Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2018, Vol. 9 Issue (4) : 696-705     DOI: 10.14336/AD.2018.0208
Orginal Article |
The Whole Exome Sequencing Clarifies the Genotype- Phenotype Correlations in Patients with Early-Onset Dementia
Xu Yangqi1, Liu Xiaoli1,3, Shen Junyi1, Tian Wotu1, Fang Rong1,4, Li Binyin1, Ma Jianfang1, Cao Li1, Chen Shengdi1, Li Guanjun2,*, Tang Huidong1,*
1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
2Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
3Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
4Department of Neurology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Download: PDF(678 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Our study aimed to identify the underlying causes in patients with early onset dementia by clinical and genetic exploration. We recruited a group of 38 patients with early-onset dementia. Firstly, hexanucleotide repeat expansions in C9ORF72 gene were screened in all subjects to exclude the possibility of copy number variation. Then, the whole exome sequencing (WES) was conducted, and the data were analyzed focusing on 89 dementia-related causing and susceptible genes. The effects of identified variants were classified according to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. There were no pathogenic expansions in C9ORF72 detected. According to the ACMG standards and guidelines, we identified five known pathogenic mutations, PSEN1 P284L, PSEN1c.857-1G>A, PSEN1 I143T, PSEN1 G209E and MAPT G389R, and one novel pathogenic mutation APP K687N. All these mutations caused dementia with the mean onset age of 38.3 (range from 27 to 51) and rapid progression. Eleven variants with uncertain significance were also detected and needed further verification. The clinical phenotypes of dementia are heterogeneous, with both onset ages and clinical features being influenced by mutation position as well as the causative gene. WES can serve as efficient diagnostic tools for different heterogeneous dementia.

Keywords frontotemporal dementia      Alzheimer’s disease      next-generation sequencing      variants classification     
Corresponding Authors: Li Guanjun,Tang Huidong   
About author:

These authors contributed equally to this work.

Issue Date: 01 August 2018
E-mail this article
E-mail Alert
Articles by authors
Xu Yangqi
Liu Xiaoli
Shen Junyi
Tian Wotu
Fang Rong
Li Binyin
Ma Jianfang
Cao Li
Chen Shengdi
Li Guanjun
Tang Huidong
Cite this article:   
Xu Yangqi,Liu Xiaoli,Shen Junyi, et al. The Whole Exome Sequencing Clarifies the Genotype- Phenotype Correlations in Patients with Early-Onset Dementia[J]. Aging and disease, 2018, 9(4): 696-705.
URL:     OR
Early onset ADAPP, PSEN1, PSEN2
Table 1  Genes associated with dementia.
Figure 1.  Magnetic resonance imaging (MRI), Alzheimer’s disease (AD) pathogenic mutations and Pedigrees for five cases

Brain MRI (T2W-FLAIR) images from AT001 (A), AT002 (D), AT040 (J), AT045 (M) and brain MRI (T2WI) images from AT003 (G). (B, E, H, K, N) are the Sanger sequencing results of AT001, AT002, AT003, AT040, and AT045. (C, F, I, L, O) indicate pedigrees of AT001, AT002, AT003, AT040, and AT045. * T2W-FLAIR: T2 weighted fluid-attenuated inversion recovery; T2WI: T2-weighted imaging.

Consequence at protein
Clinical diagnosisFrequency predictionSoftware predictionACMG

Esp65001000g2014East AsianPolyphen2SIFTMutation taster
AT008PSEN2Hetc.G640Tp.V214LAD/FTDNA0.00120.0025430.972/D0.09/Tdisease causingVUS
AT017PSEN2Hetc.G640Tp.V214LADNA0.00120.0025430.972/D0.09/Tdisease causingVUS
AT013TREM2Hetc.C331Ap.Q111KADNANA0.00023130.998/D0.57/Tdisease causingVUS
AT015ABCA7Hetc.G5963Tp.C1988FADNA0.0009984NA1/D0/Ddisease causingVUS
AT022TRPM7Hetc.C2525Tp.T842MFTD-ALSNANANA0.945/P0.08/Tdisease causingVUS
AT020NME8Hetc.1008dupTp.R336fsFTD-ALSNANANANANAdisease causingVUS
AT032SORL1Hetc.C3238Tp.R1080CFTD0.000077NA5.998e-050.992/D0.06/Tdisease causingVUS
MPOHetc.G980Ap.R327HNANA6.057e-051/D0/Ddisease causingVUS
AT028APBB2Hetc.A433Tp.N145YFTD-parkinsonismNANANA0.561/P0.03/Ddisease causingVUS
AT037ATP13A2Hetc.C2806Tp.T1483AFTDNANANA1/D0.18/Tdisease causingVUS
AT041PSEN2Hetc.C505Ap.H169NADNA0.000199680.0023110.985/D0.05/Tdisease causingVUS
Table 2  Cases of variants with uncertain significance.
CaseDiagnosisGenetic resultAPOE genotype
AT001AD/FTDPSEN1: NM_000021: exon8: c.C851Tε3/ε3
AT002AD/FTDPSEN1: NM_007318: exon9: c.857-1G>Aε3/ε3
AT003AD/FTDPSEN1: NM_000021: exon5: c.T428Cε3/ε3
AT008AD/FTDPSEN2: NM_000447: exon8: c.G640Tε4/ε3
AT013ADTREM2: NM_001271821: exon2: c.C331Aε4/ε3
AT015ADABCA7: NM_019112: exon45: c.G5963Tε4/ε3
AT017ADPSEN2: NM_000447: exon8: c.G640Tε4/ε4
AT020FTD-ALSNME8: NM_016616: exon13: c.1008dupTε3/ε3
AT022FTD-ALSTRPM7: NM_017672: exon19: c.C2525Tε4/ε3
AT028FTD-parkinsonismAPBB2: NM_001166051: exon6: c.A433Tε3/ε3
AT029SDGRN: NM_002087: exon13: c.C1663Tε2/ε3
AT032bvFTDSORL1: NM_003105: exon23: c.C3238T
MPO: NM_000250: exon7: c.G980A
MPO: NM_000250: exon7: G980A
AT033bvFTDMAPT: NM_005910: exon13: G1165A
AT037bvFTDATP13A2: NM_001141974: exon25: c.C2806Tε3/ε3
AT040AD/FTDPSEN1: NM_000021: exon7: c.G626Aε4/ε3
AT041ADPSEN2: NM_000447: exon7: c.C505Aε3/ε3
AT045AD/FTDAPP: NM_000484: exon16: c.A2061Cε2/ε3
Table 3  APOE genotypes of all patients.
EthnicitySexAOPresenting symptomsFamily historyMMSEAPOEReference
KoreanF69Memory lossNA18ε3/4[39]
KoreanF54Memory loss, anomiaNo15ε3/3[37]
ChinaM63Memory lossNoNAε3/3[38]
ChinaF64Memory lossYesNAε4/4[38]
ChinaF50Memory loss and behavior changesNo12ε3/4This study
ChinaM48Memory lossNo15ε4/4This study
Table 4  Summary of basic characteristics of patients with V214L mutation in PSEN2.
[1] van der Flier WM, Scheltens P (2005). Epidemiology and risk factors of dementia. J Neurol Neurosurg Psychiatry, 76 Suppl 5:v2-7.
[2] Chaudhury S, Patel T, Barber IS, Guetta-Baranes T, Brookes KJ, Chappell S, et al. (2018). Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer’s disease. Neurobiol Aging, 62:244.e241-244.e248.
[3] Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD (2010). The diagnosis of young-onset dementia. Lancet Neurol, 9:793-806.
[4] Ferencz B, Gerritsen L (2015). Genetics and underlying pathology of dementia. Neuropsychol Rev, 25:113-124.
[5] Olszewska DA, Lonergan R, Fallon EM, Lynch T (2016). Genetics of Frontotemporal Dementia. Curr Neurol Neurosci Rep, 16:107.
[6] Ossenkoppele R, Pijnenburg YA, Perry DC, Cohn-Sheehy BI, Scheltens NM, Vogel JW, et al. (2015). The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain, 138:2732-2749.
[7] Mishra A, Ferrari R, Heutink P, Hardy J, Pijnenburg Y, Posthuma D (2017). Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain, 140:1437-1446.
[8] Bettens K, Sleegers K, Van Broeckhoven C (2013). Genetic insights in Alzheimer’s disease. Lancet Neurol, 12:92-104.
[9] Tang M, Gu X, Wei J, Jiao B, Zhou L, Zhou Y, et al. (2016). Analyses MAPT, GRN, and C9orf72 mutations in Chinese patients with frontotemporal dementia. Neurobiol Aging, 46:235 e211-235.
[10] Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, et al. (2016). TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging, 48:222.e229-222.e215.
[11] Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, et al. (2017). Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging, 59:220.e221-220.e229.
[12] Abrahao A, Abath Neto O, Kok F, Zanoteli E, Santos B, Pinto WB, et al. (2016). One family, one gene and three phenotypes: A novel VCP (valosin-containing protein) mutation associated with myopathy with rimmed vacuoles, amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Sci, 368:352-358.
[13] Pang SY, Teo KC, Hsu JS, Chang RS, Li M, Sham PC, et al. (2017). The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener, 6:27.
[14] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CRJr., Kawas CH, et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7:263-269.
[15] Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51:1546-1554.
[16] Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76:1006-1014.
[17] Brooks BR, Miller RG, Swash M, Munsat TL (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord, 1:293-299.
[18] Park HK, Chung SJ (2013). New perspective on parkinsonism in frontotemporal lobar degeneration. J Mov Disord, 6:1-8.
[19] Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72:257-268.
[20] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. 17:405-424.
[21] Barber IS, Garcia-Cardenas JM, Sakdapanichkul C, Deacon C, Zapata Erazo G, Guerreiro R, et al. (2016). Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer’s disease. Neurobiol Aging, 39:220.e221-227.
[22] Martin JJ, Gheuens J, Bruyland M, Cras P, Vandenberghe A, Masters CL, et al. (1991). Early-onset Alzheimer’s disease in 2 large Belgian families. Neurology, 41:62-68.
[23] Arai N, Kishino A, Takahashi Y, Morita D, Nakamura K, Yokoyama T, et al. (2008). Familial cases presenting very early onset autosomal dominant Alzheimer’s disease with I143T in presenilin-1 gene: implication for genotype-phenotype correlation. Neurogenetics, 9:65-67.
[24] Tabira T, Chui DH, Nakayama H, Kuroda S, Shibuya M (2002). Alzheimer’s disease with spastic paresis and cotton wool type plaques. J Neurosci Res, 70:367-372.
[25] Brooks WS, Kwok JB, Kril JJ, Broe GA, Blumbergs PC, Tannenberg AE, et al. (2003). Alzheimer’s disease with spastic paraparesis and ‘cotton wool’ plaques: two pedigrees with PS-1 exon 9 deletions. Brain, 126:783-791.
[26] Keller L, Welander H, Chiang HH, Tjernberg LO, Nennesmo I, Wallin AK, et al. (2010). The PSEN1 I143T mutation in a Swedish family with Alzheimer’s disease: clinical report and quantification of Abeta in different brain regions. Eur J Hum Genet, 18:1202-1208.
[27] Sugiyama N, Suzuki K, Matsumura T, Kawanishi C, Onishi H, Yamada Y, et al. (1999). A novel missense mutation (G209R) in exon 8 of the presenilin 1 gene in a Japanese family with presenile familial Alzheimer’s disease. Mutation in brief no. 254. Online. Hum Mutat, 14:90.
[28] Mann DM, Pickering-Brown SM, Takeuchi A, Iwatsubo T (2001). Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am J Pathol, 158:2165-2175.
[29] Ryan NS, Nicholas JM, Weston PS, Liang Y, Lashley T, Guerreiro R, et al. (2016). Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer’s disease: a case series. Lancet Neurol, 15:1326-1335.
[30] Smith MJ, Kwok JB, McLean CA, Kril JJ, Broe GA, Nicholson GA, et al. (2001). Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol, 49:125-129.
[31] Zarea A, Charbonnier C, Rovelet-Lecrux A, Nicolas G, Rousseau S, Borden A, et al. (2016). Seizures in dominantly inherited Alzheimer disease. Neurology, 87:912-919.
[32] Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger TL, et al. (2016). White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network. Ann Neurol, 79:929-939.
[33] Soosman SK, Joseph-Mathurin N, Braskie MN, Bordelon YM, Wharton D, Casado M, et al. (2016). Widespread white matter and conduction defects in PSEN1-related spastic paraparesis. Neurobiol Aging, 47:201-209.
[34] Ryan NS, Biessels GJ, Kim L, Nicholas JM, Barber PA, Walsh P, et al. (2015). Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer’s disease. Neurobiol Aging, 36:3140-3151.
[35] Ringman JM, Monsell S, Ng DW, Zhou Y, Nguyen A, Coppola G, et al. (2016). Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database. J Neuropathol Exp Neurol, 75:284-290.
[36] Obulesu M, Somashekhar R, Venu R (2011). Genetics of Alzheimer’s disease: an insight into presenilins and apolipoprotein E instigated neurodegeneration. Int J Neurosci, 121:229-236.
[37] An SS, Park SA, Bagyinszky E, Bae SO, Kim YJ, Im JY, et al. (2016). A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease. Clin Interv Aging, 11:1817-1822.
[38] Shi Z, Wang Y, Liu S, Liu M, Liu S, Zhou Y, et al. (2015). Clinical and neuroimaging characterization of Chinese dementia patients with PSEN1 and PSEN2 mutations. Dement Geriatr Cogn Disord, 39:32-40.
[39] Youn YC, Bagyinszky E, Kim H, Choi BO, An SS, Kim S (2014). Probable novel PSEN2 Val214Leu mutation in Alzheimer’s disease supported by structural prediction. BMC Neurol, 14:105.
[40] Brouwers N, Sleegers K, Engelborghs S, Maurer-Stroh S, Gijselinck I, van der Zee J, et al. (2008). Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology, 71:656-664.
[41] Sun Y, Sukumaran P, Schaar A, Singh BB (2015). TRPM7 and its role in neurodegenerative diseases. Channels (Austin), 9:253-261.
[42] Cuccaro D, De Marco EV, Cittadella R, Cavallaro S (2017). Copy Number Variants in Alzheimer’s Disease. J Alzheimers Dis, 55:37-52.
[1] Jong Bin Bae,Ji Won Han,Kyung Phil Kwak,Bong Jo Kim,Shin Gyeom Kim,Jeong Lan Kim,Tae Hui Kim,Seung-Ho Ryu,Seok Woo Moon,Joon Hyuk Park,Jong Chul Youn,Dong Young Lee,Dong Woo Lee,Seok Bum Lee,Jung Jae Lee,Jin Hyeong Jhoo,Ki Woong Kim. Is Dementia More Fatal Than Previously Estimated? A Population-based Prospective Cohort Study[J]. Aging and disease, 2019, 10(1): 1-11.
[2] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[3] Daichi Sone,Etsuko Imabayashi,Norihide Maikusa,Masayo Ogawa,Noriko Sato,Hiroshi Matsuda, . Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD) on 3-tesla Normal Database: Diagnostic Accuracy in Two Independent Cohorts with Early Alzheimer’s Disease[J]. A&D, 2018, 9(4): 755-760.
[4] Morroni Fabiana, Sita Giulia, Graziosi Agnese, Turrini Eleonora, Fimognari Carmela, Tarozzi Andrea, Hrelia Patrizia. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer’s Disease Involves Nrf2/HO-1 Pathway[J]. Aging and disease, 2018, 9(4): 605-622.
[5] Ding Qiong, Tanigawa Kitora, Kaneko Jun, Totsuka Mamoru, Katakura Yoshinori, Imabayashi Etsuko, Matsuda Hiroshi, Hisatsune Tatsuhiro. Anserine/Carnosine Supplementation Preserves Blood Flow in the Prefrontal Brain of Elderly People Carrying APOE e4[J]. Aging and disease, 2018, 9(3): 334-345.
[6] Shen Ting, You Yuyi, Joseph Chitra, Mirzaei Mehdi, Klistorner Alexander, Graham Stuart L., Gupta Vivek. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders[J]. Aging and disease, 2018, 9(3): 523-536.
[7] Peng Fangyu, Xie Fang, Muzik Otto. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. Aging and disease, 2018, 9(1): 109-118.
[8] Diana L Castillo-Carranza,Ashley N Nilson,Candice E Van Skike,Jordan B Jahrling,Kishan Patel,Prajesh Garach,Julia E Gerson,Urmi Sengupta,Jose Abisambra,Peter Nelson,Juan Troncoso,Zoltan Ungvari,Veronica Galvan,Rakez Kayed. Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer’s Disease and Related Tauopathies[J]. A&D, 2017, 8(3): 257-266.
[9] Zohara Sternberg,Zihua Hu,Daniel Sternberg,Shayan Waseh,Joseph F. Quinn,Katharine Wild,Kaye Jeffrey,Lin Zhao,Michael Garrick. Serum Hepcidin Levels, Iron Dyshomeostasis and Cognitive Loss in Alzheimer’s Disease[J]. A&D, 2017, 8(2): 215-227.
[10] Annamaria Zaia,Pierluigi Maponi,Giuseppina Di Stefano,Tiziana Casoli. Biocomplexity and Fractality in the Search of Biomarkers of Aging and Pathology: Focus on Mitochondrial DNA and Alzheimer’s Disease[J]. A&D, 2017, 8(1): 44-56.
[11] Jianhui Wang,Xiaorui Cheng,Ju Zeng,Jiangbei Yuan,Zhongfu Wang,Wenxia Zhou,Yongxiang Zhang. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease[J]. A&D, 2017, 8(1): 101-114.
[12] Murat Serdar Gurses,Mustafa Numan Ural,Mehmet Akif Gulec,Omer Akyol,Sumeyya Akyol. Pathophysiological Function of ADAMTS Enzymes on Molecular Mechanism of Alzheimer’s Disease[J]. A&D, 2016, 7(4): 479-490.
[13] Ryan J. Day,Katie L. McCarty,Kayla E. Ockerse,Elizabeth Head,Troy T. Rohn. Proteolytic Cleavage of Apolipoprotein E in the Down Syndrome Brain[J]. A&D, 2016, 7(3): 267-277.
[14] Isaac G. Onyango,Jameel Dennis,Shaharyah M. Khan. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies[J]. A&D, 2016, 7(2): 201-214.
[15] J. De Reuck,F. Auger,N. Durieux,V. Deramecourt,C. Cordonnier,F. Pasquier,C.A. Maurage,D. Leys,R. Bordet. Topography of Cortical Microbleeds in Alzheimer’s Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study[J]. A&D, 2015, 6(6): 437-443.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd