Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2018, Vol. 9 Issue (4) : 664-673     DOI: 10.14336/AD.2017.0930
Orginal Article |
N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model
Aurore Marie1,Johann Meunier2,Emilie Brun3,Susanna Malmstrom1,Veronique Baudoux1,Elodie Flaszka1,Gaëlle Naert1,François Roman2,Sylvie Cosnier-Pucheu1,Sergio Gonzalez-Gonzalez1,*
1CILcare, Parc Scientifique Agropolis, Montpellier, France
2Amylgen, Montferrier-sur-Lez, France
3Correlative Microscopy and Electron Tomography Platform, Hopital Saint Eloi, Montpellier, France
Download: PDF(832 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly population. SAMP8 mouse model presents accelerated senescence and has been identified as a model of gerontological research. SAMP8 displays a progressive age-related decline in brain function associated with a progressive hearing loss mimicking human aging memory deficits and ARHL. The molecular mechanisms associated with SAMP8 senescence process involve oxidative stress leading to chronic inflammation and apoptosis. Here, we studied the effect of N-acetylcysteine (NAC), an antioxidant, on SAMP8 hearing loss and memory to determine the potential interest of this model in the study of new antioxidant therapies. We observed a strong decrease of auditory brainstem response thresholds from 45 to 75 days of age and an increase of distortion product amplitudes from 60 to 75 days in NAC treated group compared to vehicle. Moreover, NAC treated group presented also an increase of memory performance at 60 and 105 days of age. These results confirm that NAC delays the senescence process by slowing the age-related hearing loss, protecting the cochlear hair cells and improving memory, suggesting that antioxidants could be a pharmacological target for age-related hearing and memory loss.

Keywords SAMP8      hearing loss      antioxidant      N-acetylcysteine      aging     
Corresponding Authors: Sergio Gonzalez-Gonzalez   
Issue Date: 01 August 2018
E-mail this article
E-mail Alert
Articles by authors
Aurore Marie
Johann Meunier
Emilie Brun
Susanna Malmstrom
Veronique Baudoux
Elodie Flaszka
Gaëlle Naert
François Roman
Sylvie Cosnier-Pucheu
Sergio Gonzalez-Gonzalez
Cite this article:   
Aurore Marie,Johann Meunier,Emilie Brun, et al. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model[J]. A&D, 2018, 9(4): 664-673.
URL:     OR
[1] Thompson DC, McPhillips H, Davis RL, Lieu TL, Homer CJ, Helfand M (2001). Universal newborn hearing screening: summary of evidence. JAMA, 286, 2000-2010.
[2] Someya S, Prolla TA (2010). Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mech Ageing Dev, 131:480-486.
[3] Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K (2013). Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res, 303, 30-38.
[4] Unal M, Tamer L (2005). N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope, 115:2238-41
[5] Bared A, Ouyang X, Angeli S, Du LL, Hoang K, Yan D, Liu XZ (2010). Antioxidant enzymes, presbycusis, and ethnic variability. Otolaryngol. Head Neck Surg, 143, 263-268.
[6] Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M (1997). Pathobiology of the Senescence-accelerated Mouse (SAM). Experimental Gerontology, 32:117-127.
[7] Tomobe K, Nomura Y (2009). Neurochemistry, neuropathology, and heredity in SAMP8: a mouse model of senescence. Neurochem Res, 34(4):660-9.
[8] Hosokawa M, Ueno M (1999). Aging of blood-brain barrier and neuronal cells of eye and ear in SAMP mice. Neurobiol Aging, 20(2):117-23.
[9] Menardo J, Tang Y, Ladrech S, Lenoir M, Casas F et al. (2012). Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxid Redox Signal, 16(3):263-74.
[10] Sen CK (2001). Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc, 33:368-370
[11] Maurice T, Roman FJ, Su TP, Privat A (1996). Beneficial effects of sigma agonists on the age-related learning impairment in the senescence-accelerated mouse (SAM). Brain Res, 733(2):219-30.
[12] Meunier J, Villard V, Givalois L, Maurice T (2013). The γ-secretase inhibitor 2-[(1R)-1-[(4-chlorophenyl) sulfonyl](2,5-difluorophenyl) amino] ethyl-5-fluorobenzenebutanoic acid (BMS-299897) alleviates Aβ1-42 seeding and short-term memorydeficits in the Aβ25-35 mouse model of Alzheimer’s disease. Eur J Pharmacol, 698(1-3):193-9.
[13] Ladrech S, Wang J, Simonneau L, Puel JL, Lenoir M (2007). Macrophage Contribution to the Response of the Rat Organ of Corti to Amikacin. J Neuros Res, 85:1970-1979
[14] Hurley MM, Resch JM, Maunze B, et al. (2016). N-acetylcysteine (NAC) decreases binge eating in a rodent model. Int J Obes (Lond), 40(7): 1183-1186
[15] McClure EA, Gipson CD, Malcolm RJ, Kalivas PW, Gray KM (2014). Potential Role of N-Acetylcysteine in the Management of Substance Use Disorders. CNS drugs, 28(2):95-106.
[16] Marie A, Larroze-Chicot P, Cosnier-Pucheu S, Gonzalez-Gonzalez S (2017). Senescence-accelerated mouse prone 8 (SAMP8) as a model of age-related hearing loss. Neurosciences Letters, 656:138-143.
[17] Kemp DT (2002). Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull, 63223-241.
[18] Lonsbury-Martin BL, Martin GK (1990). The clinical utility of distortion-product otoacoustic emissions. Ear Hear, 11144-154.
[19] Uchida Y, Ando F, Shimokata H, Sugiura S, Ueda H, Nakashima T (2008). The effects of aging on distortion-product otoacoustic emissions in adults with normal hearing. Ear Hear, 29(2):176-84.
[20] Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, et al. (2017). SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathology, doi:
[21] Wang J, Cheng X, Zeng J et al. (2017). LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease. Aging Dis, 1; 8(1):101-114.
[22] Fujimoto C, Yamasoba T (2014). Oxidative Stresses and mitochondrial dysfunction in age-related hearing loss. Oxid Med Cell Longev, 582-849.
[23] Shi X, Nuttall AL (2003). Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress Brain Res, 967(1-2):1-10.
[24] Tavanai E, Mohammadkhani G (2017). Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol, 274(4):1821-1834
[25] Johnson KR, Yu H et al. (2010). Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res, 268(1-2):85-92.
[26] Attias J, Bresloff I, Haupt H, Scheibe F, Ising H (2003). Preventing noise induced otoacoustic emission loss by increasing magnesium (Mg2+) intake in guinea-pigs. J Basic Clin Physiol Pharmacol, 14(2):119-36.
[27] Quaranta A, Scaringi A, Bartoli R, Margarito MA, Quaranta N (2004). The effects of ’supra-physiological’ vitamin B12 administration on temporary threshold shift. Int J Audiol, 43(3):162-5.
[28] Kramer S, Dreisbach L, Lockwood J, Baldwin K, Kopke R, Scranton S, O’Leary M (2006). Efficacy of the antioxidant Nacetylcysteine (NAC) in protecting ears exposed to loud music. J Am Acad Audiol, 17(4), 265-278.
[29] Kopke R, Slade MD, Jackson R, Hammill T, Fausti S (2015). Efficacy and safety of N-acetylcysteine in prevention of noise induced hearing loss: a randomized clinical trial. Hear Res, 323:40-50.
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] J. Thomas Mock,Sherilynn G Knight,Philip H Vann,Jessica M Wong,Delaney L Davis,Michael J Forster,Nathalie Sumien. Gait Analyses in Mice: Effects of Age and Glutathione Deficiency[J]. A&D, 2018, 9(4): 634-646.
[3] Jiayu Wu,Weiying Ren,Li Li,Man Luo,Kan Xu,Jiping Shen,Jia Wang,Guilin Chang,Yi Lu,Yiming Qi,Binger Xu,Yuting He,Yu Hu. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats[J]. A&D, 2018, 9(4): 566-577.
[4] Carmen G Vinagre,Fatima R Freitas,Carlos H de Mesquita,Juliana C Vinagre,Ana Carolina Mariani,Roberto Kalil-Filho,Raul C Maranhão. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. A&D, 2018, 9(4): 748-754.
[5] Federica De Lazzari,Luigi Bubacco,Alexander J Whitworth,Marco Bisaglia. Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson’s Disease[J]. A&D, 2018, 9(4): 716-728.
[6] Yali Chen,Mengmei Yin,Xuejin Cao,Gang Hu,Ming Xiao. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. A&D, 2018, 9(3): 374-390.
[7] Wenzhi Sun,Jiewen Tan,Zhuo Li,Shibao Lu,Man Li,Chao Kong,Yong Hai,Chunjin Gao,Xuehua Liu. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging[J]. A&D, 2018, 9(3): 391-400.
[8] Changjun Yang,Kelly M. DeMars,Eduardo Candelario-Jalil. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain[J]. A&D, 2018, 9(2): 322-330.
[9] Lin-Yuan Zhang,Pan Lin,Jiaji Pan,Yuanyuan Ma,Zhenyu Wei,Lu Jiang,Liping Wang,Yaying Song,Yongting Wang,Zhijun Zhang,Kunlin Jin,Qian Wang,Guo-Yuan Yang. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. A&D, 2018, 9(2): 262-272.
[10] Weiming Hu,Junwu Wu,Wenjing Jiang,Jianguo Tang. MicroRNAs and Presbycusis[J]. A&D, 2018, 9(1): 133-142.
[11] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[12] Huaqin Liu,Zhui Yu,Ying Li,Bin Xu,Baihui Yan,Wulf Paschen,David S Warner,Wei Yang,Huaxin Sheng. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice[J]. A&D, 2018, 9(1): 31-39.
[13] Fangyu Peng,Fang Xie,Otto Muzik. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. A&D, 2018, 9(1): 109-118.
[14] Nathalie K Zgheib,Fatima Sleiman,Lara Nasreddine,Mona Nasrallah,Nancy Nakhoul,Hussain Isma’eel,Hani Tamim. Short Telomere Length is Associated with Aging, Central Obesity, Poor Sleep and Hypertension in Lebanese Individuals[J]. A&D, 2018, 9(1): 77-89.
[15] Mari L. Sbardelotto,Giulia S. Pedroso,Fernanda T. Pereira,Helen R. Soratto,Stella MS. Brescianini,Pauline S. Effting,Anand Thirupathi,Renata T. Nesi,Paulo CL. Silveira,Ricardo A. Pinho. The Effects of Physical Training are Varied and Occur in an Exercise Type-Dependent Manner in Elderly Men[J]. A&D, 2017, 8(6): 887-898.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd