Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2018, Vol. 9 Issue (6) : 1020-1030     DOI: 10.14336/AD.2018.0125
Orginal Article |
Relationship between Cortical Thickness and Neuropsychological Performance in Normal Older Adults and Those with Mild Cognitive Impairment
Cheng Calvin Pak-Wing1, Cheng Sheung-Tak2,*, Tam Cindy Woon-Chi3, Chan Wai-Chi4, Chu Winnie Chiu-Wing5, Lam Linda Chiu-Wa6
1Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Hong Kong
2Department of Health and Physical Education, The Education University of Hong Kong and Norwich Medical School, University of East Anglia, UK
3Department of Psychiatry, North District Hospital, Hong Kong
4Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Hong Kong
5Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
6Department of Psychiatry, Tai Po Hospital, The Chinese University of Hong Kong, Hong Kong
Download: PDF(610 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Mild cognitive impairment (MCI) has been extensively investigated in recent decades to identify groups with a high risk of dementia and to establish effective prevention methods during this period. Neuropsychological performance and cortical thickness are two important biomarkers used to predict progression from MCI to dementia. This study compares the cortical thickness and neuropsychological performance in people with MCI and cognitively healthy older adults. We further focus on the relationship between cortical thickness and neuropsychological performance in these two groups. Forty-nine participants with MCI and 40 cognitively healthy older adults were recruited. Cortical thickness was analysed with semiautomatic software, Freesurfer. The analysis reveals that the cortical thickness in the left caudal anterior cingulate (p=0.041), lateral occipital (p=0.009) and right superior temporal (p=0.047) areas were significantly thinner in the MCI group after adjustment for age and education. Almost all neuropsychological test results (with the exception of forward digit span) were significantly correlated to cortical thickness in the MCI group after adjustment for age, gender and education. In contrast, only the score on the Category Verbal Fluency Test and the forward digit span were found to have significant inverse correlations to cortical thickness in the control group of cognitively healthy older adults. The study results suggest that cortical thinning in the temporal region reflects the global change in cognition in subjects with MCI and may be useful to predict progression of MCI to Alzheimer’s disease. The different pattern in the correlation of cortical thickness to the neuropsychological performance of patients with MCI from the healthy control subjects may be explained by the hypothesis of MCI as a disconnection syndrome.

Keywords cortical thickness      dementia      mild cognitive impairment      neuropsychological performance      magnetic resonance imaging     
Corresponding Authors: Cheng Sheung-Tak   
About author:

These authors contributed equally to this work

Issue Date: 24 November 2017
E-mail this article
E-mail Alert
Articles by authors
Cheng Calvin Pak-Wing
Cheng Sheung-Tak
Tam Cindy Woon-Chi
Chan Wai-Chi
Chu Winnie Chiu-Wing
Lam Linda Chiu-Wa
Cite this article:   
Cheng Calvin Pak-Wing,Cheng Sheung-Tak,Tam Cindy Woon-Chi, et al. Relationship between Cortical Thickness and Neuropsychological Performance in Normal Older Adults and Those with Mild Cognitive Impairment[J]. Aging and disease, 2018, 9(6): 1020-1030.
URL:     OR
Healthy Controls (n=40)
Mean (SD)
MCI (n=49)
Mean (SD)
Age69.45 (4.56)75.92 (5.39)<0.001
Gender (Male: Female)15:2526:230.143
Education (years)8.00 (4.00)4.13 (4.04)<0.001
CMMSE27.68 (2.51)24.94 (2.85)<0.001
CDR - sum of boxes0.16 (0.43)1.02 (1.04)<0.001
ADAS-Cog6.46 (2.57)13.59 (3.61)<0.001
Delayed recall6.58 (1.47)2.29 (1.46)<0.001
CVFT40.10 (7.58)31.27 (8.03)<0.001
Digit span test (forward)7.50 (1.36)6.80 (1.44)0.021
Digit span test(backward)3.93 (1.65)2.59 (1.39)<0.01
Table 1  Participant demographics and neuropsychological performance.
Healthy ControlMCI

Brain regionLeftRightLeftRight
Caudal anterior cingulate gyrus2.689 (0.315) *2.599 (0.296)2.502 (0.378)*2.512 (0.290)
Caudal middle frontal gyrus2.258 (0.168)2.262 (0.148)2.218 (0.131)2.243 (0.145)
Cuneus1.618 (0.125)1.619 (0.118)1.612 (0.125)1.606 (0.117)
Entorthinal area3.403 (0.392)3.605 (0.487)3.288 (0.340)3.522 (0.413)
Fusiform gyrus2.639 (0.148)2.603 (0.156)2.577 (0.158)2.554 (0.188)
Inferior parietal lobe2.164 (0.123)2.115 (0.113)2.142 (0.135)2.122 (0.148)
Inferior temporal gyrus2.695 (0.161)2.681 (0.154)2.613 (0.158)2.636 (0.184)
Isthmus cingulate gyrus2.416 (0.187)2.302 (0.225)2.267 (0.229)2.195 (0.206)
Lateral occipital gyrus1.902 (0.130)*1.879 (0.126)1.899 (0.152)*1.874 (0.147)
Lateral orbitofrontal gyrus2.522 (0.140)2.469 (0.153)2.510 (0.164)2.430 (0.166)
Lingual gyrus1.787 (0.118)1.810 (0.087)1.782 (0.144)1.779 (0.167)
Medial orbitofrontal gyrus2.283 (0.170)2.369 (0.164)2.289 (0.181)2.612 (0.165)
Middle temporal gyrus2.670 (0.172)2.746 (0.139)2.660 (0.142)2.715 (0.169)
Parahippocampal gyrus2.535 (0.230)2.557 (0.256)2.378 (0.303)2.489 (0.264)
Paracentral gyrus2.271 (0.179)2.270 (0.158)2.223 (0.179)2.222 (0.158)
Pars opercularis2.357 (0.173)2.366 (0.135)2.351 (0.120)2.352 (0.142)
Pars orbitalis2.539 (0.217)2.509 (0.235)2.471 (0.221)2.494 (0.247)
Pars triangularis2.245 (0.134)2.279 (0.148)2.202 (0.134)2.213 (0.162)
Periphery calcarine1.385 (0.878)1.427 (0.103)1.414 (0.123)1.446 (0.128)
Postcentral gyrus1.819 (0.132)1.765 (0.104)1.779 (0.123)1.787 (0.118)
Posterior cingulate gyrus2.440 (0.221)2.395 (0.198)2.345 (0.175)2.325 (0.177)
Precentral gyrus2.364 (0.151)2.343 (0.124)2.312 (0.136)2.284 (0.144)
Precuneus2.128 (0.141)2.064 (0.119)2.086 (0.161)2.047 (0.141)
Rostral anterior cingulate gyrus2.820 (0.199)2.882 (0.248)2.744 (0.223)2.802 (0.286)
Rostral middle frontal gyrus2.110 (0.137)2.154 (0.120)2.090 (0.141)2.139 (0.139)
Superior frontal gyrus2.518 (0.146)2.540 (0.142)2.475 (0.141)2.503 (0.137)
Superior parietal lobe1.884 (0.135)1.843 (0.122)1.863 (0.126)1.831 (0.121)
Superior temporal gyrus2.563 (0.146)2.596 (0.177)*2.491 (0.161)2.574 (0.155)*
Supramarginal gyrus2.298 (0.126)2.229 (0.149)2.219 (0.141)2.201 (0.135)
Frontal pole2.671 (0.263)2.634 (0.210)2.597 (0.256)2.593 (0.275)
Temporal pole3.638 (0.267)3.759 (0.301)3.513 (0.283)3.625 (0.293)
Transverse temporal gyrus2.148 (0.252)2.106 (0.254)2.070 (0.197)2.107 (0.203)
Insula2.891 (0.157)2.879 (0.175)2.861 (0.158)2.800 (0.165)
Table 2  Cortical thickness in healthy control and mild cognitive impairment (mean +/- S.D., mm, adjusted for age and education).
CMMSECDR-Sum of boxesADAS-CogCVFTForward
digit span
Digit span

Brain regionLeftRightLeftRightLeftRightLeftRightLeftRightLeftRight
Caudal anterior cingulate gyrus-.077.075-.005.042-.139-.047.041.075-.108-.213-.104.172
Caudal middle frontal gyrus-.202-.171.309.302-.061.142-.108-.152-.022-.184-.059.018
Entorthinal area.173.323-.262-.366*-.413-.259.349.335.101.246-.301-.228
Fusiform gyrus.213.239-.159-.337-.137-.
Inferior parietal lobe.
Inferior temporal gyrus.191*.508-.023-.198-.216-.369.350.262.023.214-.102.101
Isthmus cingulate gyrus.336.201-.118-.116-.277-.193-.043-.
Lateral occipital gyrus.075-.017-.133.005-.035-.040.085-.
Lateral orbitofrontal gyrus-.028-.040.202.003-.053-.
Lingual gyrus.108.185-.111-.060-.119-.
Medial orbitofrontal gyrus.076.046-.023.033.030-.148.334.376.
Middle temporal gyrus.212.359.084-.182-.
Parahippocampal gyrus.215.200*-.413-.317-.061-.193-.111-.012.004.131-.337-.190
Paracentral gyrus-.
Pars opercularis.
Pars orbitalis-.013.059.311.221.029.099-.175-.*.408
Pars triangularis.045.051.058-.009-.124-.
Postcentral gyrus-.170-.188.131.107-.
Posterior cingulate gyrus.039.040-.012.096-.116.057.100-.036-.046-.120-.067.181
Precentral gyrus-.044-.
Rostral anterior cingulate gyrus-.028-.
Rostral middle frontal gyrus-.267-.*.398.017-.103.053.023
Superior frontal gyrus-.196-.190.391.255.032-.002.008.048-.210-.098.007-.119
Superior parietal lobe.002.029-.024.020-.089-.028.151.188-.008-.004.128.260
Superior temporal gyrus.247.232-.142-.242-.089.036.324.
Supramarginal gyrus.092.026.167-.027-.174-.039.175.112-.
Frontal pole.104.176-.150-.089.042-.080.047.324.056-.049.323-.005
Temporal pole.115.256-.215-.175-.187-.209.356252.208.085.021-.041
Transverse temporal gyrus-.267-.
Table 3  Correlation between neuropsychological performance and cortical thickness in mild cognitive impairment.
Figure 1.  Correlation between right temporal gyrus and Cantonese version of the Mini-Mental State Examination (CMMSE).
CMMSECDR-Sum of boxesADAS-CogCVFTForward
digit span
Digit span

Brain regionLeftRightLeftRightLeftRightLeftRightLeftRightLeftRight
Caudal anterior cingulate gyrus.010-.062-.159-.
Caudal middle frontal gyrus-.
Entorthinal area-.252-.
Fusiform gyrus-.015-.
Inferior parietal lobe-.055.128.158-.012.145.176-.024.006-.156-.009.081.182
Inferior temporal gyrus-.006.239.002-.230.073-.154-.199-.090-.104-.008.228.013
Isthmus cingulate gyrus-.139-.137.377.249.271.342-.148-.232-.293-.130.058.247
Lateral occipital gyrus.229.277-.108-.
Lateral orbitofrontal gyrus-.278-.234.389.284.153.126-.300-.049-.396-.416.127.076
Lingual gyrus-.
Medial orbitofrontal gyrus-.191-.068.263-.046.122.121-.227-.182-.393*-.456-.003.079
Middle temporal gyrus-.125.043.309.006.248.085*-.445-.306-.195-.133.205.174
Parahippocampal gyrus-.180-.151.076-.007.109-.029-.293-.201-.241-.235-.046-.131
Paracentral gyrus.096-.
Pars opercularis-.211.117.303.193.340.153-.094.042*-.496-.258.043-.005
Pars orbitalis-.228-.187.261.040-.043.064.064-.045-.225-.355.075.011
Pars triangularis-.200-.038.333.207.261.041-.008-.031-.367-.116-.116-.080
Postcentral gyrus.144-.103-.017.057-.011.181-.004.039-.009-.093.145-.027
Posterior cingulate gyrus-.061-.
Precentral gyrus-.
Rostral anterior cingulate gyrus-.108-.117-.111-.086.068-.035-.142.023-.189-.201-.171-.090
Rostral middle frontal gyrus-.*-.422-.162-.183.247
Superior frontal gyrus.063-.
Superior parietal lobe.092-.
Superior temporal gyrus.136.213.093-.
Supramarginal gyrus.093-.020.134-.105.187.045-.096-.103-.084-.092.056.038
Frontal pole-.051.030-.051-.074.037-.174-.238.074-.132-.086.231.259
Temporal pole-.007.131-.037-.069.080-.021-.198-.
Transverse temporal gyrus-.033.232.051-.
Table 4  Correlation between neuropsychological performance and cortical thickness in healthy control.
Figure 2.  Correlation between left parahippocampal gyrus and Clinical Dementia Rating (CDR)- sum of boxes.
[1] Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu YT, Prina M. World Alzheimer Report2015 - The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. London: Alzheimer's Disease International; 2015.
[2] Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001). Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56:1133–1142.
[3] Schindler SE, Jasielec MS, Weng H, Hassenstab JJ, Grober E, McCue LM, et al. (2017). Neuropsychological measures that detect early impairment and decline in preclinical Alzheimer disease. Neurobiol Aging, 56:25–32.
[4] Lerch JP, Evans AC (2005). Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage, 24:163–173.
[5] Ries ML, Carlsson CM, Rowley HA, Sager MA, Gleason CE, Asthana S, et al. (2008). Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc, 56:920–934.
[6] Zhao H, Li X, Wu W, Li Z, Qian L, Li S, et al. (2015). Atrophic Patterns of the Frontal-Subcortical Circuits in Patients with Mild Cognitive Impairment and Alzheimer's Disease. PLoS One, 10:e0130017.
[7] Li C, Wang J, Gui L, Zheng J, Liu C, Du H (2011). Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis, 27:281–290.
[8] Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V, et al. (2009). Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain, 132:2036–2047.
[9] Pettigrew C, Soldan A, Zhu Y, Wang MC, Moghekar A, Brown T, et al. (2016). Cortical thickness in relation to clinical symptom onset in preclinical AD. Neuroimage Clin, 12:116–122.
[10] Lezak MD. Neuropsychological assessment. USA: Oxford University Press; 2004.
[11] Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, et al. (2008). Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39:10–18.
[12] Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, et al. (2010). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging, 31:1107–1121.
[13] Sanchez-Benavides G, Gomez-Anson B, Quintana M, Vives Y, Manero RM, Sainz A, et al. (2010). Problem-solving abilities and frontal lobe cortical thickness in healthy aging and mild cognitive impairment. J Int Neuropsychol Soc, 16:836–845.
[14] Chiu HF, Lee H, Chung W, Kwong P (1994). Reliability and validity of the Cantonese version of mini-mental state examination-a preliminary study. Hong Kong Journal of Psychiatry, 4:25–28.
[15] Folstein MF, Folstein SE, McHugh PR (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 12:189–198.
[16] Morris JC (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43:2412–2414.
[17] Chu LW, Chiu KC, Hui SL, Yu GK, Tsui WJ, Lee PW (2000). The reliability and validity of the Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog) among the elderly Chinese in Hong Kong. Ann Acad Med Singapore, 29:474–485.
[18] Rosen WG, Mohs RC, Davis KL (1984). A new rating scale for Alzheimer's disease. Am J Psychiatry, 141:1356–1364.
[19] Wechsler D. Wechsler abbreviated intelligence scale. San Antonio: The Psychological Corporation; 1999.
[20] Chiu HF, Chan CK, Lam LC, Ng KO, Li SW, Wong M, et al. (1997). The modified Fuld Verbal Fluency Test: a validation study in Hong Kong. J Gerontol B Psychol Sci Soc Sci, 52:P247–250.
[21] Lam LC, Ho P, Lui VW, Tam CW (2006). Reduced semantic fluency as an additional screening tool for subjects with questionable dementia. Dement Geriatr Cogn Disord, 22:159–164.
[22] Lam LC, Tam CW, Leung GT, Lui VW, Fung AW, Chiu HF, et al. (2010). Combined clinical and cognitive criteria to identify mild cognitive impairment in a southern Chinese community. Alzheimer Dis Assoc Disord, 24:343–347.
[23] Dale AM, Sereno MI (1993). Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J Cogn Neurosci, 5:162–176.
[24] Dale AM, Fischl B, Sereno MI (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9:179–194.
[25] Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31:968–980.
[26] Julkunen V, Niskanen E, Koikkalainen J, Herukka SK, Pihlajamaki M, Hallikainen M, et al. (2010). Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer's disease patients: a longitudinal study. J Alzheimers Dis, 21:1141–1151.
[27] Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006). Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain, 129:2885–2893.
[28] Sluimer JD, van der Flier WM, Karas GB, van Schijndel R, Barnes J, Boyes RG, et al. (2009). Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease. Eur Radiol, 19:2826–2833.
[29] Gomez C, Stam CJ, Hornero R, Fernandez A, Maestu F (2009). Disturbed beta band functional connectivity in patients with mild cognitive impairment: an MEG study. IEEE Trans Biomed Eng, 56:1683–1690.
[30] Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, et al. (2005). Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging, 26:165–171.
[31] Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, et al. (2013). Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biol Psychiatry, 73:472–481.
[32] Liang P, Li Z, Deshpande G, Wang Z, Hu X, Li K (2014). Altered causal connectivity of resting state brain networks in amnesic MCI. PLoS One, 9:e88476.
[33] Das SR, Pluta J, Mancuso L, Kliot D, Orozco S, Dickerson BC, et al. (2013). Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus, 23:1–6.
[34] Lacalle-Aurioles M, Navas-Sanchez FJ, Aleman-Gomez Y, Olazaran J, Guzman-De-Villoria JA, Cruz-Orduna I, et al. (2016). The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. J Alzheimers Dis, 50:1051–1064.
[35] Chee MW, Chen KH, Zheng H, Chan KP, Isaac V, Sim SK, et al. (2009). Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage, 46:257–269.
[36] Iacono D, O'Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, et al. (2008). Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol, 67:578–589.
[37] Bahar-Fuchs A, Clare L, Woods B (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementia. Cochrane Database Syst Rev:Cd003260.
[1] Duan Wanying, Pu Yuehua, Liu Haiyan, Jing Jing, Pan Yuesong, Zou Xinying, Wang Yilong, Zhao Xingquan, Wang Chunxue, Wang Yongjun, Wong Ka Sing Lawrence, Wei Ling, Liu Liping, on behalf of the CICAS StudyGroup. Association between Leukoaraiosis and Symptomatic Intracranial Large Artery Stenoses and Occlusions: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Aging and disease, 2018, 9(6): 1074-1083.
[2] Ze Teng, Aibo Wang, Peng Wang, Rui Wang, Wei Wang, Hongbin Han. The Effect of Aquaporin-4 Knockout on Interstitial Fluid Flow and the Structure of the Extracellular Space in the Deep Brain[J]. Aging and disease, 2018, 9(5): 808-816.
[3] Yangqi Xu, Xiaoli Liu, Junyi Shen, Wotu Tian, Rong Fang, Binyin Li, Jianfang Ma, Li Cao, Shengdi Chen, Guanjun Li, Huidong Tang. The Whole Exome Sequencing Clarifies the Genotype- Phenotype Correlations in Patients with Early-Onset Dementia[J]. Aging and disease, 2018, 9(4): 696-705.
[4] Jiang Xue,Jiarui Li,Jiaming Liang,Shulin Chen. The Prevalence of Mild Cognitive Impairment in China: A Systematic Review[J]. A&D, 2018, 9(4): 706-715.
[5] Laia Perez-Roca,Cristina Adame-Castillo,Jaume Campdelacreu,Lourdes Ispierto,Dolores Vilas,Ramon Rene,Ramiro Alvarez,Jordi Gascon-Bayarri,Maria A. Serrano-Munoz,Aurelio Ariza,Katrin Beyer. Glucocerebrosidase mRNA is Diminished in Brain of Lewy Body Diseases and Changes with Disease Progression in Blood[J]. A&D, 2018, 9(2): 208-219.
[6] Jing Zou,Zhigang Chen,Caiqian Liang,Yongmei Fu,Xiaobo Wei,Jianjun Lu,Mengqiu Pan,Yue Guo,Xinxue Liao,Huifang Xie,Duobin Wu,Min Li,Lihui Liang,Penghua Wang,Qing Wang. Trefoil Factor 3, Cholinesterase and Homocysteine: Potential Predictors for Parkinson’s Disease Dementia and Vascular Parkinsonism Dementia in Advanced Stage[J]. A&D, 2018, 9(1): 51-65.
[7] Xianglai Xu,Brian Wang,Changhong Ren,Jiangnan Hu,David A. Greenberg,Tianxiang Chen,Liping Xie,Kunlin Jin. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases[J]. A&D, 2017, 8(4): 486-505.
[8] Xiaohua Li,Changhong Ren,Sijie Li,Rongrong Han,Jinhuan Gao,Qingjian Huang,Kunlin Jin,Yinghao Luo,Xunming Ji. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion[J]. A&D, 2017, 8(4): 392-401.
[9] Zohara Sternberg,Zihua Hu,Daniel Sternberg,Shayan Waseh,Joseph F. Quinn,Katharine Wild,Kaye Jeffrey,Lin Zhao,Michael Garrick. Serum Hepcidin Levels, Iron Dyshomeostasis and Cognitive Loss in Alzheimer’s Disease[J]. A&D, 2017, 8(2): 215-227.
[10] Lei Su,Yujuan Han,Rong Xue,Kristofer Wood,Fu-Dong Shi,Yaou Liu,Ying Fu. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder[J]. A&D, 2016, 7(6): 691-696.
[11] J. De Reuck,F. Auger,N. Durieux,V. Deramecourt,C. Cordonnier,F. Pasquier,C.A. Maurage,D. Leys,R. Bordet. Topography of Cortical Microbleeds in Alzheimer’s Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study[J]. A&D, 2015, 6(6): 437-443.
[12] Tatiana Barichello,Jaqueline S. Generoso,Jessica A. Goularte,Allan Collodel,Meagan R. Pitcher,Lutiana R. Simões,João Quevedo,Felipe Dal-Pizzol. Does Infection-Induced Immune Activation Contribute to Dementia?[J]. A&D, 2015, 6(5): 342-348.
[13] Yi Zhou,Rong Fang,Li-Hua Liu,Sheng-Di Chen,Hui-Dong Tang. Clinical Characteristics for the Relationship between Type-2 Diabetes Mellitus and Cognitive Impairment: A Cross-Sectional Study[J]. A&D, 2015, 6(4): 236-244.
[14] Yury G. Kaminsky,V. Prakash Reddy,Ghulam Md Ashraf,Ausaf Ahmad,Valery V. Benberin,Elena A. Kosenko,Gjumrakch Aliev. Age-Related Defects in Erythrocyte 2,3-Diphosphoglycerate Metabolism in Dementia[J]. Aging and Disease, 2013, 4(5): 244-255.
[15] Lopamudra Ray,Vineet Kumar Khemka,Prajna Behera,Kausik Bandyopadhyay,Sandip Pal,Keya Pal,Debasis Basu,Sasanka Chakrabarti. Serum Homocysteine, Dehydroepiandrosterone Sulphate and Lipoprotein (a) in Alzheimer’s Disease and Vascular Dementia[J]. Aging and Disease, 2013, 4(2): 57-64.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd