Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (3) : 637-651     DOI: 10.14336/AD.2018.0513
Review |
The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases
Tu Wenjun1,2,3, Wang Hong4, Li Song1, Liu Qiang1,*, Sha Hong4,*
1Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
2Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
3Center for Translational Medicine, Institutes of Stroke, Weifang Medical University, Weifang, China
4Institute of Biomedical Engineering, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
Download: PDF(478 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.

Keywords Oxidative stress      Reactive oxygen species      Keap1/Nrf2/ARE      Anti-inflammatory      Anti-oxidant      Low-level laser irradiation     
Corresponding Authors: Liu Qiang,Sha Hong   
About author:

These authors contributed equally to this study.

Issue Date: 02 April 2018
E-mail this article
E-mail Alert
Articles by authors
Tu Wenjun
Wang Hong
Li Song
Liu Qiang
Sha Hong
Cite this article:   
Tu Wenjun,Wang Hong,Li Song, et al. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases[J]. Aging and disease, 2019, 10(3): 637-651.
URL:     OR
Figure 1.  Domain structures of Keap1

Keap1 consists of three major functional domains: the BTB, IVR, and the Kelch/β-propeller domains.

Figure 2.  Domain structures of Nrf2

The Nrf2 protein contains7 domains, Neh1-Neh7. The ETGE and DLG motifs in the Neh2 domain are essential for the direct interaction with the Kelch domain of Keap1.

Figure 3.  The Keap1-Nrf2-ARE pathway. Under physiological conditions, Nrf2 is restricted in the cytoplasm via its association with Keap1-Cul3-Rbx1 complex. In response to oxidative stress, Nrf2 is released from Keap1 translocates to the nucleus and heterodimerizes with one of the small Maf (musculoaponeurotic fibrosarcoma oncogene homolog) proteins. This complex activates the ARE-dependent gene expression of a series of antioxidative and cytoprotective proteins.
[1] Sies H (2015). Oxidative stress: a concept in redox biology and medicine. Redox biology, 4: 180-3.
[2] Stefanson A L, Bakovic M (2014). Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients, 6: 3777-801.
[3] Durackova Z (2010). Some current insights into oxidative stress. Physiol Res, 59: 459-69.
[4] Jabs T (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol, 57:231-45.
[5] Poyton RO, Ball KA, Castello PR (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 20:332-40.
[6] Fridovich I (1978). The biology of oxygen radicals. Science, 201:875-80.
[7] Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 49: 1603-16.
[8] Dreger H, Westphal K, Wilck N, Baumann G, Stangl V, Stangl K, et al. (2009). Protection of vascular cells from oxidative stress by proteasome inhibition depends on Nrf2. Cardiovasc Res, 85: 395-403.
[9] Madamanchi NR, Vendrov A, Runge MS (2005). Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol, 25:29-38.
[10] Maritim AC, Sanders RA, Watkins JB (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol,17: 24-38.
[11] Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation, 104: 2673-8.
[12] Giacco F, Brownlee M (2010). Oxidative stress and diabetic complications. Circ Res, 107: 1058-70.
[13] Beatty S, Koh H H, Phil M, Henson D, Boulton M (2000). The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol, 45: 115-34.
[14] Münzel T, Gori T, Keaney Jr JF, Maack C, Daiber A (2015). Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36: 2555-64.
[15] Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014). Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta, 1842: 1240-7.
[16] Barnham KJ, Masters CL, Bush AI (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3: 205.
[17] Kim G H, Kim J E, Rhie S J, Yoon S (2015). The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol, 24: 325-40.
[18] Giugliano D, Ceriello A, Paolisso G (1996). Oxidative stress and diabetic vascular complications. Diabetes care, 19: 257-67.
[19] Saito H (2013). Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases. Biochem Pharmacol, 85: 865-72.
[20] Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004). The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase. Mol Cell Biol, 24: 8477-886
[21] Fuse Y, Kobayashi M (2017). Conservation of the Keap1-Nrf2 system: An evolutionary journey through stressful space and time. Molecules, 22: 436.
[22] Furukawa M, Xiong Y (2005). BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol, 25: 162-71.
[23] Velichkova M, Hasson T (2005). Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol, 25:4501-13.
[24] Itoh K, Wakabayashi N, Katoh Y, Shii T, Igarashi K, Engel JD, et al. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 13: 76-86.
[25] Tong KI, Padmanabhan B, Kobayashi A, Shang C, Hirotsu Y, Yokoyama S, et al. (2007). Different Electrostatic Potentials Define ETGE and DLG Motifs as Hinge and Latch in Oxidative Stress Response. Mol Cell Biol, 27: 7511-21.
[26] Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, et al. (2013) Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination. Cancer Res, 73: 2199-210.
[27] Itoh K1, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. (1997). An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochem Biophys Res Commun, 236: 313-22.
[28] Keum YS, Choi BY (2014). Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules, 19: 10074-89.
[29] Namani A, Li Y, Wang XJ, Tang X (2014). Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. Biochim Biophys Acta, 1843: 1875-85.
[30] Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2017). The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep, 69: 393-402.
[31] Xiang MJ, Namani A, Wu SJ, Wang X (2014). Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol, 140: 1251-9.
[32] Bai X, Chen Y, Hou X, Huang M1, Jin J (2016). Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters[J]. Drug Metab Rev, 48: 541-67.
[33] Kensler TW, Wakabayashi N, Biswal S (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 47: 89-116.
[34] Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M (2004). Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator ofcytoprotective phase 2 genes. Proc. Natl. Acad. Sci. USA, 101: 2046-51.
[35] Adams J, Kelso R, Cooley L (1999). The kelch repeat superfamily of proteins: Propellers of cell function. Trends Cell Biol, 10: 17-24.
[36] Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005). Keap1, the Sensor for Electrophiles and Oxidants that Regulates the Phase 2 Response, Is a Zinc Metalloprotein. Biochemistry, 44: 6889-99.
[37] Velichkova M, Hasson T (2003). Keap1 in Adhesion Complexes. Cell Motil Cytoskelet, 56: 109-19.
[38] Bellezza I, Giambanco I, Minelli A, Donato R (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta, 1865: 721-33.
[39] Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, et al. (2009). Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell, 34: 663-73.
[40] Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12: 213-23.
[41] Bjorkoy G, Lamark T, Johansen T (2006). p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy, 2: 138-9.
[42] Mann GE, Niehueser-Saran J, Watson A, Gao L, Ishii T, de Winter P, et al. (2007). Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia. Sheng Li Xue Bao, 59: 117-27.
[43] Magesh S, Chen Y, Hu L (2012). Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev, 32:687-726.
[44] Shelly C (2009). Lu Regulation of glutathione synthesis. Mol Asp Med, 30: 42-59.
[45] Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta, 1850: 794-801.
[46] Brewer AC, Murray TVA, Arno M, Zhang M, Anilkumar NP, Mann GE, et al. (2011). Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med, 51: 205-15.
[47] Papaiahgari S, Kleeberger SR, Cho HY, Kalvakolanu DV, Reddy SP (2004). NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. J Biol Chem, 279: 42302-12.
[48] Jian Z, Li K, Liu L, Zhang Y, Zhou Z, Li C, et al. (2011). Heme oxygenase-1 protects human melanocytes from H(2)O(2)-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol, 131:1420-7.
[49] Matés JM (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153: 83-104.
[50] Zhang DD, Hannink M (2003). Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress. Mol Cell Biol, 23: 8137-51.
[51] Mustacich D, Powis G (2000). Thioredoxin reductase. Biochem J, 346: 1-8.
[52] Jakobs P, Serbulea V, Leitinger N, Eckers A, Haendeler J (2017). Nuclear factor (erythroid-derived 2)-like 2 and thioredoxin-1 in atherosclerosis and ischemia/reperfusion injury in the heart. Antioxid Redox Signal, 26: 630-44.
[53] Tsai CY, Wang CC, Lai T, Tsu HN, Wang CH, Liang HY, et al. (2013). Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol, 168: 1286-97.
[54] Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI. (2010). Suppression of NF-kappaB signaling by Keap1 regulation of IKK-beta activity through autophagic degradation and inhibition of phosphorylation. Cell Signal, 22: 1645-54.
[55] Hayes JD, Ashford ML (2012). Nrf2 Orchestrates Fuel Partitioning for Cell Proliferation. Cell Metab, 16: 139-41.
[56] Kwak MK, Itoh K, Yamamoto M, Sutter TR, Kensler TW (2001). Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol Med, 7: 135-45.
[57] Hayashi A, Suzuki H, Itoh K, Yamamoto M, Sugiyama Y (2003). Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem Biophys Res Commun, 310: 824-9.
[58] Guo Y, Yu S, Zhang C, Kong AN (2015). Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med, 88: 337-49.
[59] Bellezza I, Mierla A L, Minelli A (2010). Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers, 2: 483-97.
[60] Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A (2014). α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene, 539: 1-7.
[61] Sandberg M, Patil J, D’angelo B, Weber SG, Mallard C (2014). NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology, 79: 298-306.
[62] Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, et al. (2012). Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity. J Nutr Biochem 23: 1583-91.
[63] Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I. (2014). Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem, 289: 15244-58.
[64] Magesh S, Chen Y, Hu L (2012). Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev, 32: 687-72.
[65] Kim J, Cha Y N, Surh YJ (2010). A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res, 690: 12-23.
[66] Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, et al. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal, 11: 497-508.
[67] Williamson TP, Johnson DA, Johnson JA (2012). Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. Neurotoxicology, 33: 272-9.
[68] Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al. (2015). Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta, 1852 1428-41.
[69] Jin XF, Wang S, Shen M, Wen X, Han XR, Wu JC, et al. (2017). Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways. Brain Res Bull, 134: 236-45.
[70] Ruiz S, Pergola PE, Zager RA, Vaziri ND (2013). Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 83: 1029-41.
[71] Aboonabi A, Singh I (2015). Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox. Biomed Pharmacother, 72: 30-6.
[72] Chartoumpekis DV, W Kensler TW (2013). New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev 9: 137-45.
[73] Li J, Ichikawa T, Janicki JS, Cui T (2009). Targeting the Nrf2 pathway against cardiovascular disease. Expert Opin Ther Targets, 13: 785-94.
[74] Su X, Li T, Liu Z, Huang Q, Liao K, Ren R, et al. (2018). Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radic Biol Med, 115: 471-83.
[75] Powers SK, Jackson MJ (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production, Physiol Rev, 88: 1243-1276.
[76] Merry TL, Ristow M (2016). Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol, 594: 5195-207.
[77] Duan F, Guo Y, Li J, Yuan K (2017). Antifatigue Effect of Luteolin-6-C-Neohesperidoside on Oxidative Stress Injury Induced by Forced Swimming of Rats through Modulation of Nrf2/ARE Signaling Pathways. Oxid Med Cell Longev, 2017:3159358.
[78] Shanmugam G, Narasimhan M, Conley RL, Sairam T, Kumar A, Mason RP, et al. (2017). Chronic endurance exercise impairs cardiac structure and function in middle-aged mice with impaired Nrf2 signaling. Front Physiol, 2017, 8: 268.
[79] Uruno A, Yagishita Y, Katsuoka F, Kitajima Y, Nunomiya A, Nagatomi R, et al. (2016). Nrf2-mediated regulation of skeletal muscle glycogen metabolism. Mol Cell Biol, 36:1655-72.
[80] Done AJ, Gage MJ, Nieto NC, Traustadóttir T (2016) Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med, 96: 130-8.
[81] Magbanua MJM, Richman E L, Sosa EV, Jones LW, Simko J, Shinohara K, et al. (2014). Physical activity and prostate gene expression in men with low-risk prostate cancer[J]. Cancer Causes Control, 25: 515-23.
[82] Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol, 588: 4795-810.
[83] Gomes FC, Chuffa LG, Scarano R, Pinheiro PF, Fávaro WJ, Domeniconi RF (2016). Nandrolone decanoate and resistance exercise training favor the occurrence of lesions and activate the inflammatory response in the ventral prostate. Andrology, 4: 473-80.
[84] Minelli A, Bellezza I, Conte C, Culig Z (2009). Oxidative stress-related aging: A role for prostate cancer? Biochim Biophys Acta, 1795: 83-91.
[85] Upadhyay S, Dixit M (2015). Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev, 2015: 504253.
[86] Csiszar A, Gautam T, Sosnowska D, Tarantini S, Banki E, Tucsek Z, et al. (2014). Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol, 307: H292-306.
[87] Oh S, Komine S, Warabi E, Akiyama K, Ishii A, Ishige K, et al. (2017). Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles. Sci Rep, 7: 12902.
[88] Riuzzi F, Sorci G, Sagheddu R, Donato R (2012). HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK-and myogenin-dependent repression of Pax7 transcription. J Cell Sci, 125: 1440-54.
[89] Lim S, Shin JY, Jo A, Jyothi KR, Nguyen MN, Choi TG, et al. (2013). Carbonyl reductase 1 is an essential regulator of skeletal muscle differentiation and regeneration. Int J Biochem Cell Biol, 45: 1784-93.
[90] Horn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC1, Reed A, et al. (2017). Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal, 10.
[91] Linker R A, Lee D H, Ryan S, van Dam AM, Conrad R, Bista P, et al. (2011). Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain, 134: 678-92.
[92] Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC (2017). Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series. J Am Coll Cardiol, 70: 196-211.
[93] Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y (2015). Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015; doi: .
doi: 10.1155/2015/407580
[94] Deng S, Wang X, Essandoh K (2017). Tsg101 Regulates the P62-Keap1-Nrf2 Axis in Cardiomyocytes to Protect Against Cardiac Ischemia/Reperfusion Injury. Circulation, 136: A19367
[95] Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E, et al. (2015). Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med, 88: 233-42.
[96] Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K (2016). The role of the Nrf2/ARE antioxidant system in preventing cardiovascular diseases. Diseases, 4(4). pii: E34
[97] Yan SH, Zhao NW, Geng ZR, Shen JY, Liu FM, Yan D, et al. (2018). Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med, 115: 191-201.
[98] Yang YC, Lii C K, Lin A H, Yeh YW, Yao HT, Li CC, et al. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic Biol Med, 51: 2073-81.
[99] Kobayashi M, Yamamoto M (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal, 7: 385-94.
[100] Smyrnias I, Zhang X, Zhang M, Murray TV, Brandes RP, Schröder K, et al. (2015). Nicotinamide adenine dinucleotide phosphate oxidase-4-dependent upregulation of nuclear factor erythroid-derived 2-like 2 protects the heart during chronic pressure overload. Hypertension 65: 547-53.
[101] Maddux BA, See W, Lawrence JC Jr, Goldfine AL, Goldfine ID, Evans JL (2001). Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of alpha-lipoic acid. Diabetes; 50:404-10.
[102] Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, et al. (1997). Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest, 99:144-50.
[103] Uruno A, Yagishita Y, Yamamoto M (2015). The Keap1-Nrf2 system and diabetes mellitus[J]. Arch Biochem Biophys, 566: 76-84.
[104] Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002). Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia, 45: 85-96.
[105] Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, et al. (2013). Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction. Diabetes, 62: 1996-2003.
[106] Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, et al. (1999). Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes, 48: 2398-406.
[107] Hayes JD, Dinkova-Kostova AT (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci, 39: 199-218.
[108] Yang B, Fu J, Zheng H, Xue P, Yarborough K, Woods C, et al. (2012). Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage. Toxicol Appl Pharmacol, 264: 315-23.
[109] Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, et al. (2009). Sulforaphane protects against cytokine-and streptozotocin-induced β-cell damage by suppressing the NF-κB pathway. Toxicol Appl Pharmacol, 235: 57-67.
[110] Li W, Wu W, Song H, Wang F, Li H, Chen L, et al. (2014). Targeting Nrf2 by dihydro-CDDO-trifluoroethyl amide enhances autophagic clearance and viability of β-cells in a setting of oxidative stress. FEBS letters, 588: 2115-24.
[111] Lee S, Hur E, Ryoo I, Jung K, Kwak J, Kwak M (2012). Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells. Toxicol Appl Pharmacol, 264: 431-8.
[112] Bae EJ, Yang YM, Kim JW, Kim SG (2007). Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway. Hepatology, 46: 730-9.
[113] Meher AK, Sharma PR, Lira V A, Yamamoto M, Kensler TW, Yan Z, et al. (2012). Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med, 52: 1708-15.
[114] Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, et al. (2013). Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes, 62: 845-54.
[115] Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi S, et al. (2008). Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells, 13: 1159-70.
[116] Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, et al. (2014). NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia, 57: 204-13.
[117] Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, et al. (2011). Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes, 60: 625-33.
[118] Taguchi K, Yamamoto M (2017). The KEAP1-NRF2 system in cancer. Frontiers in oncology, 7: 85.
[119] Lu K, Alcivar A L, Ma J, Foo TK, Zywea S1, Mahdi A, et al. (2017). NRF2 Induction Supporting Breast Cancer Cell Survival Is Enabled by Oxidative Stress-Induced DPP3-KEAP1 Interaction. Cancer Res, 77: 2881-92.
[120] Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, et al. (2017). Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med. 103: 236-47.
[121] Milkovic L, Zarkovic N, Saso L (2017). Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox biology, 12: 727-32.
[122] Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017). The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev, 9: 41-56.
[123] Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, et al. (2017). Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov, 7: 86-101.
[124] Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. (2008). Dual roles of Nrf2 in cancer. Pharmacol Res, 58:262-70.
[125] Ooi A, Dykema K, Ansari A, Petillo D, Snider J, Kahnoski R, et al. (2013). CUL3 and Nrf2 mutations confer an Nrf2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res, 73:2044-51.
[126] Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, et al. (2016). DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene, 35: 6439-45.
[127] Tagde A, Rajabi H, Stroopinsky D, Gali R, Alam M, Bouillez A, et al. (2016). MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget, 7:38974-87.
[128] Faraonio R, Vergara P, DiMarzo D, Pierantoni MG, Napolitano M, Russo T, et al. (2006). p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem, 281:39776-84.
[129] DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475:106-9.
[130] Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, et al. (2011). Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in Keap1 succination and Nrf2 signaling. Cancer Cell, 20:524-37.
[131] Tanaka A, Hamada N, Fujita Y, Itoh T, Nozawa Y, Iinuma M, et al. (2010). A novel kavalactone derivative protects against H2O2-induced PC12 cell death via Nrf2/ARE activation. Bioorg Med Chem, 18:3133-9.
[132] Tusi SK, Ansari N, Amini M, Amirabad AD, Shafiee A, Khodagholi F, et al. (2010). Attenuation of NF-kappaB and activation of Nrf2 signaling by 1,2,4-triazine derivatives, protects neuronlike PC12 cells against apoptosis. Apoptosis,15:738-51.
[133] Kerr F, Sofola-Adesakin O, Ivanov DK, Gatliff J, Gomez Perez-Nievas B, Bertrand HC, et al. (2017). Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS genetics, 13: e1006593.
[134] Branca C, Ferreira E, Nguyen TV, Doyle K, Caccamo A, Oddo S (2017). Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum Mol Genet, 26: 4823-35.
[135] Lipton SA, Rezaie T, Nutter A, Lopez KM, Parker J, Kosaka K, et al. (2016). Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer’s disease models. Cell Death Dis, 7: e2499.
[136] Kanninen K, White AR, Koistinaho J, Malm T (2011). Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer’s disease: involvement of the Nrf2-ARE Pathway. Int J Alzheimer Dis, 2011: 98508.
[137] Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, et al. (2007). Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol, 66:75-85.
[138] Pan PK, Qiao LY, Wen XN (2016). Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson’s disease through regulating Keap1/Nrf2 signaling pathway. Cell Mol Biol, 62: 11-7.
[139] Lastres-Becker I (2017). Role of the Transcription Factor Nrf2 in Parkinson’s Disease: New Insights. J Alzheimers Dis Parkinsonism, 2017, DOI:
doi: 10.4172/2161-0460.1000340
[140] Ran C, Wirdefeldt K, Brodin L, Ramezani M, Westerlund M, Xiang F, et al. (2017). Genetic Variations and mRNA Expression of NRF2 in Parkinson’s Disease. Parkinsons Dis, 2017; doi: .
doi: 10.1155/2017/4020198
[141] Lastres-Becker I, García-Yagüe A J, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, et al. (2016). Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal, 25: 61-77.
[142] Zhang R, Xu M, Wang Y, Xie F, Zhang 1, Qin X (2017). Nrf2—a promising therapeutic target for defensing against oxidative stress in stroke. Mol Neurobiol, 54: 6006-17.
[143] Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, et al. (2017). Nrf2 weaves an elaborate network of neuroprotection against stroke. Mol Neurobiol, 54: 1440-55.
[144] Meng H, Guo J, Wang H, Yan P, Niu X, Zhang J (2014). Erythropoietin activates Keap1-Nrf2/ARE pathway in rat brain after ischemia. Int J Neurosci, 124: 362-8.
[145] Wu S, Yue Y, Peng A, Zhang L, Xiang J, Cao X, et al. (2016). Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct, 7: 2624-34.
[146] Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, et al. (2018). A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal 28: 141-63.
[147] Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, et al. (2007). Role of reactive oxygen species in modulation ofNrf2 following ischemic reperfusion injury. Neuroscience, 147:53-9.
[148] Shih AY, Li P, Murphy TH (2005). A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci, 25:10321-35.
[149] Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, et al. (2012). Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med, 52: 928-36.
[150] Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, et al. (2013). Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res, 1497:32-9.
[151] Calkins MJ, Johnson DA, Townsend J A, Vargas MR, Dowell JA, Williamson TP, et al. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal, 11: 497-508.
[152] Wu K C, Liu J, Klaassen CD (2012). Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol, 262: 321-9.
[153] Chi X, Zhang R, Shen N, Jin Y, Alina A, Yang S, et al. (2015). Sulforaphane reduces apoptosis and oncosis along with protecting liver injury-induced ischemic reperfusion by activating the Nrf2/ARE pathway. Hepatol Int, 9: 321-9.
[154] Shen Z, Wang Y, Su Z, Kou R, Xie K, Song F, et al. (2018). Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice. Chem Biol Interact, 282:22-8
[155] Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005). Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg, 31:334-40.
[156] Frigo L, Luppi JSS, Favero GM, Maria DA, Penna SC, Bjordal JM, et al. (2009). The effect of low-level laser irradiation (In-Ga-Al-AsP-660 nm) on melanoma in vitro and in vivo. BMC cancer, 9: 404.
[157] Mackiewicz-Milewska M, Grześk E, Kroszczyński AC, Cisowska-Adamiak M, Mackiewicz-Nartowicz H, Baran L, et al. (2018). The influence of low level laser irradiation on vascular reactivity. Adv Med Sci, 63: 64-7.
[158] Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2015). Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics, 8: 502-11.
[159] Leal-Junior ECP, Vanin A A, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015). Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci, 30: 925-39.
[160] Tuby H, Maltz L, Oron U (2007). Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med, 39: 373-8.
[161] Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, et al. (2007). Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B 89: 50-5.
[162] De Scheerder IK, Wang K, Zhou XR, Szilard M, Verbeken E, Ping QB, et al. (2000). Intravascular low-power red laser light as an adjunct to coronary stent implantation: Initial clinical experience. Catheter Cardiovasc Interv, 49: 468-71.
[163] Farivar S, Malekshahabi T, Shiari R (2014). Biological effects of low level laser therapy. J Lasers Med Sci, 5: 58-62.
[164] Macedo AB, Moraes L HR, Mizobuti DS, Fogaça AR, Moraes Fdos S, Hermes Tde A, et al. (2015). Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: effects on regeneration capacity, inflammation response and oxidative stress. PloS one, 10: e0128567.
[165] Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A (2015). Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg, 23(1):3-9.
[166] Souza NHC, Marcondes PT, Albertini R, Mesquita-Ferrari RA, Fernandes KP, Aimbire F (2014). Low-level laser therapy suppresses the oxidative stress-induced glucocorticoids resistance in U937 cells: relevance to cytokine secretion and histone deacetylase in alveolar macrophages. J Photochem Photobiol B, 130: 327-36.
[167] Ahmed OM, Mohamed T, Moustafa H, Hamdy H, Ahmed RR, Aboud E (2018). Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmacother, 101: 58-73.
[168] Silveira PC, Silva LA, Freitas TP, Latini A, Pinho RA (2011). Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci, 26: 125-31.
[169] Assis L, Moretti AI, Abrahão TB, Cury V, Souza HP, Hamblin MR, et al. (2012). Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med, 44: 726-35.
[170] Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana Cde L, Castro-Faria-Neto HC, et al. (2013). Low-Level Laser Therapy Restores the Oxidative Stress Balance in Acute Lung Injury Induced by Gut Ischemia and Reperfusion. Photochem Photobiol, 89: 179-88.
[171] De Marchi T, Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012). Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci, 27: 231-6.
[172] Jankowski M, Gawrych M, Adamska U, Ciescinski J, Serafin Z, Czajkowski R (2017). Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism. Lasers Med Sci, 32: 475-9.
[1] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[2] Changhong Ren, Hang Wu, Dongjie Li, Yong Yang, Yuan Gao, Yunneng Jizhang, Dachuan Liu, Xunming Ji, Xuxiang Zhang. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation[J]. Aging and disease, 2018, 9(6): 1122-1133.
[3] Yong-Fei Zhao, Qiong Zhang, Jian-Feng Zhang, Zhi-Yin Lou, Hen-Bing Zu, Zi-Gao Wang, Wei-Cheng Zeng, Kai Yao, Bao-Guo Xiao. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson’s Disease[J]. Aging and disease, 2018, 9(5): 785-797.
[4] Morroni Fabiana, Sita Giulia, Graziosi Agnese, Turrini Eleonora, Fimognari Carmela, Tarozzi Andrea, Hrelia Patrizia. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer’s Disease Involves Nrf2/HO-1 Pathway[J]. Aging and disease, 2018, 9(4): 605-622.
[5] Yang Yao-Chih, Tsai Cheng-Yen, Chen Chien-Lin, Kuo Chia-Hua, Hou Chien-Wen, Cheng Shi-Yann, Aneja Ritu, Huang Chih-Yang, Kuo Wei-Wen. Pkcδ Activation is Involved in ROS-Mediated Mitochondrial Dysfunction and Apoptosis in Cardiomyocytes Exposed to Advanced Glycation End Products (Ages)[J]. Aging and disease, 2018, 9(4): 647-663.
[6] Zhang Jun, Liu Kaiyin, Elmadhoun Omar, Ji Xunming, Duan Yunxia, Shi Jingfei, He Xiaoduo, Liu Xiangrong, Wu Di, Che Ruiwen, Geng Xiaokun, Ding Yuchuan. Synergistically Induced Hypothermia and Enhanced Neuroprotection by Pharmacological and Physical Approaches in Stroke[J]. Aging and disease, 2018, 9(4): 578-589.
[7] Zhang Meng, Deng Yong-Ning, Zhang Jing-Yi, Liu Jie, Li Yan-Bo, Su Hua, Qu Qiu-Min. SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway[J]. Aging and disease, 2018, 9(2): 273-286.
[8] Wongrakpanich Supakanya, Wongrakpanich Amaraporn, Melhado Katie, Rangaswami Janani. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly[J]. Aging and disease, 2018, 9(1): 143-150.
[9] Mari L. Sbardelotto,Giulia S. Pedroso,Fernanda T. Pereira,Helen R. Soratto,Stella MS. Brescianini,Pauline S. Effting,Anand Thirupathi,Renata T. Nesi,Paulo CL. Silveira,Ricardo A. Pinho. The Effects of Physical Training are Varied and Occur in an Exercise Type-Dependent Manner in Elderly Men[J]. A&D, 2017, 8(6): 887-898.
[10] Gao Guofen, Zhang Nan, Wang Yue-Qi, Wu Qiong, Yu Peng, Shi Zhen-Hua, Duan Xiang-Lin, Zhao Bao-Lu, Wu Wen-Shuang, Yan-Zhong Chang. Mitochondrial Ferritin Protects Hydrogen Peroxide-Induced Neuronal Cell Damage[J]. Aging and disease, 2017, 8(4): 458-470.
[11] Zheng Hong, Wu Jinzi, Jin Zhen, Yan Liang-Jun. Potential Biochemical Mechanisms of Lung Injury in Diabetes[J]. Aging and disease, 2017, 8(1): 7-16.
[12] Kim Kyung Soo, Kwak Jin Wook, Lim Su Jin, Park Yong Kyun, Yang Hoon Shik, Kim Hyun Jik. Oxidative Stress-induced Telomere Length Shortening of Circulating Leukocyte in Patients with Obstructive Sleep Apnea[J]. Aging and disease, 2016, 7(5): 604-613.
[13] Gaman Amelia Maria, Uzoni Adriana, Popa-Wagner Aurel, Andrei Anghel, Petcu Eugen-Bogdan. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-“Chemobrain”[J]. Aging and disease, 2016, 7(3): 307-317.
[14] Zhao Haiping, Han Ziping, Ji Xunming, Luo Yumin. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke[J]. Aging and disease, 2016, 7(3): 295-306.
[15] Ma Liwei, Wang Hongjun, Wang Chunyan, Su Jing, Xie Qi, Xu Lu, Yu Yang, Liu Shibing, Li Songyan, Xu Ye, Li Zhixin. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells[J]. Aging and disease, 2016, 7(3): 254-266.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd