effects of Ginkgo biloba extract in estrogen-negative human breast cancer cells. Arch Pharm Res, 36: 102-108
http://118.145.16.217/magsci/article/article?id=19521746
[104] Tsai JR Liu LP, Chen YH, Chou SH, Yang MC, Cheng YJ, Hwang JJ, Yin WH, Chong IW (2014). Ginkgo biloba Extract Decreases Non-Small Cell Lung Cancer Cell Migration by Downregulating Metastasis-Associated Factor Heat-Shock Protein 27. PLoS One, 9: e91331
http://dx.doi.org/10.1371/journal.pone.0091331
[105] Chen XH, Miao YX, Wang XJ, Yu Z, Geng MY, Han YT, Wang LX (2011). Effects of Ginkgo biloba extract EGb761 on human colon adenocarcinoma cells. Cell Physiol Biochem, 27: 227-232
http://118.145.16.217/magsci/article/article?id=21303362
[106] Kubota Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, Shinozuka K, Kunitomo M. (2001). Ginkgo biloba extract-induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci, 69: 2327-2336
http://dx.doi.org/10.1016/S0024-3205(01)01303-0
[107] Kubota Y, Tanaka N, Kagota S, Nakamura K, Kunitomo M, Umegaki K, et al. (2006). Effects of Ginkgo biloba extract on blood pressure and vascular endothelial response by acetylcholine in spontaneously hypertensive rats. J Pharm Pharmacol, 58: 243-249
http://dx.doi.org/10.1211/jpp.58.2.0012
[108] Han L, Li M (2013). Protection of vascular endothelial cells injured by angiotensin II and hypoxia in vitro by Ginkgo biloba (Ginaton). Vasc Endovascular Surg, 47: 546-550
http://dx.doi.org/10.1177/1538574413497106
[109] Campos-Toimil M, Luqnier C, Droy-Lefaix MT, Takeda K. (2000). Inhibition of type 4 phosphodiesterase by rolipram and Ginkgo biloba extract (EGb 761) decreases agonist-induced rises in internal calcium in human endothelial cells. Arterioscler Thromb Vasc Biol, 20: E34-E40
http://dx.doi.org/10.1161/01.ATV.20.9.e34
[110] Rodriguez M, Ringstad L, Schafer P, Just S, Hofer HW, Malmsten M, et al. (2007). Reduction of atherosclerotic nanoplaque formation and size by Ginkgo biloba (EGb 761) in cardiovascular high-risk patients. Atherosclerosis, 192: 438-444
http://dx.doi.org/10.1016/j.atherosclerosis.2007.02.021
[111] Siegel G, Schafer P, Winkler K, Malmsten M (2007). Ginkgo biloba (EGb 761) in arteriosclerosis prophylaxis. Wien Med Wochenschr, 157: 288-294
http://dx.doi.org/10.1007/s10354-007-0426-6
[112] Brinkley TE, Lovato JF, Arnold AM, Furberg CD, Kuller LH, Burke GL, et al. (2010). Effect of Ginkgo biloba on blood pressure and incidence of hypertension in elderly men and women. Am J Hypertens, 23: 528-533
http://dx.doi.org/10.1038/ajh.2010.14
[1] Jue Wang,Bin Cao,Haiping Zhao,Juan Feng. Emerging Roles of Ganoderma Lucidum in Anti-Aging[J]. A&D, 2017, 8(6): 691-707.
[2] Yanjie Gao,Yifo Wei,Yuqing Wang,Fang Gao,Zhigang Chen. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent[J]. A&D, 2017, 8(6): 778-791.
[3] Sheng Peng,Ting Shen,Jie Liu,Brian Tomlinson,Huimin Sun,Xiaoli Chen,Paul Chan,YaShu Kuang,Liang Zheng,Hong Wu,Xugang Ding,Dingguang Qian,Yixin Shen,Pingjin Gao,Huimin Fan,Zhongmin Liu,Yuzhen Zhang. Uncontrolled Hypertension Increases with Age in an Older Community-Dwelling Chinese Population in Shanghai[J]. A&D, 2017, 8(5): 558-569.
[4] Nopporn Thangthaeng,Margaret Rutledge,Jessica M. Wong,Philip H. Vann,Michael J. Forster,Nathalie Sumien. Metformin Impairs Spatial Memory and Visual Acuity in Old Male Mice[J]. A&D, 2017, 8(1): 17-30.
[5] Xin Fu,QiuHong Wang,ZhiBin Wang,HaiXue Kuang,Pinghui Jiang. Danggui-Shaoyao-San: New Hope for Alzheimer's Disease[J]. A&D, 2016, 7(4): 502-513.
[6] Ahmet Yalcin,Volkan Atmis,Ozlem Karaarslan Cengiz,Esat Cinar,Sevgi Aras,Murat Varli,Teslime Atli. Evaluation of Cardiac Autonomic Functions in Older Parkinson’s Disease Patients: a Cross-Sectional Study[J]. A&D, 2016, 7(1): 28-35.
[7] Karen L. Saban,Herbert L. Mathews,Holli A. DeVon,Linda W. Janusek. Epigenetics and Social Context: Implications for Disparity in Cardiovascular Disease[J]. Aging and Disease, 2014, 5(5): 346-355.
[8] Qun S. Zang,Steven E. Wolf,Joseph P. Minei. Sepsis-induced Cardiac Mitochondrial Damage and Potential Therapeutic Interventions in the Elderly[J]. Aging and Disease, 2014, 5(2): 137-149.
[9] Konstantinos Stamatiou, Eleni Stamatopoulou, George Christopoulos. Is Bilateral Orchiectomy for Metastatic Prostate Cancer Treatment Associated with High Cardiovascular Risk?[J]. Aging and Disease, 2013, 4(6): 381-384.
[10] Hugo C. D. Souza, Geisa C. S. V. Tezini. Autonomic Cardiovascular Damage during Post-menopause: the Role of Physical Training[J]. Aging and Disease, 2013, 4(6): 320-328.
[11] Francisco J. Félix-Redondo,Maria Grau,Daniel Fernández-Bergés. Cholesterol and Cardiovascular Disease in the Elderly. Facts and Gaps[J]. Aging and Disease, 2013, 4(3): 154-169.
[12] João Luis Carvalho-de-Souza,Wamberto A. Varanda,Rita C. Tostes,Andreia Z. Chignalia. BK Channels in Cardiovascular Diseases and Aging[J]. Aging and Disease, 2013, 4(1): 38-49.
[13] Ahmed H Abdelhafiz,Boon Eng Loo,Nicola Hensey,Claire Bailey,Alan Sinclair. The U-shaped Relationship of Traditional Cardiovascular Risk Factors and Adverse Outcomes in Later Life[J]. Aging and Disease, 2012, 3(6): 454-464.
[14] Guarner Veronica,Rubio-Ruiz Maria Esther. Aging, Metabolic Syndrome and the Heart[J]. Aging and Disease, 2012, 3(3): 269-279.
[15] Sasanka Chakrabarti,Soumyabrata Munshi,Kalpita Banerjee,Ishita Guha Thakurta,Maitrayee Sinha,Maria Bindu Bagh. Mitochondrial Dysfunction during Brain Aging: Role of Oxidative Stress and Modulation by Antioxidant Supplementation[J]. Aging and Disease, 2011, 2(3): 242-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd