Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (2) : 329-352     DOI: 10.14336/AD.2018.0409
Review |
MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma
Saumyendra N. Sarkar, Ashley E. Russell, Elizabeth B. Engler-Chiurazzi, Keyana N. Porter, James W. Simpkins*
Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
Download: PDF(771 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.

Keywords aging      microRNAs      brain      neuroinflammation      neurodegeneration      inflammaging     
Corresponding Authors: Simpkins James W.   
About author:

These authors contributed equally to this study.

Issue Date: 10 February 2018
E-mail this article
E-mail Alert
Articles by authors
Saumyendra N. Sarkar
Ashley E. Russell
Elizabeth B. Engler-Chiurazzi
Keyana N. Porter
James W. Simpkins
Cite this article:   
Saumyendra N. Sarkar,Ashley E. Russell,Elizabeth B. Engler-Chiurazzi, et al. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma[J]. Aging and disease, 2019, 10(2): 329-352.
URL:     OR
Figure 1.  The hallmarks of mammalian aging and the miRs that target genetic networks involving these pathways. Associated miRs with each of the hallmark of aging are indicated. The miRs involving more than one aspect of aging are bolded.
Figure 2.  miR Biogenesis and Post-transcriptional Gene Regulation.
Figure 3.  MicroRNAs Target Enzyme-Scaffold Complex. Chains of molecules along with XRCC1 scaffolding protein recognize ROS induced DNA damage and recruit six enzymes to form the BER/SSBR-scaffold complex. MicroRNAs shown are identified by in silico analysis and target many components of this complex.
Figure 4.  miRs involved in deregulation of nutrient sensing pathway. Schematic diagram showing the growth hormone (GH) and insulin growth factor 1 (IGF-1) signaling pathway and its association with dietary restriction and aging. GH = Growth Hormone, PTEN = Phosphatase and Tensin homolog, PI3K = Phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT = Protein kinase B, AMPK = AMP-activated protein kinase, Sirt1 = sirtuin (silent mating type information regulation 2 homolog) 1, mTOR = mechanistic target of rapamycin, PGC-1α = Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, FOXO = FOXO family of Forkhead transcription factors.
Figure 5.  miRs specifically deregulate molecular chaperone specific pathway of proteostatis Oxidative and ER stress induced unfolded proteins either refolded back by HSP chaperone or degraded by HSC chaperone mediated ubiquitin-proteosome or lysomal pathways (Autophagy). Oxidative stress damages DNA and proteins leading to their reduced function. A miR-induced decrease in repair mechanisms would then encourage aging.
[1] Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013). The hallmarks of aging. Cell, 153: 1194-1217
[2] Ames BN, Shigenaga MK, Hagen TM (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A, 90: 7915-7922
[3] Beal MF (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol, 38: 357-366
[4] Finkel T, Serrano M, Blasco MA (2007). The common biology of cancer and ageing. Nature, 448: 767-774
[5] Jousilahti P, Vartiainen E, Tuomilehto J, Puska P (1999). Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation, 99: 1165-1172
[6] Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, et al. (2002). Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol, 156: 445-453
[7] Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. (2014). Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science, 344: 630-634
[8] Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. (2013). Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell, 153: 828-839
[9] Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. (2014). Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science, 344: 649-652
[10] Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. (2014). Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med, 20: 659-663
[11] Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477: 90-94
[12] Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J (2013). Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol, 48: 626-633
[13] Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478: 483-489
[14] Mertens J, Paquola ACM, Ku M, Hatch E, Bohnke L, Ladjevardi S, et al. (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell, 17: 705-718
[15] Persengiev SP, Kondova, II, Bontrop RE (2012). The Impact of MicroRNAs on Brain Aging and Neurodegeneration. Curr Gerontol Geriatr Res, 2012: 359369
[16] Kozomara A, Griffiths-Jones S (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 42: D68-73
[17] Harries L (2014). MicroRNAs as mediators of the ageing process. Genes, 5: 656
[18] Jung HJ, Suh Y (2012). MicroRNA in aging: From discovery to biology. Curr Genomics, 13: 548-557
[19] Mah SM, Buske C, Humphries RK, Kuchenbauer F (2010). miRNA*: a passenger stranded in RNA-induced silencing complex? Crit Rev Eukaryot Gene Expr, 20: 141-148
[20] Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY (1999). DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene, 18: 7883-7899
[21] Wang Y, Taniguchi T (2013). MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle, 12: 32-42
[22] Hoch NC, Hanzlikova H, Rulten SL, Tetreault M, Komulainen E, Ju L, et al. (2017). XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature, 541: 87-91
[23] Lee Y, Katyal S, Li Y, El-Khamisy SF, Russell HR, Caldecott KW, et al. (2009). The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat Neurosci, 12: 973-980
[24] Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012). The critical role of metabolic pathways in aging. Diabetes, 61: 1315-1322
[25] Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, et al. (2014). Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J, 28: 4133-4147
[26] Hung TM, Ho CM, Liu YC, Lee JL, Liao YR, Wu YM, et al. (2014). Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One, 9: e89446
[27] Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, et al. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120: 2377-2385
[28] Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, et al. (2009). Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun, 381: 597-601
[29] Patel M, Gomez NC, McFadden AW, Moats-Staats BM, Wu S, Rojas A, et al. (2014). PTEN deficiency mediates a reciprocal response to IGFI and mTOR inhibition. Mol Cancer Res, 12: 1610-1620
[30] Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab, 18: 416-430
[31] Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. (2009). MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation, 120: 1524-1532
[32] Badi I, Burba I, Ruggeri C, Zeni F, Bertolotti M, Scopece A, et al. (2015). MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J Gerontol A Biol Sci Med Sci, 70: 1304-1311
[33] Hartl FU, Bracher A, Hayer-Hartl M (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475: 324-332
[34] Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem, 78: 959-991
[35] Koga H, Kaushik S, Cuervo AM (2011). Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev, 10: 205-215
[36] Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. (2017). Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener, 6: 6
[37] Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, et al. (2010). Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol, 92: 184-211
[38] Ren X-P, Wu J, Wang X, Sartor MA, Qian J, Jones K, et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting Heat-Shock Protein 20. Circulation, 119: 2357-2366
[39] Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM (2013). Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease. Cell Death &Amp; Disease, 4: e545
[40] Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495: 107-110
[41] Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016). Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res, 1646: 139-151
[42] Frankel LB, Lund AH (2012). MicroRNA regulation of autophagy. Carcinogenesis, 33: 2018-2025
[43] Ganley IG, Lam DH, Wang JR, Ding XJ, Chen S, Jiang XJ (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry, 284: 12297-12305
[44] Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5: 973-979
[45] Wu H, Wang FL, Hu SL, Yin C, Li X, Zhao SH, et al. (2012). MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal, 24: 2179-2186
[46] Wang ZY, Wang N, Liu PX, Chen QJ, Situ HL, Xie T, et al. (2014). MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 5: 7013-7026
[47] Huang YP, Chuang AY, Ratovitski EA (2011). Phospho-Delta Np63 alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle, 10: 3938-3947
[48] Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, et al. (2012). Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy, 8: 1045-1057
[49] Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, et al. (2014). MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death & Disease, 5
[50] Chatterjee A, Chattopadhyay D, Chakrabarti G (2014). miR-17-5p Downregulation Contributes to Paclitaxel Resistance of Lung Cancer Cells through Altering Beclin1 Expression. Plos One, 9
[51] Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D (2012). miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy, 8: 165-176
[52] Huang YP, Guerrero-Preston R, Ratovitski EA (2012). Phospho-Delta Np63 alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle, 11: 1247-1259
[53] Shi GD, Shi JG, Liu K, Liu N, Wang Y, Fu ZY, et al. (2013). Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia, 61: 504-512
[54] Frankel LB, Wen JY, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, et al. (2011). microRNA-101 is a potent inhibitor of autophagy. Embo J, 30: 4628-4641
[55] Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci, 121: 1649-1660
[56] Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, et al. (2012). miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Research, 72: 1763-1772
[57] Yang JR, Chen DP, He YN, Melendez A, Feng Z, Hong Q, et al. (2013). MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age, 35: 11-22
[58] Jegga AG, Schneider L, Ouyang XS, Zhang J (2011). Systems biology of the autophagy-lysosomal pathway. Autophagy, 7: 477-489
[59] Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429: 883-891
[60] Eckert A, Schmitt K, Gotz J (2011). Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-beta toxicity. Alzheimers Res Ther, 3: 15
[61] Ohta S, Ohsawa I (2006). Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis, 9: 155-166
[62] Femminella GD, Ferrara N, Rengo G (2015). The emerging role of microRNAs in Alzheimer's disease. Front Physiol, 6: 40
[63] Nishino J, Kim I, Chada K, Morrison SJ (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell, 135: 227-239
[64] Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137: 647-658
[65] Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One, 3: e2213
[66] Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol, 13: 1353-1360
[67] Eguchi T, Kuboki T (2016). Cellular reprogramming using defined factors and microRNAs. Stem Cells Int, 2016: 7530942
[68] Shammas MA (2011). Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care, 14: 28-34
[69] Blackburn EH (2000). Telomere states and cell fates. Nature, 408: 53-56
[70] Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, et al. (2008). Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci, 99: 280-286
[71] Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R, et al. (2014). miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res, 74: 4145-4156
[72] Jin K, Xiang Y, Tang J, Wu G, Li J, Xiao H, et al. (2014). miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol, 35: 1503-1510
[73] Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 26: 731-743
[74] Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011). Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging, 32: 2316 e2317-2327
[75] Morita S, Horii T, Kimura M, Ochiya T, Tajima S, Hatada I (2013). miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci, 14: 14647-14658
[76] Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13: 423-430
[77] Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, et al. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459: 55-60
[78] Parra M (2015). Class IIa HDACs - new insights into their functions in physiology and pathology. FEBS J, 282: 1736-1744
[79] Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, et al. (2015). Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell, 161: 1592-1605
[80] Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL, et al. (2011). Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science, 334: 1669-1675
[81] McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, et al. (2014). Motor skill learning requires active central myelination. Science, 346: 318-322
[82] Kawasaki T, Kawai T (2014). Toll-like receptor signaling pathways. Front Immunol, 5: 461
[83] Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D, et al. (2004). Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol, 190: 245-253
[84] Herber DL, Mercer M, Roth LM, Symmonds K, Maloney J, Wilson N, et al. (2007). Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol, 2: 222-231
[85] Laskin DL, Pendino KJ (1995). Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol, 35: 655-677
[86] Wyss-Coray T (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med, 12: 1005-1015
[87] Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000). Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord, 14 Suppl 1: S47-53
[88] Li Y, Liu L, Barger SW, Griffin WS (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci, 23: 1605-1611
[89] Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB (2004). Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res, 295: 245-257
[90] Benzi G, Moretti A (1995). Are reactive oxygen species involved in Alzheimer's disease? Neurobiol Aging, 16: 661-674
[91] Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O'Hare E, et al. (1998). Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci, 18: 2161-2173
[92] Olivieri F, Rippo MR, Procopio AD, Fazioli F (2013). Circulating inflamma-miRs in aging and age-related diseases. Front Genet, 4: 121
[93] Galea I, Bechmann I, Perry VH (2007). What is immune privilege (not)? Trends Immunol, 28: 12-18
[94] Alvarez JI, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61: 1939-1958
[95] Prat A, Biernacki K, Wosik K, Antel JP (2001). Glial cell influence on the human blood-brain barrier. Glia, 36: 145-155
[96] Benros ME, Sorensen HJ, Nielsen PR, Nordentoft M, Mortensen PB, Petersen L (2015). The association between infections and general cognitive ability in young men - A nationwide study. PLoS One, 10: e0124005
[97] Gow AJ, Firth CM, Harrison R, Starr JM, Moss P, Deary IJ (2013). Cytomegalovirus infection and cognitive abilities in old age. Neurobiol Aging, 34: 1846-1852
[98] Riva S, Cutica I, Krampe C, Reinecke LF, Russell-Edu W, Santoro C, et al. (2015). A cohort pilot study on HIV-associated neuropsychological impairments in Hemophilia patients. Front Hum Neurosci, 9: 313
[99] Abraham J, Johnson RW (2009). Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res, 12: 445-453
[100] Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW (2008). Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun, 22: 301-311
[101] Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. (2008). Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation, 5: 37
[102] Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003). Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis, 14: 133-145
[103] Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, et al. (2011). Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol, 178: 2811-2822
[104] Weintraub MK, Kranjac D, Eimerbrink MJ, Pearson SJ, Vinson BT, Patel J, et al. (2014). Peripheral administration of poly I:C leads to increased hippocampal amyloid-beta and cognitive deficits in a non-transgenic mouse. Behav Brain Res, 266: 183-187
[105] Veerhuis R (2011). Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res, 8: 34-58
[106] Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, et al. (1996). Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol, 156: 1284-1295
[107] Persidsky Y, Gendelman HE (1997). Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol, 62: 100-106
[108] Bell MD, Taub DD, Perry VH (1996). Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience, 74: 283-292
[109] Hickey WF, Hsu, B.L., Kimura, H. (1991). T-lymphocyte entry into the central nervous system. Journal of Neuroscience Research, 28: 254-260
[110] Wekerle H, Linington C, Lassmann H, Meyermann R Cellular immune reactivity within the CNS. Trends in Neurosciences, 9: 271-277
[111] Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. (2015). Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 85: 296-302
[112] Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, et al. (2014). MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J, 28: 2551-2565
[113] Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. (2016). MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res, 343: 248-257
[114] Abbott NJ (2002). Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat, 200: 629-638
[115] Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X (2016). MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab, 36: 387-392
[116] Rom S, Dykstra H, Zuluaga-Ramirez V, Reichenbach NL, Persidsky Y (2015). miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab, 35: 1957-1965
[117] Zeevi N, Pachter J, McCullough LD, Wolfson L, Kuchel GA (2010). The blood-brain barrier: geriatric relevance of a critical brain-body interface. J Am Geriatr Soc, 58: 1749-1757
[118] Shah GN, Mooradian AD (1997). Age-related changes in the blood-brain barrier. Exp Gerontol, 32: 501-519
[119] Dermietzel R, Leibstein AG (1978). The microvascular pattern and perivascular linings of the area postrema. A combined freeze-etching and ultrathin section study. Cell Tissue Res, 186: 97-110
[120] Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci, 8: 752-758
[121] Gehrmann J, Matsumoto Y, Kreutzberg GW (1995). Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev, 20: 269-287
[122] Morris GP, Clark IA, Zinn R, Vissel B (2013). Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem, 105: 40-53
[123] Nimmerjahn A, Kirchhoff F, Helmchen F (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308: 1314-1318
[124] Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74: 691-705
[125] Gonzalez H, Elgueta D, Montoya A, Pacheco R (2014). Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol, 274: 1-13
[126] Wu LJ, Vadakkan KI, Zhuo M (2007). ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia, 55: 810-821
[127] Perry RT, Collins JS, Wiener H, Acton R, Go RC (2001). The role of TNF and its receptors in Alzheimer's disease. Neurobiol Aging, 22: 873-883
[128] Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. (2004). Role of microglia in central nervous system infections. Clin Microbiol Rev, 17: 942-964, table of contents
[129] Tuppo EE, Arias HR (2005). The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol, 37: 289-305
[130] Selkoe DJ (1994). Normal and abnormal biology of the Beta-Amyloid precursor protein. Annu Rev Neurosci, 17: 489-517
[131] Nicolas M, Hassan BA (2014). Amyloid precursor protein and neural development. Development, 141: 2543-2548
[132] Falcão AS, Carvalho LAR, Lidónio G, Vaz AR, Lucas SD, Moreira R, et al. (2017). Dipeptidyl vinyl sulfone as a novel chemical tool to inhibit HMGB1/NLRP3-inflammasome and inflamma-miRs in Aβ-mediated microglial inflammation. ACS Chemical Neuroscience, 8: 89-99
[133] Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006). The significance of neuroinflammation in understanding Alzheimer's disease. J Neural Transm (Vienna), 113: 1685-1695
[134] Hong S, Dissing-Olesen L, Stevens B (2016). New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol, 36: 128-134
[135] Uslu S, Akarkarasu ZE, Ozbabalik D, Ozkan S, Colak O, Demirkan ES, et al. (2012). Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer's disease and vascular dementia. Neurochem Res, 37: 1554-1559
[136] Eikelenboom P, Hack CE, Rozemuller JM, Stam FC (1989). Complement activation in amyloid plaques in Alzheimer's dementia. Virchows Arch B Cell Pathol Incl Mol Pathol, 56: 259-262
[137] Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016). Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J Neurosci, 36: 577-589
[138] Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, et al. (2012). Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Abeta by microglia. Glia, 60: 993-1003
[139] Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. (1992). Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A, 89: 10016-10020
[140] Akiyama H, Schwab C, Kondo H, Mori H, Kametani F, Ikeda K, et al. (1996). Granules in glial cells of patients with Alzheimer's disease are immunopositive for C-terminal sequences of beta-amyloid protein. Neurosci Lett, 206: 169-172
[141] Kopec KK, Carroll RT (1998). Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J Neurochem, 71: 2123-2131
[142] Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD (1996). Scavenging of Alzheimer's amyloid beta-protein by microglia in culture. J Neurosci Res, 43: 190-202
[143] Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC (1992). Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol, 84: 225-233
[144] Guedes J, Cardoso AL, Pedroso de Lima MC (2013). Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol, 2013: 186872
[145] Cho KJ, Song J, Oh Y, Lee JE (2015). MicroRNA-Let-7a regulates the function of microglia in inflammation. Mol Cell Neurosci, 68: 167-176
[146] Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011). MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med, 17: 64-70
[147] Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC (2012). miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology, 135: 73-88
[148] Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. (2010). Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol, 185: 6226-6233
[149] Dalpke A, Heeg K, Bartz H, Baetz A (2008). Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology, 213: 225-235
[150] Koellhoffer EC, McCullough LD, Ritzel RM (2017). Old Maids: Aging and its impact on microglia function. Int J Mol Sci, 18
[151] Mosher KI, Wyss-Coray T (2014). Microglial Dysfunction in Brain Aging and Alzheimer’s Disease. Biochemical pharmacology, 88: 594-604
[152] Crain JM, Nikodemova M, Watters JJ (2013). Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of Neuroscience Research, 91: 1143-1151
[153] Spittau B (2017). Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases. Front Aging Neurosci, 9: 194
[154] Cherry JD, Olschowka JA, O'Banion MK (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation, 11: 98
[155] Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, et al. (2017). Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat, 11: 77
[156] Ransohoff RM (2016). A polarizing question: do M1 and M2 microglia exist? Nature Neuroscience, 19: 987-991
[157] Mittelbronn M (2014). The M1/M2 immune polarization concept in microglia: a fair transfer? Neuroimmunology and Neuroinflammation, 1: 6-7
[158] Zhu QY, Liu Q, Chen JX, Lan K, Ge BX (2010). MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol, 185: 7435-7442
[159] Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O'Connell RM, et al. (2011). MicroRNA-125b potentiates macrophage activation. J Immunol, 187: 5062-5068
[160] Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, et al. (2013). MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem, 288: 7956-7967
[161] Franceschi C, Campisi J (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci, 69 Suppl 1: S4-9
[162] Byun HO, Lee YK, Kim JM, Yoon G (2016). Erratum to: From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep, 49: 641-650
[163] Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, et al. (2011). miR-146a is modulated in human endothelial cell with aging. Atherosclerosis, 217: 326-330
[164] Zhao T, Li J, Chen AF (2010). MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab, 299: E110-116
[165] Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. (2010). microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A, 107: 20382-20387
[166] Nampoothiri SS, Rajanikant GK (2017). Decoding the ubiquitous role of microRNAs in neurogenesis. Mol Neurobiol, 54: 2003-2011
[167] Hu Z, Li Z (2017). miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol, 45: 24-31
[168] Steward O, Schuman EM (2001). Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci, 24: 299-325
[169] Kosik KS (2006). The neuronal microRNA system. Nat Rev Neurosci, 7: 911-920
[170] Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439: 283
[171] Association As (2017) Alzheimer's disease facts and figures.
[172] Chen X, Jiang XM, Zhao LJ, Sun LL, Yan ML, Tian Y, et al. (2017). MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis, 8: e2850
[173] Fan C, Wu Q, Ye X, Luo H, Yan D, Xiong Y, et al. (2016). Role of miR-211 in Neuronal Differentiation and Viability: Implications to Pathogenesis of Alzheimer's Disease. Front Aging Neurosci, 8: 166
[174] Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, et al. (1999). Anxiety of Alzheimer's disease: prevalence, and comorbidity. J Gerontol A Biol Sci Med Sci, 54: M348-352
[175] Blazquez G, Canete T, Tobena A, Gimenez-Llort L, Fernandez-Teruel A (2014). Cognitive and emotional profiles of aged Alzheimer's disease (3xTgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res, 268: 185-201
[176] Pristera A, Saraulli D, Farioli-Vecchioli S, Strimpakos G, Costanzi M, di Certo MG, et al. (2013). Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging, 34: 2551-2563
[177] Li X, Wang Z, Tan L, Wang Y, Lu C, Chen R, et al. (2017). Correcting miR92a-vGAT-mediated GABAergic dysfunctions rescues human Tau-induced anxiety in mice. Mol Ther, 25: 140-152
[178] Wang Y, Veremeyko T, Wong AH, El Fatimy R, Wei Z, Cai W, et al. (2017). Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer's disease. Neurobiol Aging, 51: 156-166
[179] Xu B, Zhang Y, Du XF, Li J, Zi HX, Bu JW, et al. (2017). Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res, 27: 882-897
[180] Kumar S, Reddy PH (2016). Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? Biochim Biophys Acta, 1862: 1617-1627
[181] Basavaraju M, de Lencastre A (2016). Alzheimer's disease: presence and role of microRNAs. Biomol Concepts, 7: 241-252
[182] Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012). Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol, 235: 491-496
[183] Tan L, Yu J-T, Liu Q-Y, Tan M-S, Zhang W, Hu N, et al. (2014). Circulating miR-125b as a biomarker of Alzheimer's disease. Journal of the Neurological Sciences, 336: 52-56
[184] Fengler S, Liepelt-Scarfone I, Brockmann K, Schaffer E, Berg D, Kalbe E (2017). Cognitive changes in prodromal Parkinson's disease: A review. Mov Disord, 32: 1655-1666
[185] Bai X, Tang Y, Yu M, Wu L, Liu F, Ni J, et al. (2017). Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease. Sci Rep, 7: 5411
[186] Margis R, Margis R, Rieder CRM (2011). Identification of blood microRNAs associated to Parkinsońs disease. Journal of Biotechnology, 152: 96-101
[187] Zhang X, Yang R, Hu BL, Lu P, Zhou LL, He ZY, et al. (2017). Reduced circulating levels of miR-433 and miR-133b are potential biomarkers for Parkinson's disease. Front Cell Neurosci, 11: 170
[188] Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317: 1220-1224
[189] Yang CP, Zhang ZH, Zhang LH, Rui HC (2016). Neuroprotective role of microRNA-22 in a 6-hydroxydopamine-induced cell model of Parkinson's disease via regulation of its target gene TRPM7. J Mol Neurosci, 60: 445-452
[190] Zhao N, Jin L, Fei G, Zheng Z, Zhong C (2014). Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson's disease. Parkinsonism Relat Disord, 20: 1177-1180
[191] Schlaudraff F, Grundemann J, Fauler M, Dragicevic E, Hardy J, Liss B (2014). Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease. Neurobiol Aging, 35: 2302-2315
[192] Heyer MP, Pani AK, Smeyne RJ, Kenny PJ, Feng G (2012). Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci, 32: 10887-10894
[193] de Mena L, Cardo LF, Coto E, Miar A, Díaz M, Corao AI, et al. (2010). FGF20 rs12720208 SNP and microRNA-433 variation: No association with Parkinson's disease in Spanish patients. Neuroscience Letters, 479: 22-25
[194] Chen Y, Gao C, Sun Q, Pan H, Huang P, Ding J, et al. (2017). MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Frontiers in Aging Neuroscience, 9
[195] Kanagaraj N, Beiping H, Dheen ST, Tay SS (2014). Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 272: 167-179
[196] Wei M, Cao LJ, Zheng JL, Xue LJ, Chen B, Xiao F, et al. (2017). MicroRNA-181c functions as a protective factor in a 1-methyl-4-phenylpyridinium iodide-induced cellular Parkinson's disease model via BCL2L11. Eur Rev Med Pharmacol Sci, 21: 3296-3304
[197] Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135: e146-e603
[198] Zhang L, Dong LY, Li YJ, Hong Z, Wei WS (2012). The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation, 9: 211
[199] Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, et al. (2012). miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis, 45: 555-563
[200] Moon JM, Xu L, Giffard RG (2013). Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab, 33: 1976-1982
[201] Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J (2018). MiR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem, 119: 327-337
[202] Liu DZ, Jickling GC, Ander BP, Hull H, Zhan X, Cox C, et al. (2016). Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab, 36: 1374-1383
[203] Stanzione R, Bianchi F, Cotugno M, Marchitti S, Forte M, Busceti C, et al. (2017). A decrease of brain microRNA-122 level is an early marker of cerebrovascular disease in the stroke-prone spontaneously hypertensive rat. Oxid Med Cell Longev, 2017: 1206420
[204] Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA (2017). MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep, 7: 45284
[205] Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, et al. (2017). MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res, 8: 374-385
[206] Su ZF, Sun ZW, Zhang Y, Wang S, Yu QG, Wu ZB (2017). Regulatory effects of miR-146a/b on the function of endothelial progenitor cells in acute ischemic stroke in mice. Kaohsiung J Med Sci, 33: 369-378
[207] Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, et al. (2017). MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep, 20: 1533-1542
[208] Zheng Y, Wang L, Chen M, Pei A, Xie L, Zhu S (2017). Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res, 9: 3452-3461
[209] Yu LS, Fan YY, Ye G, Li J, Feng XP, Lin K, et al. (2016). Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp Ther Med, 11: 709-716
[210] Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. (2012). Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res, 216: 225-230
[211] Huang LG, Li JP, Pang XM, Chen CY, Xiang HY, Feng LB, et al. (2015). MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke. CNS Neurosci Ther, 21: 496-503
[212] Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, et al. (2015). MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab, 35: 1977-1984
[213] Khanna S, Rink C, Ghoorkhanian R, Gnyawali S, Heigel M, Wijesinghe DS, et al. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. J Cereb Blood Flow Metab, 33: 1197-1206
[214] Yang L, Xiong Y, Hu XF, Du YH (2015). MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRI3. Int J Clin Exp Pathol, 8: 10725-10733
[215] Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. (2014) Down-Regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res, 39: 1279-1291
[216] Zhu F, Liu J-L, Li J-P, Xiao F, Zhang Z-X, Zhang L (2014). MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. Journal of Molecular Neuroscience, 52: 148-155
[217] Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, et al. (2011). MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One, 6: e23461
[218] Liu X, Li F, Zhao S, Luo Y, Kang J, Zhao H, et al. (2013). MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke, 44: 1973-1980
[219] Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Muller B, et al. (2013). MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol, 126: 251-265
[220] Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, et al. (2013). MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther, 19: 813-819
[221] Siegel C, Li J, Liu F, Benashski SE, McCullough LD (2011). miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A, 108: 11662-11667
[222] Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012). An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One, 7: e32662
[223] Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, et al. (2017). RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res, 121: 970-980
[224] Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014). miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res, 5: 711-718
[225] Jeyaseelan K, Lim KY, Armugam A (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke, 39: 959-966
[226] Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab, 30: 92-101
[227] Gurman P, Miranda OR, Nathan A, Washington C, Rosen Y, Elman NM (2015). Recombinant tissue plasminogen activators (rtPA): a review. Clin Pharmacol Ther, 97: 274-285
[228] Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105: 10513-10518
[229] Turchinovich A, Weiz L, Burwinkel B (2012). Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci, 37: 460-465
[230] Boon RA, Vickers KC (2013). Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol, 33: 186-192
[231] Barbash S, Simchovitz A, Buchman AS, Bennett DA, Shifman S, Soreq H (2017). Neuronal-expressed microRNA-targeted pseudogenes compete with coding genes in the human brain. Translational Psychiatry, 7: e1199
[232] Cai Y, Sun Z, Jia H, Luo H, Ye X, Wu Q, et al. (2017). Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front Mol Neurosci, 10: 27
[233] Saraiva C, Esteves M, Bernardino L (2017). MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol, 141: 118-131
[234] Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015). miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem, 7: 1771-1792
[1] Yu Peng, Venkat Poornima, Chopp Michael, Zacharek Alex, Shen Yi, Liang Linlin, Landschoot-Ward Julie, Liu Zhongwu, Jiang Rongcai, Chen Jieli. Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice[J]. Aging and disease, 2019, 10(4): 770-783.
[2] Fuellen Georg, Jansen Ludger, Cohen Alan A, Luyten Walter, Gogol Manfred, Simm Andreas, Saul Nadine, Cirulli Francesca, Berry Alessandra, Antal Peter, Köhling Rüdiger, Wouters Brecht, Möller Steffen. Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways[J]. Aging and disease, 2019, 10(4): 883-900.
[3] Xu Dingqiao, Liao Shanting, Li Pei, Zhang Qian, Lv Yan, Fu Xiaowei, Yang Minghua, Wang Junsong, Kong Lingyi. Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis[J]. Aging and disease, 2019, 10(4): 854-870.
[4] Wang Min-jun, Chen Jiajia, Chen Fei, Liu Qinggui, Sun Yu, Yan Chen, Yang Tao, Bao Yiwen, Hu Yi-Ping. Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging[J]. Aging and disease, 2019, 10(4): 871-882.
[5] Han Rongrong, Liu Zeyue, Sun Nannan, Liu Shu, Li Lanlan, Shen Yan, Xiu Jianbo, Xu Qi. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway[J]. Aging and disease, 2019, 10(3): 611-625.
[6] Li Kunyu, Li Jiatong, Zheng Jialin, Qin Song. Reactive Astrocytes in Neurodegenerative Diseases[J]. Aging and disease, 2019, 10(3): 664-675.
[7] Cho Kyoungjoo. Emerging Roles of Complement Protein C1q in Neurodegeneration[J]. Aging and disease, 2019, 10(3): 652-663.
[8] Gourmelon Robin, Donadio-Andréi Sandrine, Chikh Karim, Rabilloud Muriel, Kuczewski Elisabetta, Gauchez Anne-Sophie, Charrié Anne, Brard Pierre-Yves, Andréani Raphaëlle, Bourre Jean-Cyril, Waterlot Christine, Guédel Domitille, Mayer Anne, Disse Emmanuel, Thivolet Charles, Boullay Hélène Du, Falandry Claire, Gilbert Thomas, François-Joubert Anne, Vignoles Antoine, Ronin Catherine, Bonnefoy Marc. Subclinical Hypothyroidism: is it Really Subclinical with Aging?[J]. Aging and disease, 2019, 10(3): 520-529.
[9] Huang Huachen, Song Shanshan, Banerjee Suneel, Jiang Tong, Zhang Jinwei, Kahle Kristopher T., Sun Dandan, Zhang Zhongling. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases[J]. Aging and disease, 2019, 10(3): 626-636.
[10] Jin Kunlin. A Microcirculatory Theory of Aging[J]. Aging and disease, 2019, 10(3): 676-683.
[11] Chung Hae Young, Kim Dae Hyun, Lee Eun Kyeong, Chung Ki Wung, Chung Sangwoon, Lee Bonggi, Seo Arnold Y., Chung Jae Heun, Jung Young Suk, Im Eunok, Lee Jaewon, Kim Nam Deuk, Choi Yeon Ja, Im Dong Soon, Yu Byung Pal. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept[J]. Aging and disease, 2019, 10(2): 367-382.
[12] Cyprien Fabienne, Courtet Philippe, Maller Jerome, Meslin Chantal, Ritchie Karen, Ancelin Marie-Laure, Artero Sylvaine. Increased Serum C-reactive Protein and Corpus Callosum Alterations in Older Adults[J]. Aging and disease, 2019, 10(2): 463-469.
[13] Lana Alberto, Struijk Ellen A., Arias-Fernandez Lucía, Graciani Auxiliadora, Mesas Arthur E., Rodriguez-Artalejo Fernando, Lopez-Garcia Esther. Habitual Meat Consumption and Changes in Sleep Duration and Quality in Older Adults[J]. Aging and disease, 2019, 10(2): 267-277.
[14] Murtha Lucy A., Morten Matthew, Schuliga Michael J., Mabotuwana Nishani S., Hardy Sean A., Waters David W., Burgess Janette K., Ngo Doan TM., Sverdlov Aaron L., Knight Darryl A., Boyle Andrew J.. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis[J]. Aging and disease, 2019, 10(2): 419-428.
[15] Ma Yuanyuan, Liu Yanqun, Zhang Zhijun, Yang Guo-Yuan. Significance of Complement System in Ischemic Stroke: A Comprehensive Review[J]. Aging and disease, 2019, 10(2): 429-462.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd