Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (1) : 134-146     DOI: 10.14336/AD.2018.0511
Review |
Rosenroot (Rhodiola): Potential Applications in Aging-related Diseases
Wei Zhuang1, Lifeng Yue2, Xiaofang Dang3, Fei Chen1, Yuewen Gong4, Xiaolan Lin1, Yumin Luo5,*
1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
3Department of Pharmacy, Hospital of T.C.M.S Shijingshan District, Beijing 100043, China
4College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Manitoba, Canada
5Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
Download: PDF(476 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Aging is a progressive accumulation of changes in the body, which increases the susceptibility to diseases such as Alzheimer’s disease, Parkinson’s disease, cerebrovascular disease, diabetes, and cardiovascular disease. Recently, Chinese medicinal herbs have been investigated for their therapeutic efficacy in the treatment of some aging-related diseases. Rhodiola, known as ‘Hongjingtian’ in Chinese, has been reported to have anti-aging activity. Here, we provide a comprehensive review about its origin, chemical constituents, and effects on aging-related diseases.

Keywords Rhodiola rosea      salidroside      neurodegenerative diseases      cardioprotection     
Corresponding Authors: Luo Yumin   
About author:

These authors contributed equally.

Issue Date: 14 March 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuang Wei
Yue Lifeng
Dang Xiaofang
Chen Fei
Gong Yuewen
Lin Xiaolan
Luo Yumin
Cite this article:   
Zhuang Wei,Yue Lifeng,Dang Xiaofang, et al. Rosenroot (Rhodiola): Potential Applications in Aging-related Diseases[J]. Aging and disease, 2019, 10(1): 134-146.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2018.0511     OR     http://www.aginganddisease.org/EN/Y2019/V10/I1/134
SectionSeriesLatin NameGeographical OriginGrowing EnvironmentAltitude (m)
Sect. Chamaerhodiola (Fisch. et Mey.) A. Bor.Ser. Dumulosae (Frod.) S.H. FuR. dumulosa (Franch.) S.H. FuSichuan, Shanxi, Gansu, Ningxia, Qinghai, Shanxi, Hebei, Inner MongoliaSlopes, rocks1600-3900
Ser. Quadrifidae (Frod.) S.H. FuR. quadrifida (Pall.) Fisch. et Mey.Tibet, Sichuan, Xinjiang, Gansu, QinghaiAlpine meadows, schist on mountain slopes, rock crevices on mountain slopes, marshes3000-5700
R. scabrida (Franch.) S.H. FuSichuan, YunnanGrassland on slopes3200-4700
R. subopposita (Maxim.) JacobsenGansu, QinghaiRock crevices on mountain slopes1600-5000
R. atuntsuensis (Praeg.) S.H. FuYunnan
Ser. Fastigiatae (Frod.) S.H. FuR. fastigiata (Hook. f. et Thoms.) S.H. FuTibet, Sichuan, Gansu, YunnanSchist on mountain slopes, slopes, rock crevices3300-5400
R. pamiroalaica A. Bor.Xinjiang-2000-4200
R. himalensis (D. Don.) S.H. FuSichuan-3700-4200
R. tangutica (Maxim.) S.H. FuSichuan, Gansu, Ningxia, QinghaiRock crevices on mountain slopes, meadows, around water2000-4700
Sect. RhodiolaSer. Roseae (Praeg.) S.H. FuR. rosea L.Xinjiang, QinghaiAlpine grasslands, under forest, beside ditches1800-2035
R. sachalinensis A. BorHeilongjiang, JilinUnder hills and trees, under rocks1700-2300
R. crenulata (Hook. f. et Thomas) H. OhbaTibet, Sichuan, QinghaiAlpine gravel beach, slopes, grasslands, rock crevices3400-5600
R. kirilowii (Regel) Maxim.Qinghai, Sichuan, Xinjiang, Shanxi, GansuSchist on mountain slopes, under rocks in the forest, meadows, beside ditches3100-5600
R. linearifolia A. BorXinjiang-2000-4200
Ser. Bupleuroides Frod.) S.H. FuR. bupleuroides (Wall. ex Hook. f. et Thoms.) S.H. FuTibet, Sichuan, QinghaiHillside flow, alluvial plain, subalpine meadow, marshes, grassland2400-5600
Ser. Yunnanenses (Frod.) S.H. FuR. yunnanesis (Franch.) S.H. FuTibet, SichuanRocks under forest, rocks beside ditches2750-3200
R. henryi (Diels) S.H. FuSichuan, Shanxi, GansuSlopes, beside ditches, rocks1000-3300
Sect. Trifida (Frod.) S.H. Fu-R. sacra (Prain ex Hamet) S.H. FuTibet, QinghaiRock crevices on mountain slopes, grassland on slopes3500-4700
Table 1  Species, geographical distributions, and growing environments of medicinal Rhodiola.
Component or extraction methodAilmentPharmacological functionRefs
SalidrosideADUpregulates p-GSK-3β and downregulates p-tau5
Upregulates PI3K/AKT signaling6,7
Weakens the abnormal processing of APP8
Induces antioxidant enzymes TRX, HO-1, and PRXI9
Prevents caspase 3 activation, increases BAX/BCL-2 ratio, and reverses hippocampal neuronal loss10
Protects mitochondria against sodium-azide-induced damage11
DepressionReduces TNF-α and IL-1ß levels21
Attenuates levels of IL-6 and TNF-α22
Attenuates NE and 5-HT levels in the prefrontal cortex22
Regulates BDNF/TRKB signaling pathway23
Huntington’s diseaseReduces neuronal death and behavioral dysfunction mediated by polyQ32
Regulates AMPK/SIRT1/FOXO1 signaling33
CVDAttenuates H2O2-induced cell damage by downregulating Ca2+ and ROS via cAMP-dependent pathway43
Promotes mitochondrial biogenesis and functions44, 45
Increases the phosphorylation of AKT and ERK1/2; reduces the intracellular levels of ROS and the phosphorylation of JNK and p38 MAPK47
Reduces the contents of CK, CK-MB, and LDH; increases GSH-Px and SOD activities; and reduces MDA content in liver tissue48, 49
Increases levels of VEGF; upregulates HIF-1α protein expression and induces its translocation49
Regulates BCL-2 protein family, reduces the expression of BAX; rescues the balance of pro- and anti-apoptotic proteins50
Increases phosphorylation of AKT and reduces activation of caspase 3; markedly increases BCL-2/BAX ratio; preserves mitochondrial transmembrane potential51
DiabetesReduces diabetes-induced oxidative stress64
Inhibits the function and expression of CaL channels in vascular smooth muscle cells67
Inhibits neuroinflammation and P2X7 receptor expression68
Hepatic fibrosisInhibits lipid peroxidation73
Acute liver fibrosisAntioxidant activity and inhibits the function of HIF-1α74
Bladder cancerInhibits the mTOR pathway and induces autophagy79
Lung cancerReduces intracellular ROS generation and phosphor-p38 MAPK expression80
FibrosarcomaDownregulates the ROS/PKC/ERK1/2 signaling pathway81
Colon carcinomaInhibits the JAK2/STAT3-dependent pathway82
SarcomaReduces tumor-induced angiogenesis83
Pulmonary hypertensionRegulates ET-1, NO, VEGF, ACE, NF-κB, TNF-α, and IL-6 expressions59
Water extract of Rhodiola roseaPDInhibits MAO-A and MAO-B activities and prevents the degradation of important neurotransmitters in PD patients35
CVDReduces iNOS expression55
Pulmonary hypertensionACE-inhibitory activity56
CVDCauses withdrawal of sympathetic vasomotor tone and the circulatory angiotensin system60
STZ-induced diabetesIncreases β-endorphin secretion from adrenal glands to activate opioid μ-receptors72
LeukemiaIncreases intracellular ROS in K-562 cell line; induces apoptosis, drives the cell to an oxidative-stress-induced cell death; arrests cell-cycle progression at G2/M84
Ethanol extract of Rhodiola roseaPulmonary hypertensionACE-inhibitory activity56
DiabetesInhibits the activities of α-amylase, α-glucosidase, and ACE56
Diabetic nephropathyLowers the expression of TGF-β1 in renal tissues71
Polysaccharide from Rhodiola roseaT lymphocytes in tumorsIncreases the spleen and thymus indices and the production of cytokines (IL-2, TNF-α, and IFN-γ); increases the CD4+/CD8+ ratio86
TyrosolDiabetesInhibits the activity of α-glucosidase56
Oligomeric proanthocyanidin (OPCRR)ADIncreases SOD and GSH-Px activities19
Methanol extract of Rhodiola roseaPDInhibits MAO-A and MAO-B activities and prevents the degradation of important neurotransmitters in PD patients35
Ethanol extract of Rhodiola crenulataDiabetesInhibits α-amylase, α-glucosidase, and ACE activities56
Water extracts of Rhodiola crenulataDiabetesInhibits α-amylase, α-glucosidase, and ACE activities56
3% rosavin and 0.8% salidroside from Rhodiola roseaDepressionIncreases the blood-brain barrier permeability to precursors of DA and 5-HT;induces neural stem cell proliferation in the hippocampus26
Rhodiola crenulata root extractHepatomaIncreases glycogen synthesis and the expression of regulatory enzymes in HepG2 cells; suppresses fat accumulation in hepatic cells under high-glucose conditions; is associated with the AMPK signaling pathway77
Rhodiola crenulata root
extract
DiabetesSuppresses fructose-induced hyperinsulinemia and increases the insulin resistance index by modulating sarcolemmal and intracellular CD36 redistribution69
Water extract of radix et rhizoma Rhodiola kirilowiiAMIElevates the expressions of HIF-1α, HIF-1β, and VEGF59
Rhodiola rosea extractCVDIncreases the levels of endogenous opioid peptides54
Extract of Rhodiola roseaHypomnesiaRegulates the expression of monoamines and opioid peptides to increase the adaptability and activity of the central nervous system40
Modulates the activity and levels of ACh in the brain38
Increases the levels of NE, DA, 5-HT and ACh39
Extract of Rhodiola roseaPDFacilitates production and proliferation of dopamine-producing cells36
Table 2  Pharmacological functions of medicinal Rhodiola on various ailments.
[1] Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, et al. (2002). Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol, 156: 445-453.
[2] Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM (2016). Rhodiola rosea L. and Alzheimer’s Disease: From Farm to Pharmacy. Phytother Res, 30: 532-539.
[3] Pakaski M, Kasa P (2003). Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein. Curr Drug Targets CNS Neurol. Disord, 2: 163-171.
[4] Wang J, Cao B, Zhao HP, Feng J (2017). Emerging roles of Ganoderma Lucidum in anti-aging. Aging Dis, 8: 691-707.
[5] Zhang B, Li Q, Chu X, Sun S, Chen S (2016). Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer’s disease. Transl Neurodegener, 5: 21.
[6] Zhang J, Zhen YF, Pu-Bu-Ci-Ren, Song LG, Kong WN, Shao TM, et al. (2013). Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav Brain Res, 244: 70-81.
[7] Zhang B, Wang Y, Li H, Xiong R, Zhao Z, Chu X, et al. (2016). Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Des Devel Ther, 10: 1335-1343.
[8] Zhang L, Yu H, Zhao X, Lin X, Tan C, Cao G, et al. (2010). Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int, 57: 547-555.
[9] Li Y, Wu J, Shi R, Li N, Xu Z, Sun M (2017). Antioxidative Effects of Rhodiola Genus: Phytochemistry and Pharmacological Mechanisms against the Diseases. Curr Top Med Chem, 17: 1692-1708.
[10] Yan ZQ, Chen J, Xing GX, Huang JG, Hou XH, Zhang Y (2015). Salidroside prevents cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Int Med Res, 43: 402-411.
[11] Cao LL, Du GH, Wang MW (2005). [Effect of salidroside on mitochondria injury induced by sodium azide]. Yao Xue Xue Bao, 40: 700-704.
[12] Lee Y, Jung JC, Jang S, Kim J, Ali Z, Khan IA, et al. (2013). Anti-Inflammatory and Neuroprotective Effects of Constituents Isolated from Rhodiola rosea. Evid. Based Complement Alternat Med, 2013:514049.
[13] Sims NR, Bowen DM, Allen SJ, Smith CC, Neary D, Thomas DJ, et al. (1983). Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem, 40: 503-509.
[14] Ming DS, Hillhouse BJ, Guns ES, Eberding A, Xie S, Vimalanathan S, et al. (2005). Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother Res, 19: 740-743.
[15] Choi DY, Lee YJ, Hong JT, Lee HJ (2012). Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull, 87: 144-153.
[16] Feng Y, Wang X (2012). Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev, 2012:472932.
[17] Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, et al. (2012). Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol, 69: 836-841.
[18] Mecocci P, Polidori MC (2012). Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta, 1822: 631-638.
[19] Zhou Q, Yin ZP, Ma L, Zhao W, Hao HW, Li HL (2014). Free radical-scavenging activities of oligomeric proanthocyanidin from Rhodiola rosea L. and its antioxidant effects in vivo. Nat Prod Res, 28: 2301-2303.
[20] Palmeri A, Mammana L, Tropea MR, Gulisano W, Puzzo D (2016). Salidroside, a Bioactive Compound of Rhodiola Rosea, Ameliorates Memory and Emotional Behavior in Adult Mice. J Alzheimers Dis, 52: 65-75.
[21] Yang SJ, Yu HY, Kang DY, Ma ZQ, Qu R, Fu Q, et al. (2014). Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats. Pharmacol Biochem Behav, 124: 451-457.
[22] Zhu L, Wei T, Gao J, Chang X, He H, Miao M, et al. (2015). Salidroside attenuates lipopolysaccharide (LPS) induced serum cytokines and depressive-like behavior in mice. Neurosci Lett, 606: 1-6.
[23] Martinowich K, Manji H, Lu B (2007). New insights into BDNF function in depression and anxiety. Nat Neurosci, 10: 1089-1093.
[24] Darbinyan V, Aslanyan G, Amroyan E, Gabrielyan E, Malmström C, Panossian A (2007). Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry, 61: 343-348.
[25] Perfumi M, Mattioli L (2007). Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res, 21: 37-43.
[26] Chen QG, Zeng YS, Qu ZQ, Tang JY, Qin YJ, Chung P, et al. (2009). The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine, 16: 830-838.
[27] Olsson EM, von Schéele B, Panossian AG (2009). A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med, 75: 105-112.
[28] Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H (2000). Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 7: 365-371.
[29] Heine VM, Maslam S, Zareno J, Joëls M, Lucassen PJ (2004). Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci, 19: 131-144.
[30] Liang W, Huang XB, Chen WQ (2017). The effects of Baicalin and Baicalein on cerebral ischemia: a review. Aging Dis, 8: 850-867.
[31] Shi TY, Feng SF, Xing JH, Wu YM, Li XQ, Zhang N, et al. (2012). Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotox Res, 21: 358-367.
[32] Xiao L, Li H, Zhang J, Yang F, Huang A, Deng J, et al. (2014). Salidroside protects Caenorhabditis elegans neurons from polyglutamine-mediated toxicity by reducing oxidative stress. Molecules, 19: 7757-7769.
[33] Si PP, Zhen JL, Cai YL, Wang WJ, Wang WP (2016). Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress. Neurosci Lett, 618: 19-24.
[34] Xu Y, Li S, Chen R, Li G, Barish PA, You W, et al. (2010). Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav, 94: 447-453.
[35] van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K (2009). Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol, 122: 397-401.
[36] Nicoletti A, Arabia G, Pugliese P, Nicoletti G, Torchia G, Condino F, et al. (2007). Hormonal replacement therapy in women with Parkinson disease and levodopa-induced dyskinesia: a crossover trial. Clin Neuropharmacol, 30: 276-280.
[37] Al-Kuraishy HM (2015). Central additive effect of Ginkgo biloba and Rhodiola rosea on psychomotor vigilance task and short-term working memory accuracy. J Intercult Ethnopharmacol, 5: 7-13.
[38] Vasileva LV, Getova DP, Doncheva ND, Marchev AS, Georgiev MI (2016). Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance. J Ethnopharmacol, 193: 586-591.
[39] Panossian A, Wikman G, Kaur P, Asea A (2012). Adaptogens stimulate neuropeptide y and hsp72 expression and release in neuroglia cells. Front Neurosci, 6: 6.
[40] Kelly GS (2001). Rhodiola rosea: a possible plant adaptogen. Altern Med Rev, 6: 293-302.
[41] Yang Y, Ren CH, Zhang Y, Wu XD (2017). Ginseng: an nonnegligible natural remedy for healthy aging. Aging Dis, 8: 708-720.
[42] Gao YJ, Wei YF, Wang YQ, Gao F, Chen ZG (2017). Lycium Barbarum: a traditional chinese herb and a promising anti-aging agent. Aging Dis, 8: 778-791.
[43] Guan S, Wang W, Lu J, Qian W, Huang G, Deng X, et al. (2011). Salidroside attenuates hydrogen peroxide-induced cell damage through a cAMP-dependent pathway. Molecules, 16: 3371-3379.
[44] Xing S, Yang X, Li W, Bian F, Wu D, Chi J, et al. (2014). Salidroside stimulates mitochondrial biogenesis and protects against H2O2-induced endothelial dysfunction. Oxid Med Cell Longev, 2014: 904834.
[45] Zhu Y, Zhang YJ, Liu WW, Shi AW, Gu N (2016). Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway. Molecules, 21:E1033.
[46] Tang Y, Vater C, Jacobi A, Liebers C, Zou X, Stiehler M (2014). Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br J Pharmacol, 171: 2440-2456.
[47] Wang Y, Xu P, Wang Y, Liu H, Zhou Y, Cao X (2013). The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid Med Cell Longev, 2013: 507832.
[48] Ping Z, Zhang LF, Cui YJ, Chang YM, Jiang CW, Meng ZZ, et al. (2015). The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 α -NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats. Oxid Med Cell Longev, 2015: 876825.
[49] Zhang J, Liu A, Hou R, Zhang J, Jia X, Jiang W, et al. (2009). Salidroside protects cardiomyocyte against hypoxia-induced death: a HIF-1alpha-activated and VEGF-mediated pathway. Eur J Pharmacol, 607: 6-14.
[50] Tan CB, Gao M, Xu WR, Yang XY, Zhu XM, Du GH (2009). Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol Pharm Bull, 32: 1359-1363.
[51] Zhong H, Xin H, Wu LX, Zhu YZ (2010). Salidroside attenuates apoptosis in ischemic cardiomyocytes: a mechanism through a mitochondria-dependent pathway. J Pharmacol Sci, 114: 399-408.
[52] Wang H, Ding Y, Zhou J, Sun X, Wang S (2009). The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine, 16: 146-155.
[53] Anggakusuma, Yanti, Hwang JK (2010). Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells. J Dermatol Sci, 57: 114-122.
[54] Lishmanov IuB, Naumova AV, Afanas’ev SA, Maslov LN (1997). [Contribution of the opioid system to realization of inotropic effects of Rhodiola rosea extracts in ischemic and reperfusion heart damage in vitro]. Eksp Klin Farmakol, 60: 34-36.
[55] Li ZL, Zhang D, Liu JW, Wang H, Li R, Xu YH, et al. (2015). [Effects of Rhodiola on the Expression of iNOS mRNA in Severe Acute Pancreatitis Associated Re- nal Injury Rats]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 35: 730-734.
[56] Kwon YI, Jang HD, Shetty K (2006). Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pac J Clin Nutr, 15: 425-432.
[57] Kosanovic D, Tian X, Pak O, Lai YJ, Hsieh YL, Seimetz M, et al. (2013). Rhodiola: an ordinary plant or a promising future therapy for pulmonary hypertension? a brief review. Pulm Circ, 3: 499-506.
[58] Chernyshova GA, Plotnikov MB, Smol’yakova VI, Golubeva IV, Aliev OI, Tolstikova TG, et al. (2007). Antiarrhythmic activity of n-tyrosol during acute myocardial ischemia and reperfusion. Bull Exp Biol Med, 143: 689-691.
[59] Gao XF, Shi HM, Sun T, Ao H (2009). Effects of Radix et Rhizoma Rhodiolae Kirilowii on expressions of von Willebrand factor, hypoxia-inducible factor 1 and vascular endothelial growth factor in myocardium of rats with acute myocardial infarction. Zhong Xi Yi Jie He Xue Bao, 7: 434-440.
[60] Shih CD, Kuo DH, Huang CW, Gu YH, Chen FA (2008). Autonomic nervous system mediates the cardiovascular effects of Rhodiola sacra radix in rats. J Ethnopharmacol, 119: 284-290.
[61] Wild S, Roglic G, Green A, Sicree R, King H (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27: 1047-1053.
[62] Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J (2005). Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr, 135: 2299-2304.
[63] Brownlee M (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414: 813-820.
[64] Aronson D, Rayfield EJ (2002). How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol, 1: 1.
[65] Pennathur S, Heinecke JW (2007). Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal, 9: 955-969.
[66] Li F, Tang H, Xiao F, Gong J, Peng Y, Meng X (2011). Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules, 16: 9912-9924.
[67] Ma YG, Wang JW, Bai YG, Liu M, Xie MJ, Dai ZJ (2017). Salidroside contributes to reducing blood pressure and alleviating cerebrovascular contractile activity in diabetic Goto-Kakizaki Rats by inhibition of L-type calcium channel in smooth muscle cells. BMC Pharmacol Toxicol, 18: 30.
[68] Ni GL, Cui R, Shao AM, Wu ZM (2017). Salidroside Ameliorates Diabetic Neuropathic Pain in Rats by Inhibiting Neuroinflammation. J Mol Neurosci, 63:9-16.
[69] Chen T, Yao L, Ke D, Cao W, Zuo G, Zhou L, et al. (2016). Treatment with Rhodiola crenulata root extract ameliorates insulin resistance in fructose-fed rats by modulating sarcolemmal and intracellular fatty acid translocase/CD36 redistribution in skeletal muscle. BMC Complement Altern Med, 16: 209.
[70] Déciga-Campos M, González-Trujano ME, Ventura-Martínez R, Montiel-Ruiz RM, Ángeles-López GE, Brindis F (2016). Antihyperalgesic Activity of Rhodiola rosea in a Diabetic Rat Model. Drug Dev Res, 77: 29-36.
[71] Wang ZS, Gao F, Lu FE (2013). Effect of ethanol extract of Rhodiola rosea on the early nephropathy in type 2 diabetic rats. J Huazhong Univ Sci Technolog Med Sci, 33: 375-378.
[72] Niu CS, Chen LJ, Niu HS (2014). Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. BMC Complement Altern. Med, 14: 20.
[73] Zhang Y, Liu Y (2005). [Study on effects of salidroside on lipid peroxidation on oxidative stress in rat hepatic stellate cells]. Zhong Yao Cai, 28: 794-796.
[74] Wu YL, Lian LH, Jiang YZ, Nan JX (2009). Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Pharm Pharmacol, 61: 1375-1382.
[75] Nakamura S, Li X, Matsuda H, Ninomiya K, Morikawa T, Yamaguti K, et al. (2007). Bioactive constituents from Chinese natural medicines. XXVI. Chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis. Chem Pharm Bull. (Tokyo), 55: 1505-1511.
[76] Starley BQ, Calcagno CJ, Harrison SA (2010). Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology, 51: 1820-1832.
[77] Lin KT, Hsu SW, Lai FY, Chang TC, Shi LS, Lee SY (2016). Rhodiola crenulata extract regulates hepatic glycogen and lipid metabolism via activation of the AMPK pathway. BMC Complement Altern Med, 16: 127.
[78] Zuo W, Yan F, Zhang B, Li JT, Mei D (2017). Advances in the studies of Ginkgo Biloba leaves extract on aging-related diseases. Aging Dis, 8: 812-826.
[79] Liu Z, Li X, Simoneau AR, Jafari M, Zi X (2012). Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carcinog, 51: 257-267.
[80] Wang J, Li JZ, Lu AX, Zhang KF, Li BJ (2014). Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett, 7: 1159-1164.
[81] Sun C, Wang Z, Zheng Q, Zhang H (2012). Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine, 19: 355-363.
[82] Sun KX, Xia HW, Xia RL (2015). Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol, 8: 615-621.
[83] Skopil, 8: 615-621Jf salidroside on colon cancer, Sommer E, Furmanowa M, Mazurkiewicz M, et al. (2008). The influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in mice. Pol J Vet Sci, 11: 97-104.
[84] Mishra KP, Padwad YS, Dutta A, Ganju L, Sairam M, Banerjee PK, et al. (2008). Aqueous extract of Rhodiola imbricata rhizome inhibits proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M phase. Immunobiology, 213: 125-131.
[85] Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science, 331: 1612-1616.
[86] Cai Z, Li W, Wang H, Yan W, Zhou Y, Wang G, et al. (2012). Antitumor effects of a purified polysaccharide from Rhodiola rosea and its action mechanism. Carbohydr Polym, 90: 296-300.
[87] Zhao HP, Han ZP, Li GW, Zhang SJ, Luo YM (2017). Therapeutic potential and cellular mechanisms of panax notoginseng on prevention of aging and cell senescence-associated diseases. Aging Dis, 8: 721-739.
[88] Wang NQ, Ji SZ, Zhang H, Mei SS, Qiao LM, Jin XL(2017). Herba Cistanches: anti-aging. Aging Dis, 8: 740-759.
[89] Xu ZF, Feng W, Shen Q, Yu NN, Yu K, Wang SJ, et al.(2017). Rhizoma Coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation. Aging Dis, 8: 760-777.
[90] Qin W, Chen SY, Yang SS, Xu Q, Xu CS, Cai J (2017). The effect of traditional chinese medicine on neural stem cell proliferation and differentiation. Aging Dis, 8: 792-811.
[91] Liu P, Zhao HP, Luo YM (2017). Anti-aging implications of Astragalus Membranaceus (Huangqi): a well-known chinese tonic. Aging Dis, 8: 868-886.
[1] Li Kunyu, Li Jiatong, Zheng Jialin, Qin Song. Reactive Astrocytes in Neurodegenerative Diseases[J]. Aging and disease, 2019, 10(3): 664-675.
[2] Shen Ting, You Yuyi, Joseph Chitra, Mirzaei Mehdi, Klistorner Alexander, Graham Stuart L., Gupta Vivek. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders[J]. Aging and disease, 2018, 9(3): 523-536.
[3] Szybińska Aleksandra, Leśniakx Leśniak. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes?[J]. Aging and disease, 2017, 8(4): 506-518.
[4] Redmann Matthew, Darley-Usmar Victor, Zhang Jianhua. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases[J]. Aging and disease, 2016, 7(2): 150-162.
[5] João M. N. Duarte,Patrícia F. Schuck,Gary L. Wenk,Gustavo C. Ferreira. Metabolic Disturbances in Diseases with Neurological Involvement[J]. Aging and Disease, 2014, 5(4): 238-255.
[6] Ashok Munivenkatappa,Bhavani Shankara Bagepally,Jitender Saini,Pramod Kumar Pal. In vivo Age-related Changes in Cortical, Subcortical Nuclei, and Subventricular Zone: A Diffusion Tensor Imaging Study[J]. Aging and Disease, 2013, 4(2): 65-75.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd