Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (6) : 1302-1310     DOI: 10.14336/AD.2018.1020
Review |
Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application
Jinfan Tian1,2, Sharif Popal Mohammad1, Yingke Zhao3, Yanfei Liu4, Keji Chen2, Yue Liu 2,*
1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
3Li Ka Shing Faculty of Medicine, The University of HongKong, Pokfulam, Hong Kong.
4Graduate School, Beijing University of Chinese Medicine, Beijing, China
Download: PDF(361 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.

Keywords exosomes      autophagy      cardiovascular disease      atherosclerosis      myocardial ischemia/reperfusion injury     
Corresponding Authors: Liu Yue   
About author: These are co-senior authors.
Just Accepted Date: 20 November 2018   Issue Date: 16 November 2019
E-mail this article
E-mail Alert
Articles by authors
Tian Jinfan
Popal Mohammad Sharif
Zhao Yingke
Liu Yanfei
Chen Keji
Liu Yue
Cite this article:   
Tian Jinfan,Popal Mohammad Sharif,Zhao Yingke, et al. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application[J]. Aging and disease, 2019, 10(6): 1302-1310.
URL:     OR
Figure 1.  The crosstalk between autophagic and exosomal process. MVBs which enrich in ILVs generates from early endosomes directed by ESCRT. MVBs can either fuse with lysosomes, which subsequently fuse with auto-phagosome to form autolysosome leading to autophagic degradation, or MVBs could fuse with the plasma membrane to release vesicles as exosomes into the extracellular space. Exosomes contains rich biological signaling materials as non-coding RNAs. ESCRT, endosomal sorting complex required for transport; ILVs, intraluminal vesicles.
non-coding RNACardiovascular diseaseCell typesEffects
IncRNA GAS5Atherosclerosis↑THP-1 cellsThe apoptosis of vascular endothelia cells↑ [16]
miR-143/145Atherosclerosis↓Endothelial cellsCommunication between endothelial and smooth cells↑ [17]
miR-155Atherosclerosis↑Vascular smooth muscles cellsEndothelial permeability↑ [18]
miR-223, miR-339 and miR-21Atherosclerosis↓PlateletNF-κB pathways↓ [19, 20]
miR-21Myocardial infarction↓EnMSCsCardiomyocytes apoptosis↓ [36]
miR-126Myocardial ischemia/reperfusion injury↓Adipose-derived stem cellsApoptosis, inflammation, fibrosis↓angiogenesis↑ [37]
miR-93-5pMyocardial infarction ↓Adipose-derived stromal cellsHypoxia-induced autophagy and inflammation↓ [11]
miR-451Myocardial ischemia/reperfusion injury↓Cardiac progenitor cellsOxidative stress-induced apoptosis↓ [40]
miR-21Myocardial ischemia/reperfusion injury↓Cardiac progenitor cellsOxidative stress-induced apoptosis↓ [41]
Table 1  Overview of exosomes-related non-coding RNAs in cardiovascular disease
miR-33ABCA1↓ [56-59]
miR-758ABCA1↓ [61]
miR-20a/bABCA1↓ [62]
miR-19bABCA1↓ [63]
miRNA-302aABCA1↓ [64]
Table 2  Exosomes-related miRNAs regulate ABCA1.
[1] Su SA, Xie Y, Fu Z, Wang Y, Wang JA, Xiang M (2017). Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget, 8: 25700-12.
[2] Lu M, Yuan S, Li S, Li L, Liu M, Wan S (2018). The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application. J Cardiovasc Transl Res. doi: .[Epub ahead of print]
doi: 10.1007/s12265-018-9796-y
[3] Lu X. The Role of Exosomes and Exosome-derived microRNAs in Atherosclerosis (2017). Curr Pharm Des, 23: 6182-93.
[4] Vindis C. Autophagy: an emerging therapeutic target in vascular diseases (2015). Br J Pharmacol, 172: 2167-78.
[5] Luo Z, Xu W, Ma S, Qiao H, Gao L, Zhang R, et al (2017). Moderate Autophagy Inhibits Vascular Smooth Muscle Cell Senescence to Stabilize Progressed Atherosclerotic Plaque via the mTORC1/ULK1/ATG13 Signal Pathway. Oxid Med Cell Longev, 2017: 3018190.
[6] Baixauli F, López-Otín C, Mittelbrunn M (2014). Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol, 5: 403.
[7] Desdín-Micó G, Mittelbrunn M (2017). Role of exosomes in the protection of cellular homeostasis. Cell Adh Migr, 11: 127-34.
[8] Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, et al (2018). Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cell Physiol Biochem, 47: 864-78.
[9] Abdulrahman BA, Abdelaziz DH, Schatzl HM (2018). Autophagy regulates exosomal release of prions in neuronal cells. J Biol Chem, 293: 8956-68.
[10] Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, et al (2017). Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses, 9. pii: E176.
[11] Liu J, Jiang M, Deng S, Lu J, Huang H, Zhang Y, et al (2018). miR-93-5p-Containing Exosomes Treatment Attenuates Acute Myocardial Infarction-Induced Myocardial Damage. Mol Ther Nucleic Acids, 11: 103-15.
[12] Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med, 21: 2491-502.
[13] Zhang Y, Hu YW, Zheng L, Wang Q (2017). Characteristics and Roles of Exosomes in Cardiovascular Disease. DNA Cell Biol, 36: 202-11.
[14] Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol, 71: 24-30.
[15] Huang C, Huang Y, Zhou Y, Nie W, Pu X, Xu X, et al (2018). Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Mol Med Rep, 17: 4605-10.
[16] Chen L, Yang W, Guo Y, Chen W, Zheng P, Zeng J, et al (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12: e0185406.
[17] Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol, 14: 249-56.
[18] Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, et al (2017). Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis. Mol Ther, 25: 1279-94.
[19] Li J, Tan M, Xiang Q, Zhou Z, Yan H (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res, 154: 96-105.
[20] Tan M, Yan HB, Li JN, Li WK, Fu YY, Chen W, et al (2016). Thrombin Stimulated Platelet-Derived Exosomes Inhibit Platelet-Derived Growth Factor Receptor-Beta Expression in Vascular Smooth Muscle Cells. Cell Physiol Biochem, 38: 2348-65.
[21] Wang F, Chen FF, Shang YY, Li Y, Wang ZH, Han L, et al (2018). Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-) mice. Int J Cardiol, 265:181-7.
[22] Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, et al (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med, 20: 2318-27.
[23] Hu G, Drescher KM, Chen XM (2012). Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet, 3: 56.
[24] Sayed AS, Xia K, Yang TL, Peng J (2013). Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction. Dis Markers, 35: 561-6.
[25] Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, et al (2010). Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet, 3: 499-506.
[26] Li Y, Lu J, Bao X, Wang X, Wu J, Li X (2016). MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4. Oncotarget, 7: 35607-17.
[27] Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, et al (2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 31: 659-66.
[28] Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G, et al (2013). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non-ST-elevation myocardial infarction. Int J Cardiol, 167: 531-6.
[29] Yang Y, Li Y, Chen X, Cheng X, Liao Y, Yu X (2016). Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl), 94: 711-24.
[30] Cortez-Dias N, Costa MC, Carrilho-Ferreira P, Silva D, Jorge C, Calisto C, et al (2016). Circulating miR-122-5p/miR-133b Ratio Is a Specific Early Prognostic Biomarker in Acute Myocardial Infarction. Circ J, 80: 2183-91.
[31] Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, et al (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res, 10: 301-12.
[32] Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res, 4: 214-22.
[33] Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015). Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Inflammation. Cell Physiol Biochem, 37: 2415-24.
[34] Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T (2016). Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair. J Am Heart Assoc, 5. pii: e002856.
[35] Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, et al (2018). Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med, 41: 3063-72.
[36] Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, et al (2017). Enhanced Cardioprotection by Human Endometrium Mesenchymal Stem Cells Driven by Exosomal MicroRNA-21. Stem Cells Transl Med, 6: 209-22.
[37] Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M (2017). Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury. Cell Physiol Biochem, 44: 2105-16.
[38] Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, et al (2017). MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem, 431: 123-31.
[39] Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, et al (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol, 65: 1525-36.
[40] Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, et al (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun, 431: 566-71.
[41] Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, et al (2016). Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis, 7: e2277.
[42] de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E, Nasarre L, et al (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep, 7: 47.
[43] Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, et al (2016). Hsp20-Mediated Activation of Exosome Biogenesis in Cardiomyocytes Improves Cardiac Function and Angiogenesis in Diabetic Mice. Diabetes, 65: 3111-28.
[44] Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015). Molecular mechanisms of autophagy in the cardiovascular system. Circ Res, 116: 456-67.
[45] Schiattarella GG, Hill JA (2016). Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol, 95: 86-93.
[46] Wang D, Yu W, Liu Y, Zhong G, Zhao Z, Yan X, et al (2017). Roles of Autophagy in Ischemic Heart Diseases and the Modulatory Effects of Chinese Herbal Medicine. Am J Chin Med, 45: 1401-19.
[47] Rayner KJ, Moore KJ (2014). MicroRNA control of high-density lipoprotein metabolism and function. Circ Res, 114: 183-92.
[48] Zhai H, Fesler A, Ju J (2013). MicroRNA: a third dimension in autophagy. Cell Cycle, 12: 246-50.
[49] Peng S, Xu LW, Che XY, Xiao QQ, Pu J, Shao Q, et al (2018). Atorvastatin Inhibits Inflammatory Response, Attenuates Lipid Deposition, and Improves the Stability of Vulnerable Atherosclerotic Plaques by Modulating Autophagy. Front Pharmacol, 9: 438.
[50] Chen Y, Li M, Zhang Y, Di M, Chen W, Liu X, et al (2018). Traditional Chinese medication Tongxinluo attenuates apoptosis in ox-LDL-stimulated macrophages by enhancing Beclin-1-induced autophagy. Biochem Biophys Res Commun, 501: 336-42.
[51] Sun W, Lin Y, Chen L, Ma R, Cao J, Yao J, et al (2018). Legumain suppresses OxLDL-induced macrophage apoptosis through enhancement of the autophagy pathway. Gene, 652: 16-24.
[52] Yang P, Ling L, Sun W, Yang J, Zhang L, Chang G, et al (2018). Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin (Shanghai), 50: 144-55.
[53] Ning H, Liu D, Yu X, Guan X (2017). Oxidized low-density lipoprotein-induced p62/SQSTM1 accumulation in THP-1-derived macrophages promotes IL-18 secretion and cell death. Exp Ther Med, 14: 5417-23.
[54] Shao BZ, Han BZ, Zeng YX, Su DF, Liu C (2016). The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin, 37: 150-6.
[55] Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, et al (2012). Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev, 21: 1321-32.
[56] Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 328: 1570-3.
[57] Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al (2010). MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 328: 1566-9.
[58] Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al (2012). MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc, 1: e003376.
[59] Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest, 121: 2921-31.
[60] Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, et al (2017). microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arterioscler Thromb Vasc Biol, 37: 1058-67.
[61] Ramirez CM, Dávalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, et al (2011). MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol, 31: 2707-14.
[62] Liang B, Wang X, Song X, Bai R, Yang H, Yang Z, et al (2017). MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Biochim Biophys Acta, 1862: 929-38.
[63] Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, et al (2014). MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis, 236: 215-26.
[64] Meiler S, Baumer Y, Toulmin E, Seng K, Boisvert WA (2015). MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol, 35: 323-31.
[65] Parzych KR, Klionsky DJ (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 20: 460-73.
[66] Li L, Wang Z, Hu X, Wan T, Wu H, Jiang W, et al (2016). Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun, 479: 343-50.
[67] Suzuki T, Inoki K (2011). Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin (Shanghai), 43: 671-9.
[68] Liu X, Deng Y, Xu Y, Jin W, Li H (2018). MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol, 118: 133-46.
[69] Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, et al (2015). Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol, 89: 87-97.
[70] Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X, et al (2016). MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget, 7: 86926-36.
[71] Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017). Exosomes Derived from Mesenchymal Stem Cells Rescue Myocardial Ischaemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy Via AMPK and Akt Pathways. Cell Physiol Biochem, 43: 52-68.
[72] Lai RC, Yeo RW, Tan KH, Lim SK (2013). Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Biotechnol Adv, 31: 543-51.
[73] Garrido V, Mendoza-Torres E, Riquelme JA, Díaz A, Pizarro M, Bustamante M, et al (2017). Novel Therapies Targeting Cardioprotection and Regeneration. Curr Pharm Des, 23: 2592-615.
[74] Papandreou ME, Tavernarakis N (2017). Autophagy and the endo/exosomal pathways in health and disease. Biotechnol J, 12.
[75] Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J, et al.Corrigendum: Ginsenoside Rb1 Enhances Atherosclerotic Plaque Stability by Improving Autophagy and Lipid Metabolism in Macrophage Foam Cells. Front Pharmacol, 2017. 8: 964.
[76] Zhang BC, Zhang CW, Wang C, Pan DF, Xu TD, Li DY (2016). Luteolin Attenuates Foam Cell Formation and Apoptosis in Ox-LDL-Stimulated Macrophages by Enhancing Autophagy. Cell Physiol Biochem, 39: 2065-76.
[77] Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther, 18: 1606-14.
[78] Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017). Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci, 18. pii: E1852.
[79] De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC (2014). Extracellular vesicles: potential roles in regenerative medicine. Front Immunol, 5: 608.
[80] Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM (2015). Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng Part B Rev, 21: 45-54.
[81] Nazimek K, Bryniarski K, Santocki M, Ptak W (2015). Exosomes as mediators of intercellular communication: clinical implications. Pol Arch Med Wewn, 125: 370-80.
[1] Wu Yanqing, Ye Libing, Yuan Yuan, Jiang Ting, Guo Xin, Wang Zhouguang, Xu Ke, Xu Zeping, Liu Yanlong, Zhong Xingfeng, Ye Junmin, Zhang Hongyu, Li Xiaokun, Xiao Jian. Autophagy Activation is Associated with Neuroprotection in Diabetes-associated Cognitive Decline[J]. Aging and disease, 2019, 10(6): 1233-1245.
[2] Zhang Xiaojie, Chen Sheng, Lu Kaili, Wang Feng, Deng Jiangshan, Xu Zhouwei, Wang Xiuzhe, Zhou Qinming, Le Weidong, Zhao Yuwu. Verapamil Ameliorates Motor Neuron Degeneration and Improves Lifespan in the SOD1G93A Mouse Model of ALS by Enhancing Autophagic Flux[J]. Aging and disease, 2019, 10(6): 1159-1173.
[3] Huijuan Miao, Yujiao Yang, Han Wang, Linyu Huo, Mengnan Wang, Yinghua Zhou, Yang Hua, Ming Ren, Changhong Ren, Xunming Ji, Qi Yang, Xiuhai Guo. Intensive Lipid-Lowering Therapy Ameliorates Asymptomatic Intracranial Atherosclerosis[J]. Aging and disease, 2019, 10(2): 258-266.
[4] Lucy A. Murtha, Matthew Morten, Michael J. Schuliga, Nishani S. Mabotuwana, Sean A. Hardy, David W. Waters, Janette K. Burgess, Doan TM. Ngo, Aaron L. Sverdlov, Darryl A. Knight, Andrew J. Boyle. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis[J]. Aging and disease, 2019, 10(2): 419-428.
[5] Jianji Xu,Yunjin Zang,Dongjie Liu,Tongwang Yang,Jieling Wang,Yanjun Wang,Xiaoni Liu,Dexi Chen. DRAM is Involved in Hypoxia/Ischemia-Induced Autophagic Apoptosis in Hepatocytes[J]. Aging and disease, 2019, 10(1): 82-93.
[6] Dong Liu,Liqun Xu,Xiaoyan Zhang,Changhong Shi,Shubin Qiao,Zhiqiang Ma,Jiansong Yuan. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury[J]. Aging and disease, 2019, 10(1): 116-133.
[7] Yang Hua,Lingyun Jia,Yingqi Xing,Pinjing Hui,Xuan Meng,Delin Yu,Xiaofang Pan,Yalan Fang,Binbin Song,Chunxia Wu,Chunmei Zhang,Xiufang Sui,Youhe Jin,Jingfen Zhang,Jianwei Li,Ling Wang,Yuming Mu,Jingxin Zhong,Yuhong Zhu,Heng Zhang,Xiaoyu Cai. Distribution Pattern of Atherosclerotic Stenosis in Chinese Patients with Stroke: A Multicenter Registry Study[J]. Aging and disease, 2019, 10(1): 62-70.
[8] Jiahui Xu, Kun Jiao, Xin Liu, Qi Sun, Ke Wang, Haibo Xu, Shangyue Zhang, Ye Wu, Linguo Wu, Dan Liu, Wen Wang, Huirong Liu. Omi/HtrA2 Participates in Age-Related Autophagic Deficiency in Rat Liver[J]. Aging and disease, 2018, 9(6): 1031-1042.
[9] Ping Sun, Liping Liu, Yuesong Pan, Xianwei Wang, Donghua Mi, Yuehua Pu, Xin Liu, Wanying Duan, Hongyi Yan, Chunxue Wang, Xingquan Zhao, Yilong Wang, Yongjun Wang, . Intracranial Atherosclerosis Burden and Stroke Recurrence for Symptomatic Intracranial Artery Stenosis (sICAS)[J]. Aging and disease, 2018, 9(6): 1096-1102.
[10] Ashok K. Shetty, Maheedhar Kodali, Raghavendra Upadhya, Leelavathi N. Madhu. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy[J]. Aging and disease, 2018, 9(6): 1165-1184.
[11] Patricia Sosa, Elena Alcalde-Estevez, Patricia Plaza, Nuria Troyano, Cristina Alonso, Laura Martinez-Arias, Andresa Evelem de Melo Aroeira, Diego Rodriguez-Puyol, Gemma Olmos, Susana Lopez-Ongil, Maria P. Ruiz-Torres. Hyperphosphatemia Promotes Senescence of Myoblasts by Impairing Autophagy Through Ilk Overexpression, A Possible Mechanism Involved in Sarcopenia[J]. Aging and disease, 2018, 9(5): 769-784.
[12] Vinagre Carmen G, Freitas Fatima R, de Mesquita Carlos H, Vinagre Juliana C, Mariani Ana Carolina, Kalil-Filho Roberto, Maranhão Raul C. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. Aging and disease, 2018, 9(4): 748-754.
[13] Kleipool Emma EF., Hoogendijk Emiel O., Trappenburg Marijke C., Handoko M. Louis, Huisman Martijn, Peters Mike JL., Muller Majon. Frailty in Older Adults with Cardiovascular Disease: Cause, Effect or Both?[J]. Aging and disease, 2018, 9(3): 489-497.
[14] Zhang Meng, Deng Yong-Ning, Zhang Jing-Yi, Liu Jie, Li Yan-Bo, Su Hua, Qu Qiu-Min. SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway[J]. Aging and disease, 2018, 9(2): 273-286.
[15] Peng Sheng, Shen Ting, Liu Jie, Tomlinson Brian, Sun Huimin, Chen Xiaoli, Chan Paul, Kuang YaShu, Zheng Liang, Wu Hong, Ding Xugang, Qian Dingguang, Shen Yixin, Gao Pingjin, Fan Huimin, Liu Zhongmin, Zhang Yuzhen. Uncontrolled Hypertension Increases with Age in an Older Community-Dwelling Chinese Population in Shanghai[J]. Aging and disease, 2017, 8(5): 558-569.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd