Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (2) : 205-216     DOI: 10.14336/AD.2018.0327
Original Article |
Influence of Environment and Lifestyle on Incidence and Progress of Amyotrophic Lateral Sclerosis in A German ALS Population
Sonja Korner1,*, Johanna Kammeyer1, Antonia Zapf2, Magdalena Kuzma-Kozakiewicz3, Maria Piotrkiewicz4, Bożenna Kuraszkiewicz4, Hanna Goszczynska4, Marta Gromicho5, Julian Grosskreutz6, Peter M. Andersen7, Mamede de Carvalho5, Susanne Petri1,8
1Department of Neurology, Hannover Medical School, Germany.
2Department of Medical Statistics, University Medical Center Göttingen Germany.
3Department of Neurology, Medical University of Warsaw, Poland.
4Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
5Institute of Physiology-Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
6Department of Neurology, University Hospital Jena, Jena, Germany.
7Department of Pharmacology and Clinical Neuroscience, Umea University, Sweden.
8Center for Systems Neuroscience (ZSN), Hannover, Germany.
Download: PDF(592 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease mainly affecting upper and lower motor neurons in the brain and spinal cord. Pathogenesis of ALS is still unclear, and a multifactorial etiology is presumed. The remarkable clinical heterogeneity between different phenotypes of ALS patients suggests that environmental and lifestyle factors could play a role in onset and progression of ALS. We analyzed a cohort of 117 ALS patients and 93 controls. ALS patients and controls were compared regarding physical activity, dietary habits, smoking, residential environment, potentially toxic environmental factors and profession before symptom onset and throughout the disease course. Data were collected by a personal interview. For statistical analysis descriptive statistics, statistical tests and analysis of variance were used. ALS patients and controls did not differ regarding smoking, diet and extent of physical training. No higher frequency of toxic influences could be detected in the ALS group. ALS patients lived in rural environment considerably more often than the control persons, but this was not associated with a higher percentage of occupation in agriculture. There was also a higher percentage of university graduates in the ALS group. Patients with bulbar onset were considerably more often born in an urban environment as compared to spinal onset. Apart from education and environment, ALS phenotypes did not differ in any investigated environmental or life-style factor. The rate of disease progression was not influenced by any of the investigated environmental and life-style factors. The present study could not identify any dietary habit, smoking, physical activity, occupational factor as well as toxic influences as risk factor or protective factor for onset or progression of ALS. Living in rural environment and higher education might be associated with higher incidence of ALS.

Keywords ALS      environment      life-style      epidemiology      phenotypes     
Corresponding Authors: Korner Sonja   
About author:

Currently address: Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China

Issue Date: 23 January 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sonja Korner
Johanna Kammeyer
Antonia Zapf
Magdalena Kuzma-Kozakiewicz
Maria Piotrkiewicz
Bożenna Kuraszkiewicz
Hanna Goszczynska
Marta Gromicho
Julian Grosskreutz
Peter M. Andersen
Mamede de Carvalho
Susanne Petri
Cite this article:   
Sonja Korner,Johanna Kammeyer,Antonia Zapf, et al. Influence of Environment and Lifestyle on Incidence and Progress of Amyotrophic Lateral Sclerosis in A German ALS Population[J]. Aging and disease, 2019, 10(2): 205-216.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2018.0327     OR     http://www.aginganddisease.org/EN/Y2019/V10/I2/205
Characterization of patient cohortALS patients (n = 117)
Onset (spinal: bulbar), N (%)96: 21 (82%: 18%)
UMN dominant: LMN dominant:
UMN/LMN equally, N (%)
14: 83 :19 (12%: 71%: 16%)
Disease duration, median (Q25, Q75)17 months (11 months; 25 months)
ALSFRS-R, median (Q25, Q75)40 (35.25; 43)
ALSFRS-R decline per month,
progression rate, mean (sd)
0,91 (0,89)
Table 1  Characterization of the ALS patient cohort.
Figure 1.  Place of living of ALS-patients and controls. ALS-patients relevantly more frequently lived in smaller towns (p = 0.021) (A) and rural areas (p = 0.013) (B).
Figure 2.  Patients with bulbar onset showed UMN involvement more frequently than patients with spinal onset (p<0.001).
variablevalueControlsALSp-value
Age58.68 (sd = 8.88)60.79 (sd = 11.23)0.13
Genderfemale54 (58.1)42 (35.9)0.0014
male39 (41.9)75 (64.1)
Occupational physical activity in the last 5 years before disease onsetlow18 (30.0)16 (21.3)0.1283
mean37 (61.7)44 (58.7)
high5 (8.3)15 (20.0)
Occupational physical activity more than 5 years before disease onsetlow21 (23.3)24 (21.6)0.7620
mean54 (60.0)64 (57.7)
high15 (16.7)23 (20.7)
dietary habitsnone79 (85.9)103 (91.2)0.5828
vegetarian6 (6.5)5 (4.4)
Gluten free1 (1.1)0 (0.0)
Low carb5 (5.4)5 (4.4)
Lactose free1 (1.1)0 (0.0)
Region of birthrural31 (33.3)52 (47.3)0.0441
urban62 (66.7)58 (52.7)
Place of birthvillage (<1000 inhabitants)13 (14.0)23 (20.2)0.1754
country town (1000-5000 inhabitants)6 (6.5)9 (7.9)
small town (5000 - 20000 inhabitants)7 (7.5)18 (15.8)
middle towns (20000 - 100000 inhabitants)26 (28.0)23 (20.2)
large town (>100000 inhabitants)41 (44.1)41 (36.0)
Region of living more than 5 years before disease onsetrural34 (36.6)61 (55.0)0.0087
urban59 (63.4)50 (45.0)
Region of living in the last 5 years before disease onsetrural39 (41.9)66 (59.5)0.0126
urban54 (58.1)45 (40.5)
Toxic influence in the last 5 years before disease onsetnone74 (79.6)93 (82.3)0.6628
Sewage plant6 (6.5)6 (5.3)
Landfills3 (3.2)5 (4.4)
Waste incinerators1 (1.1)3 (2.7)
EM fields7 (7.5)6 (5.3)
Chemical plant2 (2.2)0 (0.0)
Toxic influence more than 5 years before disease onsetnone79 (84.9)92 (81.4)0.7588
Sewage plant3 (3.2)4 (3.5)
Landfills2 (2.2)3 (2.7)
Waste incinerators2 (2.2)3 (2.7)
EM fields4 (4.3)9 (8.0)
Chemical plant1 (1.1)2 (1.8)
Coal-burning power plant2 (2.2)0 (0.0)
Place of living in the last 5 years before disease onsetvillage (<1000 inhabitants)6 (6.5)15 (13.2)0.0214
country town (1000-5000 inhabitants)6 (6.5)9 (7.9)
small town (5000 - 20000 inhabitants)9 (9.7)20 (17.5)
middle towns (20000 - 100000 inhabitants)21 (22.6)33 (28.9)
large town (>100000 inhabitants)51 (54.8)37 (32.5)
Place of living more than 5 years before disease onsetvillage (<1000 inhabitants)7 (7.5)17 (14.9)0.0024
country town (1000-5000 inhabitants)5 (5.4)9 (7.9)
small town (5000 - 20000 inhabitants)5 (5.4)17 (14.9)
middle towns (20000 - 100000 inhabitants)21 (22.6)34 (29.8)
large town (>100000 inhabitants)55 (59.1)37 (32.5)
Smoking habitsnon-smokers41 (44.1)52 (46.0)0.5596
Ex-smokers38 (40.9)39 (34.5)
Current smokers14 (15.1)22 (19.5)
Regular physical exerciseno26 (28.0)25 (22.1)0.3344
yes67 (72.0)88 (77.9)
Physical exercise differentiatedNo sport10 (10.8)12 (10.7)0.0806
Intense, 150min/week moderate aerobic activity41 (44.1)68 (60.7)
Intense, 75min/week vigorous aerobic activity31 (33.3)22 (19.6)
Mild physical exercise11 (11.8)10 (8.9)
Table 2  Comparison of patients and ALS-patients (93 vs 117).
agePercentage of university graduates (%)
ALS patients (absolute proportion of group)
Percentage of university graduates (%)
National average 2016
p-value
30-39100% (3/3)27%0.02
40-4935.3% (6/17)21%0.15
50-6414.0% (6/43)18%0.69
>6522.4% (11/49)12%0.04
Table 3  Percentages of university graduates in our ALS patient group compared with the national average 2016 in Germany according to information of the federal statistical office.
variablevaluebulbarspinalp-value
age61.19 (sd = 11.97)60.70 (sd = 11.14)0.8566
Genderfemale11 (52.4)31 (32.3)0.0821
male10 (47.6)65 (67.7)
UMN and LMN symptomspredominant upper motor neuron (UMN)8 (38.1)6 (6.3)<0.001
predominant lower motor neuron (LMN)9 (42.9)74 (77.9)
equal UMN and LMN symptoms4 (19)15 (15.8)
Level of educationNo university graduate17 (85.0)69 (75.0)0.3988
University graduate3 (15.0)23 (25.0)
Occupational physical activity in the last 5 years before disease onsetlow3 (21.4)13 (21.3)1.0000
mean8 (57.1)36 (59.0)
high3 (21.4)12 (19.7)
Occupational physical activity more than 5 years before disease onsetlow5 (25.0)19 (20.9)0.8405
mean12 (60.0)52 (57.1)
high3 (15.0)20 (22.0)
Dietary habitsnone20 (95.2)83 (90.2)0.8251
vegetarian1 (4.8)4 (4.3)
Low carb0 (0.0)5 (5.4)
Region of birthrural5 (23.8)47 (52.8)0.0167
Urban16 (76.2)42 (47.2)
Place of birthvillage (<1000 inhabitants)3 (14.3)20 (21.5)0.2890
country town (1000-5000 inhabitants)1 (4.8)8 (8.6)
small town (5000 - 20000 inhabitants)1 (4.8)17 (18.3)
middle towns (20000 - 100000 inhabitants)7 (33.3)16 (17.2)
large town (>100000 inhabitants)9 (42.9)32 (34.4)
Region of living more than 5 years before disease onsetrural11 (52.4)50 (55.6)0.7923
urban10 (47.6)40 (44.4)
Region of living in the last 5 years before disease onsetrural11 (52.4)55 (61.1)0.4631
urban10 (47.6)35 (38.9)
Toxic influence in the last 5 years before disease onsetnone19 (90.5)74 (80.4)0.9067
Sewage plant1 (4.8)5 (5.4)
Landfills1 (4.8)4 (4.3)
Waste incinerators0 (0.0)3 (3.3)
EM fields0 (0.0)6 (6.5)
Toxic influence more than 5 years before disease onsetnone20 (95.2)72 (78.3)0.4817
Sewage plant0 (0.0)4 (4.3)
Landfills1 (4.8)2 (2.2)
Waste incinerators0 (0.0)3 (3.3)
EM fields0 (0.0)9 (9.8)
Chemical plant0 (0.0)2 (2.2)
Place of living in the last 5 years before disease onsetvillage (<1000 inhabitants)2 (9.5)13 (14.0)0.4116
country town (1000-5000 inhabitants)2 (9.5)7 (7.5)
small town (5000 - 20000 inhabitants)5 (23.8)15 (16.1)
middle towns (20000 - 100000 inhabitants)3 (14.3)30 (32.3)
large town (>100000 inhabitants)9 (42.9)28 (30.1)
Place of living more than 5 years before disease onsetvillage (<1000 inhabitants)2 (9.5)15 (16.1)0.2627
country town (1000-5000 inhabitants)2 (9.5)7 (7.5)
small town (5000 - 20000 inhabitants)5 (23.8)12 (12.9)
middle towns (20000 - 100000 inhabitants)3 (14.3)31 (33.3)
large town (>100000 inhabitants)9 (42.9)28 (30.1)
Smoking habitsnon-smokers10 (47.6)42 (45.7)0.9021
Ex-smokers8 (38.1)31 (33.7)
Current smokers3 (14.3)19 (20.7)
Regular physical exerciseno7 (33.3)18 (19.6)0.1702
yes14 (66.7)74 (80.4)
Physical exercise differentiatedNo sport5 (25.0)7 (7.6)0.0949
Intense, 150min/week moderate aerobic activity9 (45.0)59 (64.1)
Intense, 75min/week vigorous aerobic activity5 (25.0)17 (18.5)
Mild physical exercise1 (5.0)9 (9.8)
Table 4  Comparison of ALS-patients with bulbar and spinal onset (21 vs 96).
Figure 3.  Bulbar onset patients relevantly more often than spinal onset patients were born in an urban environment (p = 0.017).
Figure 4.  Bulbar onset was associated with faster disease progression (p=0.001).
variablevaluepredominant upper motor neuronpredominant lower motor neuronequal UMN and LMN symptomsp-value
Age60.29 (sd = 9.77)61.99 (sd = 10.51)57.47 (sd = 13.18)0.2599
Genderfemale9 (64.3)26 (31.3)7 (36.8)0.0597
male5 (35.7)57 (68.7)12 (63.2)
Onsetbulbar8 (38.1)9 (42.9)4 (19)<0.001
spinal6 (6.3)74 (77.9)15 (15.8)
Level of educationNo university graduate13 (92.9)60 (76.9)13 (68.4)0.2692
University graduate1 (7.1)18 (23.1)6 (31.6)
Occupational physical activity in the last 5 years before disease onsetlow1 (10.0)14 (26.4)1 (9.1)0.4383
mean7 (70.0)27 (50.9)9 (81.8)
high2 (20.0)12 (22.6)1 (9.1)
Occupational physical activity more than 5 years before disease onsetlow4 (28.6)17 (22.1)3 (15.8)0.2071
mean8 (57.1)40 (51.9)15 (78.9)
high2 (14.3)20 (26.0)1 (5.3)
Dietary habitsnone13 (92.9)74 (93.7)15 (78.9)0.1488
vegetarian0 (0.0)3 (3.8)2 (10.5)
Low carb1 (7.1)2 (2.5)2 (10.5)
Region of birthrural5 (38.5)39 (50.6)8 (42.1)0.6214
Urban8 (61.5)38 (49.4)11 (57.9)
Place of birthvillage (<1000 inhabitants)2 (14.3)16 (20.0)5 (26.3)0.8052
country town (1000-5000 inhabitants)2 (14.3)6 (7.5)1 (5.3)
small town (5000 - 20000 inhabitants)3 (21.4)13 (16.3)2 (10.5)
middle towns (20000 - 100000 inhabitants)1 (7.1)19 (23.8)3 (15.8)
large town (>100000 inhabitants)6 (42.9)26 (32.5)8 (42.1)
Region of living more than 5 years before disease onsetrural8 (57.1)43 (55.8)9 (47.4)0.7846
urban6 (42.9)34 (44.2)10 (52.6)
Region of living in the last 5 years before disease onsetrural9 (64.3)44 (57.1)12 (63.2)0.8158
urban5 (35.7)33 (42.9)7 (36.8)
Toxic influence in the last 5 years before disease onsetnone12 (85.7)63 (79.7)17 (89.5)0.9868
Sewage plant1 (7.1)4 (5.1)1 (5.3)
Landfills0 (0.0)5 (6.3)0 (0.0)
Waste incinerators0 (0.0)3 (3.8)0 (0.0)
EM fields1 (7.1)4 (5.1)1 (5.3)
Toxic influence more than 5 years before disease onsetnone12 (85.7)62 (78.5)17 (89.5)0.9886
Sewage plant1 (7.1)3 (3.8)0 (0.0)
Landfills0 (0.0)3 (3.8)0 (0.0)
Waste incinerators0 (0.0)3 (3.8)0 (0.0)
EM fields1 (7.1)6 (7.6)2 (10.5)
Chemical plant0 (0.0)2 (2.5)0 (0.0)
Place of living in the last 5 years before disease onsetvillage (<1000 inhabitants)1 (7.1)11 (13.8)3 (15.8)0.5935
country town (1000-5000 inhabitants)1 (7.1)5 (6.3)3 (15.8)
small town (5000 - 20000 inhabitants)5 (35.7)13 (16.3)2 (10.5)
middle towns (20000 - 100000 inhabitants)2 (14.3)25 (31.3)5 (26.3)
large town (>100000 inhabitants)5 (35.7)26 (32.5)6 (31.6)
Place of living more than 5 years before disease onsetvillage (<1000 inhabitants)2 (14.3)13 (16.3)2 (10.5)0.3135
country town (1000-5000 inhabitants)1 (7.1)6 (7.5)2 (10.5)
small town (5000 - 20000 inhabitants)5 (35.7)11 (13.8)1 (5.3)
middle towns (20000 - 100000 inhabitants)1 (7.1)24 (30.0)8 (42.1)
large town (>100000 inhabitants)5 (35.7)26 (32.5)6 (31.6)
Smoking habitsnon-smokers4 (28.6)39 (48.8)9 (50.0)0.3673
Ex-smokers8 (57.1)24 (30.0)7 (38.9)
Current smokers2 (14.3)17 (21.3)2 (11.1)
Regular physical exerciseno4 (28.6)17 (21.5)4 (21.1)0.7764
yes10 (71.4)62 (78.5)15 (78.9)
Physical exercise differentiatedNo sport4 (28.6)6 (7.7)2 (10.5)0.4372
Intense, 150min/week moderate aerobic activity7 (50.0)50 (64.1)11 (57.9)
Intense, 75min/week vigorous aerobic activity2 (14.3)14 (17.9)5 (26.3)
Mild physical exercise1 (7.1)8 (10.3)1 (5.3)
Table 5  Comparison of ALS-patients with predominant upper motor neuron (UMN) or lower motor neuron (LMN) symptoms or with equal UMN and LMN symptoms (14 vs 83 vs 19).
[1] Turner MR, Wotton C, Talbot K, Goldacre MJ (2012). Cardiovascular fitness as a risk factor for amyotrophic lateral sclerosis: indirect evidence from record linkage study. J Neurol Neurosurg Psychiatry, 83(4):395-8.
[2] Sutedja NA, van der Schouw YT, Fischer K, Sizoo EM, Huisman MH, Veldink JH, et al (2011). Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry, 82(6):638-42.
[3] Dorst J, Kuhnlein P, Hendrich C, Kassubek J, Sperfeld AD, Ludolph AC (2011). Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol, 258(4):613-7.
[4] Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, et al (2008). Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology, 70(13):1004-9.
[5] van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al (2017). Amyotrophic lateral sclerosis. Lancet, 390(10107):2084-98.
[6] Beghi E, Mennini T, Bendotti C, Bigini P, Logroscino G, Chio A, et al (2007). The heterogeneity of amyotrophic lateral sclerosis: a possible explanation of treatment failure. Curr Med Chem, 14(30):3185-200.
[7] Korner S, Kollewe K, Ilsemann J, Muller-Heine A, Dengler R, Krampfl K, et al (2013). Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol, 20(4):647-54.
[8] Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011). Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol, 10(1):75-82.
[9] Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, et al (2010). Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 11(1-2):166-71.
[10] Hamidou B, Couratier P, Besancon C, Nicol M, Preux PM, Marin B (2014). Epidemiological evidence that physical activity is not a risk factor for ALS. Eur J Epidemiol, 29(7):459-75.
[11] Chio A, Calvo A, Dossena M, Ghiglione P, Mutani R, Mora G (2009). ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph Lateral Scler, 10(4):205-9.
[12] Pupillo E, Messina P, Giussani G, Logroscino G, Zoccolella S, Chio A, et al (2014). Physical activity and amyotrophic lateral sclerosis: a European population-based case-control study. Ann Neurol, 75(5):708-16.
[13] Beghi E, Logroscino G, Chio A, Hardiman O, Millul A, Mitchell D, et al (2010). Amyotrophic lateral sclerosis, physical exercise, trauma and sports: results of a population-based pilot case-control study. Amyotroph Lateral Scler, 11(3):289-92.
[14] Veldink JH, Kalmijn S, Groeneveld GJ, Titulaer MJ, Wokke JH, van den Berg LH (2005). Physical activity and the association with sporadic ALS. Neurology, 64(2):241-5.
[15] Longstreth WT, McGuire V, Koepsell TD, Wang Y, van BG (1998). Risk of amyotrophic lateral sclerosis and history of physical activity: a population-based case-control study. Arch Neurol, 55(2):201-6.
[16] Feddermann-Demont N, Junge A, Weber KP, Weller M, Dvorak J, Tarnutzer AA (2017). Prevalence of potential sports-associated risk factors in Swiss amyotrophic lateral sclerosis patients. Brain Behav, 7(4):e00630.
[17] Luna J, Logroscino G, Couratier P, Marin B (2017). Current issues in ALS epidemiology: Variation of ALS occurrence between populations and physical activity as a risk factor. Rev Neurol (Paris), 173(5):244-53.
[18] de Carvalho M, Ryczkowski A, Andersen P, Gromicho M, Grosskreutz J, Kuzma-Kozakiewicz M, et al (2017). International Survey of ALS Experts about Critical Questions for Assessing Patients with ALS. Amyotroph Lateral Scler Frontotemporal Degener, 18(7-8):505-10.
[19] Statistisches Bundesamt (2016). Bildungsstand der Bevölkerung. Bevölkerung 2015 nach Altersgruppen und Bildungsabschluss. Wiesbaden, Statistisches Bundesamt, 40-41.
[20] Lehman EJ, Hein MJ, Baron SL, Gersic CM (2012). Neurodegenerative causes of death among retired National Football League players. Neurology, 79(19):1970-4.
[21] Abel EL (2007). Football increases the risk for Lou Gehrig's disease, amyotrophic lateral sclerosis. Percept Mot Skills, 104(3 Pt 2):1251-4.
[22] Kassa RM, Bonafede R, Boschi F, Bentivoglio M, Mariotti R (2017). Effect of physical exercise and anabolic steroid treatment on spinal motoneurons and surrounding glia of wild-type and ALS mice. Brain Res, 1657:269-78.
[23] Armon C (2007). Sports and trauma in amyotrophic lateral sclerosis revisited. J Neurol Sci, 262(1-2):45-53.
[24] Binazzi A, Belli S, Uccelli R, Desiato MT, Talamanca IF, Antonini G, et al (2009). An exploratory case-control study on spinal and bulbar forms of amyotrophic lateral sclerosis in the province of Rome. Amyotroph Lateral Scler, 10(5-6):361-9.
[25] Sutedja NA, Veldink JH, Fischer K, Kromhout H, Wokke JH, Huisman MH, et al (2007). Lifetime occupation, education, smoking, and risk of ALS. Neurology, 69(15):1508-14.
[26] Kamel F, Umbach DM, Munsat TL, Shefner JM, Sandler DP (1999). Association of cigarette smoking with amyotrophic lateral sclerosis. Neuroepidemiology, 18(4):194-202.
[27] Weisskopf MG, McCullough ML, Calle EE, Thun MJ, Cudkowicz M, Ascherio A (2004). Prospective study of cigarette smoking and amyotrophic lateral sclerosis. Am J Epidemiol, 160(1):26-33.
[28] Calvo A, Canosa A, Bertuzzo D, Cugnasco P, Solero L, Clerico M, et al (2016). Influence of cigarette smoking on ALS outcome: a population-based study. J Neurol Neurosurg Psychiatry, 87(11):1229-33.
[29] Furby A, Beauvais K, Kolev I, Rivain JG, Sebille V (2010). Rural environment and risk factors of amyotrophic lateral sclerosis: a case-control study. J Neurol, 257(5):792-8.
[30] Qureshi MM, Hayden D, Urbinelli L, Ferrante K, Newhall K, Myers D, et al (2006). Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler, 7(3):173-82.
[31] Bharucha NE, Schoenberg BS, Raven RH, Pickle LW, Byar DP, Mason TJ (1983). Geographic distribution of motor neuron disease and correlation with possible etiologic factors. Neurology, 33(7):911-5.
[32] Granieri E, Carreras M, Tola R, Paolino E, Tralli G, Eleopra R, et al (1988). Motor neuron disease in the province of Ferrara, Italy, in 1964-1982. Neurology, 38(10):1604-8.
[33] Migliaretti G, Berchialla P, Dalmasso P, Cavallo F, Chio A (2013). Amyotrophic lateral sclerosis in Piedmont (Italy): a Bayesian spatial analysis of the incident cases. Amyotroph Lateral Scler Frontotemporal Degener, 14(1):58-65.
[34] Cruz DC, Nelson LM, McGuire V, Longstreth WT Jr, (1999). Physical trauma and family history of neurodegenerative diseases in amyotrophic lateral sclerosis: a population-based case-control study. Neuroepidemiology, 18(2):101-10.
[35] Vinceti M, Filippini T, Violi F, Rothman KJ, Costanzini S, Malagoli C, et al (2017). Pesticide exposure assessed through agricultural crop proximity and risk of amyotrophic lateral sclerosis. Environ Health, 16(1):91.
[36] Keren N, Scott KM, Tsuda M, Barnwell J, Knibb JA, Ellis CM, et al (2014). Evidence of an environmental effect on survival in ALS. Amyotroph Lateral Scler Frontotemporal Degener, 15(7-8):528-33.
[37] Govoni V, Granieri E, Fallica E, Casetta I (2005). Amyotrophic lateral sclerosis, rural environment and agricultural work in the Local Health District of Ferrara, Italy, in the years 1964-1998. J Neurol, 252(11):1322-7.
[38] Govoni V, Della CE, Cesnik E, Casetta I, Granieri E (2017). Can the age at onset give a clue to the pathogenesis of ALS? Acta Neurol Belg, 117(1):221-7.
[39] Sutedja NA, Veldink JH, Fischer K, Kromhout H, Heederik D, Huisman MH, et al (2009). Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler, 10(5-6):302-9.
[40] Weisskopf MG, McCullough ML, Morozova N, Calle EE, Thun MJ, Ascherio A (2005). Prospective study of occupation and amyotrophic lateral sclerosis mortality. Am J Epidemiol, 162(12):1146-52.
[41] Weisskopf MG, Morozova N, O'Reilly EJ, McCullough ML, Calle EE, Thun MJ, et al (2009). Prospective study of chemical exposures and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry, 80(5):558-61.
[42] Koeman T, Slottje P, Schouten LJ, Peters S, Huss A, Veldink JH, et al (2017). Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup Environ Med, 74(8):578-85.
[43] Fang F, Quinlan P, Ye W, Barber MK, Umbach DM, Sandler DP, et al (2009). Workplace exposures and the risk of amyotrophic lateral sclerosis. Environ Health Perspect, 117(9):1387-92.
[44] Sutedja NA, Fischer K, Veldink JH, van der Heijden GJ, Kromhout H, Heederik D, et al (2009). What we truly know about occupation as a risk factor for ALS: a critical and systematic review. Amyotroph Lateral Scler, 10(5-6):295-301.
[45] Capozzella A, Sacco C, Chighine A, Loreti B, Scala B, Casale T, et al (2004). Work related etiology of amyotrophic lateral sclerosis (ALS): a meta-analysis. Ann Ig, 26(5):456-72.
[46] Wei Q, Chen X, Zheng Z, Guo X, Huang R, Cao B, et al (2015). The predictors of survival in Chinese amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener, 16(3-4):237-44.
[47] de Lau LM, Giesbergen PC, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MM (2004). Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology, 63(7):1240-4.
[48] Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015). Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol, 7:181-93.
[1] Wang Min-jun, Chen Jiajia, Chen Fei, Liu Qinggui, Sun Yu, Yan Chen, Yang Tao, Bao Yiwen, Hu Yi-Ping. Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging[J]. Aging and disease, 2019, 10(4): 871-882.
[2] Han Fei, Li Xiaochen, Yang Juhong, Liu Haiyi, Zhang Yi, Yang Xiaoyun, Yang Shaohua, Chang Bai, Chen Liming, Chang Baocheng. Salsalate Prevents β-Cell Dedifferentiation in OLETF Rats with Type 2 Diabetes through Notch1 Pathway[J]. Aging and disease, 2019, 10(4): 719-730.
[3] Zhang Qun, Wu Jun-fa, Shi Qi-li, Li Ming-yue, Wang Chuan-jie, Wang Xin, Wang Wen-yuan, Wu Yi. The Neuronal Activation of Deep Cerebellar Nuclei Is Essential for Environmental Enrichment-Induced Post-Stroke Motor Recovery[J]. Aging and disease, 2019, 10(3): 530-543.
[4] Calvo Ana C., Cibreiro Gabriela Atencia, Merino Paz Torre, Roy Juan F., Galiana Adrián, Rufián Alexandra Juárez, Cano Juan M., Martín Miguel A., Moreno Laura, Larrodé Pilar, Vázquez Pilar Cordero, Galán Lucía, Mora Jesús, Muñoz-Blanco José L., Muñoz María J., Zaragoza Pilar, Pegoraro Elena, Sorarù Gianni, Mora Marina, Lunetta Christian, Penco Silvana, Tarlarini Claudia, Esteban Jesús, Osta Rosario, Redondo Alberto García. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis[J]. Aging and disease, 2019, 10(2): 278-292.
[5] Hussain Mohammed, Datta Neil, Cheng Zhe, Dornbos David, Bashir Asif, Sultan Ibrahim, Mehta Tapan, Shweikeh Faris, Mazaris Paul, Lee Nora, Nouh Amre, Geng Xiaokun, Ding Yuchuan. Spanning from the West to East: An Updated Review on Endovascular Treatment of Intracranial Atherosclerotic Disease[J]. Aging and disease, 2017, 8(2): 196-202.
[6] Guzzardi Maria Angela, Iozzo Patricia, Salonen Minna K., Kajantie Eero, Airaksinen Riikka, Kiviranta Hannu, Rantakokko Panu, Eriksson Johan Gunnar. Exposure to Persistent Organic Pollutants Predicts Telomere Length in Older Age: Results from the Helsinki Birth Cohort Study[J]. Aging and disease, 2016, 7(5): 540-552.
[7] Li Jiao, Liu Xingyu, zuo Bin, Zhang Li. The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis[J]. Aging and disease, 2016, 7(4): 514-525.
[8] Chen Zhiguo. Cell Therapy for Parkinson’s Disease: New Hope from Reprogramming Technologies[J]. Aging and disease, 2015, 6(6): 499-503.
[9] Vaiserman* Alexander. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge?[J]. Aging and Disease, 2014, 5(6): 419-429.
[10] Olaoluwa O Okusaga. Accelerated Aging in Schizophrenia Patients: The Potential Role of Oxidative Stress[J]. Aging and Disease, 2014, 5(4): 256-262.
[11] Paul H. Gordon. Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials[J]. Aging and Disease, 2013, 4(5): 295-310.
[12] Volkan Ergin,Reza Ebrahimi Hariry,Çimen Karasu. Carbonyl Stress in Aging Process: Role of Vitamins and Phytochemicals as Redox Regulators[J]. Aging and Disease, 2013, 4(5): 276-294.
[13] Jacques L. De Reuck. The Significance of Small Cerebral Bleeds in Neurodegenerative Dementia Syndromes[J]. Aging and Disease, 2012, 3(4): 307-312.
[14] Johanna A. Smith,René Daniel. Stem Cells and Aging: A Chicken-Or-The-Egg Issue?[J]. Aging and Disease, 2012, 3(3): 260-268.
[15] Danielle Aw,Donald B. Palmer. The Origin and Implication of Thymic Involution[J]. Aging and Disease, 2011, 2(5): 437-443.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd