Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2017, Vol. 8 Issue (5) : 662-676     DOI: 10.14336/AD.2017.0713
Review |
Aging, Metabolism, and Cancer Development: from Peto’s Paradox to the Warburg Effect
Tia R. Tidwell1,2,Kjetil Søreide2,3,4,Hanne R. Hagland1,2,*
1Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
2Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
3Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
4Department of Clinical Medicine, University of Bergen, Bergen, Norway
Download: PDF(1084 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg’s theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg’s data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto’s paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto’s paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.

Keywords Cancer      aging      mitochondria      metabolism      Warburg effect      Peto’s paradox      epigenetics     
Corresponding Authors: Hanne R. Hagland   
Just Accepted Date: 14 July 2017   Issue Date: 27 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tia R. Tidwell
Kjetil Søreide
Hanne R. Hagland
Cite this article:   
Tia R. Tidwell,Kjetil Søreide,Hanne R. Hagland. Aging, Metabolism, and Cancer Development: from Peto’s Paradox to the Warburg Effect[J]. A&D, 2017, 8(5): 662-676.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2017.0713     OR     http://www.aginganddisease.org/EN/Y2017/V8/I5/662
Figure 1.  As animals age, there is an accumulation of dysfunction

This affects the mitochondria to a great extent and a higher metabolic rate provides further amplification, reflected by the slope in this line. Once the dysfunction passes a threshold and the cell can no longer compensate, a cancerous transition may occur. The difference in resting metabolic rate (RMR) and their relative cancer development can be seen between large and small animals, with large animals having a low RMR and late or nonexistent cancer development. While RMR may not increase in larger individuals within species, metabolic stress accumulates at a faster rate and the individual can reach the dysfunctional threshold at an earlier timepoint, as exemplified here by the obese human figure having a shifted cancer risk.

Figure 2.  Tumors rarely occur following acute injury to cellular respiration and considerable time is required for non-oxidative energy metabolism (i.e. glycolysis, TCA cycle via substrate-level phosphorylation) to replace oxidative phosphorylation (OXPHOS) as the dominant energy generator of the cell

As minor OXPHOS damages accumulated over time, the cell uses substrate-level phosphorylation to compensate gradually for the energy debt. This compensatory effect, by increasing the uptake of glucose and glutamine to be broken down for ATP production, is a well-known hallmark of cancer called “the Warburg effect”. Cells that undergo a Warburg transition and switch their metabolism to glycolysis and glutaminolysis produce increased levels of substrates that can have many downstream effects. Only glucose metabolism is highlighted here, with the solid arrows denoting the increased reliance on glycolysis and production of lactate, and dotted arrows denoting decreased activity in the remainder of the pathway. This translates to lowered production of acetyl-coenzyme-A (acetyl-CoA) from pyruvate, activity of the TCA cycle, and production of precursors necessary to carry out OXPHOS. Also, mutations of key TCA cycle enzymes commonly found in cancer are shown, such as isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH), as well as substrates accumulated due to their alterations. Abbreviations: ECM, extracellular matrix; IGF, insulin growth factor; SAM, s-adenosylmethionine; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; ATP, adenosine triphosphate; AMPK, AMP-activated protein kinase.

[1] Vijg J, Busuttil RA, Bahar R, Dolle ME (2005). Aging and genome maintenance. Ann N Y Acad Sci, 1055: 35-47
http://dx.doi.org/10.1196/annals.1323.007
[2] Peto R (1977) Epidemiology, Multistage Models, and Short-term Mutagenicity Tests. In The Origins of Human Cancer pp. 1403-1428, NY: Cold Spring Harbor Conferences on Cell Proliferation
[3] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136: E359-E386
http://dx.doi.org/10.1002/ijc.29210
[4] Keil G, Cummings E, de Magalhaes JP (2015). Being cool: how body temperature influences ageing and longevity. Biogerontology, 16: 383-397
http://dx.doi.org/10.1007/s10522-015-9571-2
[5] Horvath S (2013). DNA methylation age of human tissues and cell types. Genome Biol, 14
[6] Bell JT, Spector TD (2011). A twin approach to unraveling epigenetics. Trends Genet, 27: 116-125
http://118.145.16.217/magsci/article/article?id=15400944
[7] Johnson SC, Rabinovitch PS, Kaeberlein M (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493: 338-345
http://118.145.16.217/magsci/article/article?id=19745546
[8] Kennedy Brian K, Lamming Dudley W (2016). The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab, 23: 990-1003
http://dx.doi.org/10.1016/j.cmet.2016.05.009
[9] Bonomini F, Rodella LF, Rezzani R (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis, 6: 109-120
http://dx.doi.org/10.14336/AD.2014.0305
[10] DeBerardinis RJ, Chandel NS (2016). Fundamentals of cancer metabolism. Sci Adv, 2: e1600200
http://dx.doi.org/10.1126/sciadv.1600200
[11] Rozhok AI, Salstrom JL, DeGregori J (2014). Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging (Albany NY), 6: 1033-1048
[12] Moore DL, Jessberger S, Henderson KA, Gottschling DE, Pelletier L, Yamashita YM, et al. (2016). Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells. Trends Cell Biol, 0: 723-728
[13] Kauppila TES, Kauppila JHK, Larsson N-G (2016). Mammalian Mitochondria and Aging: An Update. Cell Metab, 25
[14] Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290: 457-465
http://dx.doi.org/10.1038/290457a0
[15] Harman D (2009). Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology, 10: 773-781
http://118.145.16.217/magsci/article/article?id=17215006
[16] Ranjan M, Gruber J, Ng LF, Halliwell B (2013). Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans. Free Radic Biol Med, 63: 381-389
http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.025
[17] Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002). Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene, 286: 135-141
http://dx.doi.org/10.1016/S0378-1119(01)00814-9
[18] Hoch FL (1992). Cardiolipins and biomembrane function. Biochim Biophys Acta Rev Biomembr, 1113: 71-133
http://dx.doi.org/10.1016/0304-4157(92)90035-9
[19] Fry M, Green DE (1981). Cardiolipin Requirement for Electron Transfer in Complex I and IT1 of the Mitochondrial Respiratory Chain*. J Biol Chem, 256: 1874-1880
[20] Claypool SM (2009). Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta, 1788: 2059-2068
http://dx.doi.org/10.1016/j.bbamem.2009.04.020
[21] Nunnari J, Suomalainen A (2012). Mitochondria: in sickness and in health. Cell, 148: 1145-1159
http://118.145.16.217/magsci/article/article?id=24396097
[22] Kotiadis VN, Duchen MR, Osellame LD (2014). Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta, 1840: 1254-1265
http://dx.doi.org/10.1016/j.bbagen.2013.10.041
[23] Nicolas E, Golemis EA, Arora S (2016). POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene, 590: 128-141
http://dx.doi.org/10.1016/j.gene.2016.06.031
[24] Zhou H, Saito S, Piao G, Liu ZP, Wang J, Horimoto K, et al. (2011). Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression. BMC Syst Biol, 5 (Suppl 1): S16
http://dx.doi.org/10.1186/1752-0509-5-S1-S16
[25] Popanda O, Fox G, Thielmann HW (1998). Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta, 1397: 102-117
http://dx.doi.org/10.1016/S0167-4781(97)00229-7
[26] Chandel NS (2014). Mitochondria as signaling organelles. BMC Biol, 12: 34
http://dx.doi.org/10.1186/1741-7007-12-34
[27] Whelan SP, Zuckerbraun BS (2013). Mitochondrial signaling: forwards, backwards, and in between. Oxid Med Cell Longev, 2013: 351613
[28] Konieczna A, Szczepanska A, Sawiuk K, Wegrzyn G, Lyzen R (2015). Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol, 16: 16
http://dx.doi.org/10.1186/s12860-015-0062-8
[29] Walther V, Alison MR (2016). Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers. Wiley Interdiscip Rev Dev Biol, 5: 103-117
http://dx.doi.org/10.1002/wdev.203
[30] Chinnery PF, Dimauro PS, Shanske S, Schon PEA, Zeviani M, Mariotti C, et al. (2004). Risk of developing a mitochondrial DNA deletion disorder. Lancet, 364: 592-596
http://dx.doi.org/10.1016/S0140-6736(04)16851-7
[31] Chinnery PF (2015). Mitochondrial disease in adults: what ’s old and what’s new?. EMBO Mol Med, 7: 1503-1512
http://dx.doi.org/10.15252/emmm.201505079
[32] Lightowlers RN, Taylor RW, Turnbull DM (2015). Mutations causing mitochondrial disease: What is new and what challenges remain?. Science, 349: 1494-1499
http://dx.doi.org/10.1126/science.aac7516
[33] Larsson NG (2010). Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem, 79: 683-706
http://dx.doi.org/10.1146/annurev-biochem-060408-093701
[34] Payne BAI, Chinnery PF (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta, Bioenergetics, 1847: 1347-1353
http://dx.doi.org/10.1016/j.bbabio.2015.05.022
[35] Schrodinger E (1992) What is life?: With "mind and matter" and autobiographical sketches., Cambridge University Press, Cambridge, UK
[36] Veech RL, Chance B, Kashiwaya Y, Lardy Ha, Cahill GF (2001). Ketone bodies, Potential Therapeutic Uses. IUBMB Life, 51: 241-247
http://dx.doi.org/10.1080/152165401753311780
[37] Veech RL, Kashiwaya Y, Gates DN, King MT, Clarke K (2002). The energetics of ion distribution: the origin of the resting electric potential of cells. IUBMB Life, 54: 241-252
http://dx.doi.org/10.1080/15216540215678
[38] Mihaylova MM, Shaw RJ (2013). The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol, 13: 1016-1023
[39] Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev, 18: 3004-3009
http://dx.doi.org/10.1101/gad.1255404
[40] Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, et al. (2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature, 470: 404-408
http://dx.doi.org/10.1038/nature09706
[41] Kahn BB, Alquier T, Carling D, Hardie DG (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 1: 15-25
http://dx.doi.org/10.1016/j.cmet.2004.12.003
[42] Shackelford DB, Shaw RJ (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer, 9: 563-575
http://dx.doi.org/10.1038/nrc2676
[43] Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2: 28
http://dx.doi.org/10.1186/1475-4924-2-28
[44] Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res, 62: 3659-3662
[45] Wingo SN, Gallardo TD, Akbay EA, Liang M-C, Contreras CM, Boren T, et al. (2009). Somatic LKB1 Mutations Promote Cervical Cancer Progression. PLoS One, 4: e5137
http://dx.doi.org/10.1371/journal.pone.0005137
[46] Carling D, Zammit VA, Hardie DG (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett, 223: 217-222
http://dx.doi.org/10.1016/0014-5793(87)80292-2
[47] Zhan Y, Ginanni N, Tota MR, Wu M, Bays NW, Richon VM, et al. (2008). Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin Cancer Res, 14: 5735-5742
http://dx.doi.org/10.1158/1078-0432.CCR-07-5074
[48] Chajès V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006). Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Res, 66: 5287-5294
http://dx.doi.org/10.1158/0008-5472.CAN-05-1489
[49] Brusselmans K, Schrijver ED (2005). RNA Interference-Mediated Silencing of the Acetyl-CoA-Carboxylase-α Gene Induces Growth Inhibition and Apoptosis of Prostate Cancer Cells. Cancer Res: 6719-6726
[50] Almeida A, Moncada S, Bolaños JP (2004). Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol, 6: 45-51
http://dx.doi.org/10.1038/ncb1080
[51] Sancho P, Barneda D, Heeschen C (2016). Hallmarks of cancer stem cell metabolism. Br J Cancer, 114: 1305-1312
http://dx.doi.org/10.1038/bjc.2016.152
[52] Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK (2015). AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov, 1: 15063
http://dx.doi.org/10.1038/cddiscovery.2015.63
[53] Anisimov VN (2015). Metformin for cancer and aging prevention: is it a time to make the long story short?. Oncotarget, 6: 39398-39407
http://dx.doi.org/10.18632/oncotarget.6347
[54] Azoulay L, Dell/’Aniello S, Gagnon B, Pollak M, Suissa S (2011). Metformin and the incidence of prostate cancer in patients with type 2 diabetes. Cancer Epidemiol Biomarkers Prev, 20: 337-344
http://dx.doi.org/10.1158/1055-9965.EPI-10-0940
[55] Bansal M, Siegel E, Govindarajan R (2011). The effect of metformin on overall survival of patients with colorectal cancer treated with chemotherapy. J Clin Oncol, 29
[56] Bridges Hannah R, Jones Andrew JY, Pollak Michael N, Hirst J (2014). Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J, 462: 475-487
http://dx.doi.org/10.1042/BJ20140620
[57] Sui X, Xu Y, Yang J, Fang Y, Lou H, Han W, et al. (2014). Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One, 9: e97781
http://dx.doi.org/10.1371/journal.pone.0097781
[58] Bonkowski MS, Sinclair DA (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol, 17: 679-690
http://dx.doi.org/10.1038/nrm.2016.93
[59] Dang CV (2012). Links between metabolism and cancer. Genes Dev, 26: 877-890
http://dx.doi.org/10.1101/gad.189365.112
[60] Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ, et al. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest, 116: 2808-2816
http://dx.doi.org/10.1172/JCI28310
[61] Cairns J (1975). Mutation selection and the natural history of cancer. Nature, 255: 197-200
http://dx.doi.org/10.1038/255197a0
[62] Pavlova NN, Thompson CB (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 23: 27-47
http://dx.doi.org/10.1016/j.cmet.2015.12.006
[63] Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001). Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet, 68: 802-806
http://dx.doi.org/10.1086/318801
[64] Seyfried TN, Flores RE, Poff AM, D’Agostino DP (2014). Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis, 35: 515-527
http://118.145.16.217/magsci/article/article?id=22591042
[65] Warburg O (1956). On the origin of cancer cells. Science, 123: 412-421
[66] Altman BJ, Dang CV (2012). Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS J, 279: 2598-2609
http://118.145.16.217/magsci/article/article?id=23896648
[67] Vander Heiden MG, Cantley LC, Thompson CB (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324
[68] Caulin AF, Maley CC (2011). Peto’s Paradox: Evolution’s prescription for cancer prevention. Trends Ecol Evol, 26: 175-182
http://118.145.16.217/magsci/article/article?id=15399623
[69] Speakman JR (2005). Body size, energy metabolism and lifespan. J Exp Biol, 208: 1717-1730
http://dx.doi.org/10.1242/jeb.01556
[70] Martin AP, Palumbi SR (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A, 90: 4087-4091
http://dx.doi.org/10.1073/pnas.90.9.4087
[71] Caulin AF, Graham TA, Wang L-S, Maley CC (2015). Solutions to Peto’s paradox revealed by mathematical modelling and cross-species cancer gene analysis. Philos Trans R Soc Lond B Biol Sci, 370: 20140222-20140222
http://dx.doi.org/10.1098/rstb.2014.0222
[72] Glazier DS (2015). Is metabolic rate a universal ‘pacemaker’ for biological processes?. Biol Rev Camb Philos Soc, 90: 377-407
http://dx.doi.org/10.1111/brv.12115
[73] Glazier DS (2010). A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev Camb Philos Soc, 85: 111-138
http://dx.doi.org/10.1111/j.1469-185X.2009.00095.x
[74] Rozhok AI, DeGregori J (2016). The Evolution of Lifespan and Age-Dependent Cancer Risk. Trends Cancer, 2: 552-560
http://dx.doi.org/10.1016/j.trecan.2016.09.004
[75] Martineau D, Lemberger K, Dallaire A, Labelle P, Lipscomb TP, Michel P, et al. (2002). Cancer in wildlife, a case study: beluga from the St. Lawrence estuary, Quebec, Canada. Environ Health Perspect, 110: 285-292
http://dx.doi.org/10.1289/ehp.02110285
[76] Lair S, Mehren KG, Barker IK, Williams ES (2002). Epidemiology of neoplasia in captive black-footed ferrets (Mustela nigripes), 1986-1996. J Zoo Wildl Med, 33: 204-213
http://dx.doi.org/10.1638/1042-7260(2002)033[0204:EONICB]2.0.CO;2
[77] Gregory TR (2017) Animal Genome Size Database.
[78] Maciak S, Michalak P (2015). Cell size and cancer: A new solution to Peto’s paradox?. Evol Appl, 8: 2-8
http://dx.doi.org/10.1111/eva.12228
[79] White CR, Kearney MR (2013). Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B, 183: 1-26
http://118.145.16.217/magsci/article/article?id=20570713
[80] Kooijman SALM (2009) Dynamic Energy Budget theory for metabolic organisation, Cambridge University Press, Great Britain
[81] Jayasundara N, Kozal JS, Arnold MC, Chan SSL, Di Giulio RT (2015). High-throughput tissue bioenergetics analysis reveals identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS One, 10: e0137710
http://dx.doi.org/10.1371/journal.pone.0137710
[82] Dang CV (2015). A metabolic perspective of Peto’s paradox and cancer. Philos Trans R Soc Lond B Biol Sci, 370: 20140223-20140223
http://dx.doi.org/10.1098/rstb.2014.0223
[83] Calle EE, Thun MJ (2004). Obesity and cancer. Oncogene, 23: 6365-6378
http://dx.doi.org/10.1038/sj.onc.1207751
[84] Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. (2015). Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. JAMA, 67: 223-230
[85] Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, et al. (2011). Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 479: 223-227
http://dx.doi.org/10.1038/nature10533
[86] Tian X, Azpurua J, Hine C, Vaidya A, Myakishev- M, Ablaeva J, et al. (2014). High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat. Nature, 499: 346-349
[87] Blagosklonny MV, Hall MN (2009). Growth and aging: a common molecular mechanism. Aging (Milano), 1: 357-362
http://dx.doi.org/10.18632/aging.100040
[88] Hou C, Bolt K, Bergman A (2011). A General Life History Theory for Effects of Caloric Restriction on Health Maintenance. BMC Syst Biol, 5: 78
http://dx.doi.org/10.1186/1752-0509-5-78
[89] Triplett JC, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, et al. (2015). Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochim Biophys Acta, Mol Basis Dis, 1852: 2213-2224
http://dx.doi.org/10.1016/j.bbadis.2015.08.002
[90] Morimoto RI, Cuervo AM (2014). Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci, 69: S33-38
http://dx.doi.org/10.1093/gerona/glu049
[91] Glick D, Barth S, Macleod KF (2010). Autophagy: cellular and molecular mechanisms. J Pathol, 221: 3-12
http://dx.doi.org/10.1002/path.2697
[92] Kroemer G, Marino G, Levine B (2010). Autophagy and the integrated stress response. Mol Cell, 40: 280-293
http://dx.doi.org/10.1016/j.molcel.2010.09.023
[93] Bernardini JP, Lazarou M, Dewson G (2017). Parkin and mitophagy in cancer. Oncogene, 36: 1315-1327
http://dx.doi.org/10.1038/onc.2016.302
[94] Owusu-Ansah E, Song W, Perrimon N, Alic N, Hoddinott MP, Vinti G, et al. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell, 155: 699-712
http://118.145.16.217/magsci/article/article?id=19637179
[95] Ward PS, Thompson CB (2012). Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell, 21: 297-308
http://118.145.16.217/magsci/article/article?id=24395587
[96] Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014). AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep, 8: 1767-1780
http://dx.doi.org/10.1016/j.celrep.2014.08.006
[97] Rubinsztein DC, Marino G, Kroemer G (2011). Autophagy and aging. Cell, 146: 682-695
http://118.145.16.217/magsci/article/article?id=21275031
[98] Israel BA, Schaeffer WI (1987). Cytoplasmic suppression of malignancy. In Vitro Cell Dev Biol, 23: 627-632
http://dx.doi.org/10.1007/BF02621071
[99] Kaipparettu BA, Ma Y, Park JH, Lee T-l, Zhang Y, Yotnda P, et al. (2013). Crosstalk from Non-Cancerous Mitochondria Can Inhibit Tumor Properties of Metastatic Cells by Suppressing Oncogenic Pathways. PLoS One, 8: 1-9
[100] Locasale JW, Cantley LC (2011). Metabolic flux and the regulation of mammalian cell growth. Cell Metab, 14: 443-451
http://118.145.16.217/magsci/article/article?id=14887115
[101] Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014). Serine and glycine metabolism in cancer. Trends Biochem Sci, 39: 191-198
http://dx.doi.org/10.1016/j.tibs.2014.02.004
[102] Yun J, Johnson JL, Hanigan CL, Locasale JW (2012). Interactions between epigenetics and metabolism in cancers. Front Oncol, 2: 163
[103] Lu C, Thompson CB (2012). Metabolic regulation of epigenetics. Cell Metab, 16: 9-17
http://118.145.16.217/magsci/article/article?id=24381059
[104] Zhang Y, Reinberg D (2001). Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes Dev, 15: 2343-2360
http://dx.doi.org/10.1101/gad.927301
[105] Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Burkle A, Caiafa P (2015). Reconfiguration of DNA methylation in aging. Mech Ageing Dev, 151: 60-70
http://dx.doi.org/10.1016/j.mad.2015.02.002
[106] Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, et al. (2016). Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun, 7: 11089
http://dx.doi.org/10.1038/ncomms11089
[107] Aran D, Sabato S, Hellman A (2013). DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol, 14: R21
http://dx.doi.org/10.1186/gb-2013-14-3-r21
[108] Van Damme M, Crompot E, Meuleman N, Maerevoet M, Mineur P, Bron D, et al. (2016). Characterization of TET and IDH gene expression in chronic lymphocytic leukemia: comparison with normal B cells and prognostic significance. Clin Epigenetics, 8: 132
http://dx.doi.org/10.1186/s13148-016-0298-y
[109] Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014). The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol, 15: 536-550
[110] Webster BR, Scott I, Traba J, Han K, Sack MN (2014). Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta, 1841: 525-534
http://dx.doi.org/10.1016/j.bbalip.2014.02.001
[111] Kaelin WG, McKnight SL (2013). Influence of metabolism on epigenetics and disease. Cell, 153: 56-69
http://118.145.16.217/magsci/article/article?id=19677178
[112] Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, et al. (2015). Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347: 1374-1377
http://dx.doi.org/10.1126/science.aaa2361
[113] Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Küttner V, Bhukel A, et al. (2014). Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab, 19: 431-444
http://118.145.16.217/magsci/article/article?id=22587991
[114] Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, et al. (2014). Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab, 20: 306-319
http://118.145.16.217/magsci/article/article?id=22563985
[115] Tretter L, Patocs A, Chinopoulos C (2016). Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta, 1857: 1086-1101
http://dx.doi.org/10.1016/j.bbabio.2016.03.012
[116] Losman JA, Kaelin WG (2013). What a difference a hydroxyl makes: Mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev, 27: 836-852
http://dx.doi.org/10.1101/gad.217406.113
[117] Desideri E, Vegliante R, Ciriolo MR (2015). Mitochondrial dysfunctions in cancer: Genetic defects and oncogenic signaling impinging on TCA cycle activity. Cancer Lett, 356: 217-223
http://dx.doi.org/10.1016/j.canlet.2014.02.023
[118] Bungard D, Fuerth BJ, Zeng P-y, Faubert B, Nancy L, Viollet B, et al. (2010). Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation. Science, 329: 1201-1205
http://dx.doi.org/10.1126/science.1191241
[119] Lee J-S, Zhang Z (2016). O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. Proc Natl Acad Sci U S A: 1600509113-
[120] Singh JP, Zhang K, Wu J, Yang X (2015). O-GlcNAc Signaling in Cancer Metabolism and Epigenetics. Cancer Lett, 356: 244-250
http://dx.doi.org/10.1016/j.canlet.2014.04.014
[121] Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, et al. (2012). β-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem, 287: 12195-12203
http://dx.doi.org/10.1074/jbc.M111.315804
[122] Klimovskaia IM, Young C, Strømme CB, Menard P, Jasencakova Z, Mejlvang J, et al. (2014). Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nat Commun, 5: 3394
[123] Harshman SW, Hoover ME, Huang C, Branson OE, Chaney SB, Cheney CM, et al. (2014). Histone H1 phosphorylation in breast cancer. J Proteome Res, 13: 2453-2467
http://118.145.16.217/magsci/article/article?id=23236002
[124] Telu KH, Abbaoui B, Thomas-Ahner JM, Zynger DL, Clinton SK, Freitas MA, et al. (2013). Alterations of histone H1 phosphorylation during bladder carcinogenesis. J Proteome Res, 12: 3317-3326
http://dx.doi.org/10.1021/pr400143x
[125] Caldwell Sa, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, et al. (2010). Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene, 29: 2831-2842
http://dx.doi.org/10.1038/onc.2010.41
[126] Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C, et al. (2010). GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res, 70: 6344-6351
http://dx.doi.org/10.1158/0008-5472.CAN-09-1887
[127] Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ (2012). Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem, 287: 11070-11081
http://dx.doi.org/10.1074/jbc.M111.302547
[128] Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, et al. (2011). O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta, Mol Basis Dis, 1812: 514-519
http://dx.doi.org/10.1016/j.bbadis.2011.01.009
[129] Yehezkel G, Cohen L, Kliger A, Manor E, Khalaila I (2012). O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-beta-D-glucosaminidase silencing on cell phenotype and transcriptome. J Biol Chem, 287: 28755-28769
http://dx.doi.org/10.1074/jbc.M112.345546
[130] Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L, et al. (2012). O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol, 29: 985-993
http://118.145.16.217/magsci/article/article?id=17635722
[131] Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R, et al. (2010). Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia, 24: 1588-1598
http://dx.doi.org/10.1038/leu.2010.152
[132] Biterge B, Richter F, Mittler G, Schneider R (2014). Methylation of histone H4 at aspartate 24 by protein L-isoaspartate O-methyltransferase (PCMT1) links histone modifications with protein homeostasis. Sci Rep, 4: 6674
[133] O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010). Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol, 17: 1218-1225
http://dx.doi.org/10.1038/nsmb.1897
[134] Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider NL (1983). Differential effects of intermittent feeding and voluntary exercise on body weight and lifespan in adult rats. J Gerontol, 38: 36-45
http://dx.doi.org/10.1093/geronj/38.1.36
[135] Meynet O, Ricci J-E (2014). Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med, 20: 419-427
http://dx.doi.org/10.1016/j.molmed.2014.05.001
[136] Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, et al. (2015). A 2-year randomized controlled trial of human caloric restriction: Feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci, 70: 1097-1104
http://dx.doi.org/10.1093/gerona/glv057
[137] Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, González-Reyes JA, et al. (2016). Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab, 23: 1093-1112
http://dx.doi.org/10.1016/j.cmet.2016.05.027
[138] Solon-Biet Samantha M, McMahon Aisling C, Ballard JWilliam O, Ruohonen K, Wu Lindsay E, Cogger Victoria C, et al. (2014). The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metab, 19: 418-430
http://118.145.16.217/magsci/article/article?id=22587990
[139] Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. (2015). A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab, 22: 86-99
http://dx.doi.org/10.1016/j.cmet.2015.05.012
[140] Douris N, Melman T, Pecherer JM, Pissios P, Flier JS, Cantley LC, et al. (2015). Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta, Mol Basis Dis, 1852: 2056-2065
http://dx.doi.org/10.1016/j.bbadis.2015.07.009
[141] Newman JC, Verdin E (2014). Ketone bodies as signaling metabolites. Trends Endocrinol Metab, 25: 42-52
http://dx.doi.org/10.1016/j.tem.2013.09.002
[142] Fontana L, Partridge L (2015). Promoting health and longevity through diet: From model organisms to humans. Cell, 161: 106-118
http://dx.doi.org/10.1016/j.cell.2015.02.020
[143] Donga E, Van Dijk M, Van Dijk JG, Biermasz NR, Lammers GJ, Van Kralingen KW, et al. (2010). A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab, 95: 2963-2968
http://dx.doi.org/10.1210/jc.2009-2430
[144] Morris CJ, Purvis TE, Mistretta J, Scheer FAJL (2016). Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J Clin Endocrinol Metab, 101: 1066-1074
http://dx.doi.org/10.1210/jc.2015-3924
[145] Stauch KL, Purnell PR, Fox HS (2014). Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Milano), 6: 320-334
http://dx.doi.org/10.18632/aging.100657
[1] Jan R. Aunan,William C Cho,Kjetil Søreide. The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks[J]. A&D, 2017, 8(5): 628-642.
[2] Adar Zinger,William C Cho,Arie Ben-Yehuda. Cancer and Aging - the Inflammatory Connection[J]. A&D, 2017, 8(5): 611-627.
[3] Ulises Urzua,Carlos Chacon,Luis Lizama,Sebastián Sarmiento,Pía Villalobos,Belén Kroxato,Katherine Marcelain,María-Julieta Gonzalez. Parity History Determines a Systemic Inflammatory Response to Spread of Ovarian Cancer in Naturally Aged Mice[J]. A&D, 2017, 8(5): 546-557.
[4] Ilia Stambler. Recognizing Degenerative Aging as a Treatable Medical Condition: Methodology and Policy[J]. A&D, 2017, 8(5): 583-589.
[5] Xianglai Xu,Brian Wang,Changhong Ren,Jiangnan Hu,David A. Greenberg,Tianxiang Chen,Liping Xie,Kunlin Jin. Age-related Impairment of Vascular Structure and Functions[J]. A&D, 2017, 8(5): 590-610.
[6] Simone Garcovich,Giuseppe Colloca,Pietro Sollena,Bellieni Andrea,Lodovico Balducci,William C. Cho,Roberto Bernabei,Ketty Peris. Skin Cancer Epidemics in the Elderly as An Emerging Issue in Geriatric Oncology[J]. A&D, 2017, 8(5): 643-661.
[7] Guofen Gao, Nan Zhang, Yue-Qi Wang, Qiong Wu, Peng Yu, Zhen-Hua Shi, Xiang-Lin Duan, Bao-Lu Zhao, Wen-Shuang Wu, Yan-Zhong Chang. Mitochondrial Ferritin Protects Hydrogen Peroxide-Induced Neuronal Cell Damage[J]. A&D, 2017, 8(4): 458-470.
[8] Mariaelena Occhipinti,Anna Rita Larici,Lorenzo Bonomo,Raffaele Antonelli Incalzi. Aging Airways: between Normal and Disease. A Multidimensional Diagnostic Approach by Combining Clinical, Functional, and Imaging Data[J]. A&D, 2017, 8(4): 471-485.
[9] Marta K. Zamroziewicz,Erick J. Paul,Chris E. Zwilling,Aron K. Barbey. Predictors of Memory in Healthy Aging: Polyunsaturated Fatty Acid Balance and Fornix White Matter Integrity[J]. A&D, 2017, 8(4): 372-383.
[10] Xianglai Xu,Brian Wang,Changhong Ren,Jiangnan Hu,David A. Greenberg,Tianxiang Chen,Liping Xie,Kunlin Jin. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases[J]. A&D, 2017, 8(4): 486-505.
[11] Alexey Moskalev,Elizaveta Chernyagina,Anna Kudryavtseva,Mikhail Shaposhnikov. Geroprotectors: A Unified Concept and Screening Approaches[J]. A&D, 2017, 8(3): 354-363.
[12] Yiwei Cao,Rui-Hong Wang. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases[J]. A&D, 2017, 8(3): 314-333.
[13] Alan R. Hipkiss. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson’s Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine[J]. A&D, 2017, 8(3): 334-345.
[14] Minwen Xu,Olga Sizova,Liefeng Wang,Dong-Ming Su. A Fine-Tune Role of Mir-125a-5p on Foxn1 During Age-Associated Changes in the Thymus[J]. A&D, 2017, 8(3): 277-286.
[15] Guangxian Zhao,Xian W. Cheng,Limei Piao,Lina Hu,Yanna Lei,Guang Yang,Aiko Inoue,Shinyu Ogasawara,Hongxian Wu,Chang-Ning Hao,Kenji Okumura,Masafumi Kuzuya. The Soluble VEGF Receptor sFlt-1 Contributes to Impaired Neovascularization in Aged Mice[J]. A&D, 2017, 8(3): 287-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd