1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China 2Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
The aim of the study is to investigate the diffusion characteristics of Alzheimer’s disease (AD) patients using an ultra-high b-values apparent diffusion coefficient (ADC_uh) and diffusion kurtosis imaging (DKI). A total of 31 AD patients and 20 healthy controls (HC) who underwent both MRI examination and clinical assessment were included in this study. Diffusion weighted imaging (DWI) was acquired with 14 b-values in the range of 0 and 5000 s/mm2. Diffusivity was analyzed in selected regions, including the amygdala (AMY), hippocampus (HIP), thalamus (THA), caudate (CAU), globus pallidus (GPA), lateral ventricles (LVe), white matter (WM) of the frontal lobe (FL), WM of the temporal lobe (TL), WM of the parietal lobe (PL) and centrum semiovale (CS). The mean, median, skewness and kurtosis of the conventional apparent diffusion coefficient (ADC), DKI (including two variables, Dapp and Kapp) and ADC_uh values were calculated for these selected regions. Compared to the HC group, the ADC values of AD group were significantly higher in the right HIP and right PL (WM), while the ADC_uh values of the AD group increased significantly in the WM of the bilateral TL and right CS. In the AD group, the Kapp values in the bilateral LVe, bilateral PL/left TL (WM) and right CS were lower than those in the HC group, while the Dapp value of the right PL (WM) increased. The ADC_uh value of the right TL was negatively correlated with MMSE (mean, r=-0.420, p=0.019). The ADC value and Dapp value have the same regions correlated with MMSE. Compared with the ADC_uh, combining ADC_uh and ADC parameters will result in a higher AUC (0.894, 95%CI=0.803-0.984, p=0.022). Comparing to ADC or DKI, ADC_uh has no significant difference in the detectability of AD, but ADC_uh can better reflect characteristic alternation in unconventional brain regions of AD patients.
Jean-Marc Burgunder is currently a visiting professor at Sichuan University (Chengdu), Central South University (Changsha) and Sun Yat Sen University (Guangzhou) in China.
Just Accepted Date: 03 December 2018Issue Date: 27 September 2019
Figure 1. Selections of region of interest. (A, C) The selected ROIs on the vcDWI maps. (B, D) The ROIs were projected onto the ADC_uh maps. The yellow part is the ROI range. AMY, amygdala; HIP, hippocampus; THA, thalamus; CAU, caudate; GPA, globus pallidus; LVe, lateral ventricles; FL, frontal lobe (WM); TL, temporal lobe (WM); PL, parietal lobe (WM); CS, centrum semiovale.
AD
HC
p-value
Number (M/F)
11/20
8/12
0.774*
Age(years)
64.94±8.205
56.70±6.258
0.000**
MMSE
18.48±4.711
27.85±1.565
0.000**
Table 1 Demographic and cognitive characteristics of all participants.
Figure 2. Receiver-operating characteristic curves (ROC) of classifications between AD and HC patients. ADC, ADC_uh, and DKI were separately assessed for differential diagnosis. Then, any combination of them was assessed separately. Finally, all of them was assessed together. Compared to ADC_uh, a higher AUC was obtained by combining ADC_uh values and ADC values (0.897, 95% CI=0.779-0.964, p=0.022). There was no significant difference between the other ROCs. The diagonal line represents a random classification performance.
Mean ± SD
CV
P-value
ADC
right HIP mean (×10-3mm/s)
AD
0.961±0.126
0.131
0.008
HC
0.874±0.095
0.109
right HIP median (×10-3mm/s)
AD
0.956±0.116
0.122
0.001
HC
0.877±0.095
0.109
left CAU skewness
AD
0.053±0.554
10.484
0.013
HC
-0.313±0.515
-1.645
right LVe skewness
AD
0.377±0.881
2.338
0.000
HC
-0.619±0.873
-1.410
left FL kurtosis
AD
2.888±0.689
0.239
0.036
HC
0.254±0.513
0.202
right PL mean (×10-3mm/s)
AD
0.815±0.091
0.111
0.002
HC
0.750±0.051
0.068
right PL median (×10-3mm/s)
AD
0.818±0.094
0.115
0.003
HC
0.754±0.050
0.066
ADC_uh
left THA mean (×10-3mm/s)
AD
0.358±0.032
0.089
0.047
HC
0.336±0.046
0.123
left LVe kurtosis
AD
3.16±0.800
0.253
0.028
HC
2.71±0.608
0.224
right TL mean (×10-3mm/s)
AD
0.274±0.042
0.154
0.033
HC
0.252±0.029
0.116
right TL median (×10-3mm/s)
AD
0.273±0.045
0.165
0.032
HC
0.249±0.030
0.120
left TL mean (×10-3mm/s)
AD
0.276±0.039
0.141
0.022
HC
0.250±0.038
0.152
left TL median (×10-3mm/s)
AD
0.273±0.038
0.138
0.038
HC
0.249±0.042
0.170
right CS mean (×10-3mm/s)
AD
0.273±0.038
0.088
0.021
HC
0.203±0.015
0.073
right CS median (×10-3mm/s)
AD
0.214±0.019
0.089
0.016
HC
0.201±0.015
0.074
Table 2 Comparisons of regional diffusion intensity in ADC or ADC_uh between AD and HC group.
Mean±SD
CV
P-value
DAPP
left FL kurtosis
AD
3.020±0.775
0.257
0.030
HC
2.620±0.740
0.282
right PL mean (×10-3mm/s)
AD
0.942±0.105
0.112
0.003
HC
0.870±0.060
0.069
right PL median (×10-3mm/s)
AD
0.943±0.107
0.113
0.004
HC
0.870±0.063
0.073
KAPP
right THA median
AD
0.713±0.072
0.101
0.046
HC
0.754±0.075
0.099
right LVe mean
AD
0.266±0.049
0.185
0.042
HC
0.296±0.069
0.233
left LVe mean
AD
0.263±0.049
0.187
0.004
HC
0.298±0.044
0.149
left LVe median
AD
0.279±0.040
0.143
0.006
HC
0.308±0.038
0.125
right FL kurtosis
AD
5.950±3.140
0.573
0.009
HC
3.940±2.460
0.624
left FL kurtosis
AD
5.750±3.010
0.524
0.019
HC
4.380±3.250
0.742
left TL mean
AD
0.740±0.106
0.144
0.009
HC
0.816±0.090
0.111
left TL median
AD
0.754±0.104
0.138
0.018
HC
0.819±0.086
0.105
right PL mean
AD
1.000±0.139
0.138
0.019
HC
1.090±0.128
0.117
right PL median
AD
0.994±0.127
0.128
0.015
HC
1.090±0.133
0.122
left PL mean
AD
0.949±0.146
0.154
0.007
HC
1.070±0.142
0.133
left PL median
AD
0.940±0.143
0.152
0.010
HC
1.050±0.146
0.139
right CS mean
AD
1.060±0.113
0.107
0.011
HC
1.150±0.102
0.089
right CS median
AD
1.040±0.109
0.105
0.004
HC
1.130±0.104
0.092
Table 3 Comparisons of regional diffusion intensities in Dapp or Kapp between the AD and HC groups.
Figure 3. Bland-Altman plots of reproducibility of MRI. Bland-Altman plots for ADC mean (A), ADC_uh mean (B), Dapp mean (C) and Kapp mean (D) show a low mean difference between the two tests (continuous line: mean difference, dashed lines: 95% confidence interval of the mean difference).
rho
p
ADC left FL kurtosis
550**
0.001
ADC right PL mean
-.368*
0.042
ADC right PL median
-.356*
0.049
ADC_uh right TL mean
-.420*
0.019
ADC_uh right TL median
-.386*
0.032
Dapp left FL kurtosis
.546**
0.001
Dapp right PL mean
-.416*
0.020
Dapp right PL median
-.403*
0.024
Table 4 Correlations with MMSE score for all parameters.
AUC
95% CI a
Pb
ADC
0.826
0.694 - 0.918
NL
ADC_uh
0.766
0.627 - 0.873
0.501
DKI
0.847
0.718 - 0.932
0.728
ADC+ADC_uh
0.897#
0.779 - 0.964
0.172
ADC+DKI
0.840
0.711 - 0.928
0.729
ADC_uh+DKI
0.894
0.775 - 0.962
0.284
ADC+ADC_uh+DKI
0.868
0.743 - 0.946
0.416
Table 5 Comparison of receiver-operating characteristic (ROC) curves.
rho
p
ADC mean
0.782
0.000**
ADC median
0.760
0.000**
ADC skewness
0.194
0.006*
ADC kurtosis
0.226
0.001*
ADC_uh mean
0.901
0.000**
ADC_uh median
0.897
0.000**
ADC_uh skewness
0.133
0.061
ADC_uh kurtosis
0.058
0.412
Dapp mean
0.710
0.000**
Dapp median
0.675
0.000**
Dapp skewness
0.169
0.017*
Dapp kurtosis
0.142
0.046*
Kapp mean
0.929
0.000**
Kapp median
0.934
0.000**
Kapp skewness
0.193
0.006*
Kapp kurtosis
0.278
0.000**
Table 6 The correlations of ADC, ADC_uh, Dapp and Kapp parameters between the two tests.
[1]
Organization WH (2017). Global action plan on the public health response to dementia 2017-2025. Geneva: World Health Organization. 52 pp.
[2]
Organization WH (2018). Towards a dementia plan: a WHO guide. Geneva: World Health Organization. 78 pp.
[3]
Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984). Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science, 225:1168-1170.
[4]
Wegmann S, Jung YJ, Chinnathambi S, Mandelkow EM, Mandelkow E, Muller DJ (2010). Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J Biol Chem, 285: 27302-27313.
[5]
Braak H, Braak E (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 82:239-259.
[6]
Kidd M (1963). Paired helical filaments in electron microscopy of Alzheimer's disease. Nature, 197:192-193.
[7]
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. (2017). ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature, 549:523-527.
[8]
Vergallo A, Bun RS, Toschi N, Baldacci F, Zetterberg H, Blennow K, et al. (2018). Association of cerebrospinal fluid alpha-synuclein with total and phospho-tau181 protein concentrations and brain amyloid load in cognitively normal subjective memory complainers stratified by Alzheimer's disease biomarkers. Alzheimers Dement: [in press].
[9]
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med, 4:147ra111.
[10]
Lei Y, Han H, Yuan F, Javeed A, Zhao Y (2017). The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol, 157:230-246.
[11]
DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. (2018). Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain. Front Neurosci, 12:267.
[12]
Liao F, Li A, Xiong M, Bien-Ly N, Jiang H, Zhang Y, et al. (2018). Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest, 128:2144-2155.
[13]
Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, et al. (2016). Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain, 139:1551-1567.
[14]
Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, et al. (2018). Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron, 99:64-82.e67.
[15]
Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, et al. (2015). beta-Amyloid peptides display protective activity against the human Alzheimer's disease-associated herpes simplex virus-1. Biogerontology, 16:85-98.
[16]
Bourgade K, Dupuis G, Frost EH, Fulop T (2016). Anti-Viral Properties of Amyloid-beta Peptides. J Alzheimers Dis, 54:859-878.
[17]
Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, et al. (2016). Protective Effect of Amyloid-beta Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model. J Alzheimers Dis, 50:1227-1241.
Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. (2016). Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med, 8:340ra372.
[20]
Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF (2018). The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Mol Neurobiol, 55:8071-8083.
[21]
Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, et al. (2015). Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol Neurodegener, 10:58.
[22]
Liang R, Yong S, Huang X, Kong H, Hu G, Fan Y (2016). Aquaporin-4 Mediates the Suppressive Effect of Lipopolysaccharide on Hippocampal Neurogenesis. Neuroimmunomodulation, 23:309-317.
[23]
Yang J, Zhang R, Shi C, Mao C, Yang Z, Suo Z, et al. (2017). AQP4 Association with Amyloid Deposition and Astrocyte Pathology in the Tg-ArcSwe Mouse Model of Alzheimer's Disease. J Alzheimers Dis, 57:157-169.
[24]
Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y (2018). Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol, 44:628-638.
[25]
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 168:497-505.
[26]
Xueying L, Zhongping Z, Zhoushe Z, Li G, Yongjin T, Changzheng S, et al. (2015). Investigation of Apparent Diffusion Coefficient from Ultra-high b-Values in Parkinson's Disease. Eur Radiol, 25:2593-2600.
[27]
Tan Y, Zhang H, Wang XC, Qin JB, Wang L (2018). The value of multi ultra high-b-value DWI in grading cerebral astrocytomas and its association with aquaporin-4. Br J Radiol, 91:20170696. [in press].
[28]
Yoshiura T, Mihara F, Tanaka A, Ogomori K, Ohyagi Y, Taniwaki T, et al. (2003). High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease. Neuroimage, 20:413-419.
[29]
Farrell JA, Zhang J, Jones MV, Deboy CA, Hoffman PN, Landman BA, et al. (2010). q-space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy. Magn Reson Med, 63:1323-1335.
[30]
Jiang Q, Qu C, Chopp M, Ding GL, Davarani SP, Helpern JA, et al. (2011). MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed, 24:1119-1128.
[31]
Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, et al. (2012). Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage, 59:467-477.
[32]
Yuan L, Sun M, Chen Y, Long M, Zhao X, Yin J, et al. (2016). Non-Gaussian diffusion alterations on diffusion kurtosis imaging in patients with early Alzheimer's disease. Neurosci Lett, 616:11-18.
[33]
Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et al. (2015). Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging, 42:1190-1202.
Kantarci K, Jack CRJr, Xu YC, Campeau NG, O'Brien PC, Smith GE, et al. (2001). Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology, 219:101-107.
[36]
Englund E (1998). Neuropathology of white matter changes in Alzheimer's disease and vascular dementia. Dement Geriatr Cogn Disord, 9 Suppl 1:6-12.
[37]
Selkoe DJ (2000). Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci, 924:17-25.
[38]
Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, et al. (2011). Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease. J Alzheimers Dis, 27:711-722.
[39]
Yang C, Huang X, Huang X, Mai H, Li J, Jiang T, et al. (2016). Aquaporin-4 and Alzheimer's Disease. J Alzheimers Dis, 52:391-402.
[40]
Hardy J, Selkoe DJ (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297:353-356.
[41]
Whittaker HT, Zhu S, Di Curzio DL, Buist R, Li XM, Noy S, et al. (2018). T1, diffusion tensor, and quantitative magnetization transfer imaging of the hippocampus in an Alzheimer's disease mouse model. Magn Reson Imaging, 50:26-37.
[42]
Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998). Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A, 95:11981-11986.
[43]
Speake T, Freeman LJ, Brown PD (2003). Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta, 1609:80-86.
[44]
Moftakhar P, Lynch MD, Pomakian JL, Vinters HV (2010). Aquaporin expression in the brains of patients with or without cerebral amyloid angiopathy. J Neuropathol Exp Neurol, 69:1201-1209.
[45]
Zimny A, Bladowska J, Neska M, Petryszyn K, Guzinski M, Szewczyk P, et al. (2013). Quantitative MR evaluation of atrophy, as well as perfusion and diffusion alterations within hippocampi in patients with Alzheimer's disease and mild cognitive impairment. Med Sci Monit, 19:86-94.
[46]
Struyfs H, Van Hecke W, Veraart J, Sijbers J, Slaets S, De Belder M, et al. (2015). Diffusion Kurtosis Imaging: A Possible MRI Biomarker for AD Diagnosis? J Alzheimers Dis, 48:937-948.
[47]
Gong NJ, Chan CC, Leung LM, Wong CS, Dibb R, Liu C (2017). Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter. Hum Brain Mapp, 38:2495-2508.
[48]
Praet J, Manyakov NV, Muchene L, Mai Z, Terzopoulos V, de Backer S, et al. (2018). Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-beta-induced pathology. Alzheimers Res Ther, 10:1.
[49]
Vanhoutte G, Pereson S, Delgado YPR, Guns PJ, Asselbergh B, Veraart J, et al. (2013). Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer's disease. Magn Reson Med, 69:1115-1121.
[50]
Serot JM, Bene MC, Foliguet B, Faure GC (2000). Morphological alterations of the choroid plexus in late-onset Alzheimer's disease. Acta Neuropathol, 99:105-108.
[51]
Serot JM, Bene MC, Faure GC (2003). Choroid plexus, aging of the brain, and Alzheimer's disease. Front Biosci, 8:s515-521.
[52]
de Vos F, Koini M, Schouten TM, Seiler S, van der Grond J, Lechner A, et al. (2018). A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease. Neuroimage, 167:62-72.
[53]
Bouts M, Moller C, Hafkemeijer A, van Swieten JC, Dopper E, van der Flier WM, et al. (2018). Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging. J Alzheimers Dis, 62:1827-1839.
[54]
Jack CRJr, Wiste HJ, Knopman DS, Vemuri P, Mielke MM, Weigand SD, et al. (2014). Rates of beta-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology, 82:1605-1612.