Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2020, Vol. 11 Issue (1) : 154-163     DOI: 10.14336/AD.2019.0320
Review Article |
The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases
Wanqing Sun1,2, Yishi Wang3, Yang Zheng1, Nanhu Quan1,*
1Cardiovascular Center, First Affiliated Hospital of Jilin University, Changchun, Jilin, China
2Fuwai Hospital, National Center of Cardiovascular Diseases, Beijing, China
3Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, Shaanxi, China
Download: PDF(443 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Sestrins (Sesns), including Sesn1, Sesn2, and Sesn3, are cysteine sulfinyl reductases that play critical roles in the regulation of peroxide signaling and oxidant defense. Sesn2 is thought to regulate cell growth, metabolism, and survival response to various stresses, and act as a positive regulator of autophagy. The anti-oxidative and anti-aging roles of Sesn2 have been the focus of many recent studies. The role of Sesn2 in cellular metabolism and cardiovascular and age-related diseases must be analyzed and discussed. In this review, we discuss the physiological and pathophysiological roles and signaling pathways of Sesn2 in different stress-related conditions, such as oxidative stress, genotoxic stress, and hypoxia. Sesn2 is also involved in aging, cancer, diabetes, and ischemic heart disease. Understanding the actions of Sesn2 in cell metabolism and age-related diseases will provide new evidence for future experimental research and aid in the development of novel therapeutic strategies for Sesn2-related diseases.

Keywords sestrin2      cell metabolism      aging      cancer      myocardial ischemia     
Corresponding Authors: Nanhu Quan   
About author:

These authors contributed equally to this work.

Just Accepted Date: 30 March 2019   Issue Date: 15 January 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wanqing Sun
Yishi Wang
Yang Zheng
Nanhu Quan
Cite this article:   
Wanqing Sun,Yishi Wang,Yang Zheng, et al. The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases[J]. Aging and disease, 2020, 11(1): 154-163.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2019.0320     OR     http://www.aginganddisease.org/EN/Y2020/V11/I1/154
Figure 1.  Summary of the merging role of sestrin2 in cell metabolism, cardiovascular and aging-reaged diseases
[1] Sun N, Youle RJ, Finkel T (2016). The Mitochondrial Basis of Aging. Mol Cell, 61:654-666.
[2] Gkikas I, Petratou D, Tavernarakis N (2014). Longevity pathways and memory aging. Front Genet, 5:155.
[3] Cuervo AM, Macian F (2014). Autophagy and the immune function in aging. Curr Opin Immunol, 29:97-104.
[4] Carruba G, Cocciadiferro L, Di Cristina A, Granata OM, Dolcemascolo C, Campisi I, et al. (2016). Nutrition, aging and cancer: lessons from dietary intervention studies. Immun Ageing, 13:13.
[5] Blokh D, Stambler I (2017). The application of information theory for the research of aging and aging-related diseases. Prog Neurobiol, 157:158-173.
[6] Lee JH, Budanov AV, Karin M (2013). Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab, 18:792-801.
[7] Budanov AV, Lee JH, Karin M (2010). Stressin' Sestrins take an aging fight. EMBO Mol Med, 2:388-400.
[8] Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, et al. (2010). Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science, 327:1223-1228.
[9] Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, et al. (2013). Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab, 17:73-84.
[10] Budanov AV, Karin M (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134:451-460.
[11] Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, et al. (2010). FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell, 18:592-604.
[12] Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, et al. (2012). Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab, 16:311-321.
[13] Morrison A, Chen L, Wang J, Zhang M, Yang H, Ma Y, et al. (2015). Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J, 29:408-417.
[14] Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, et al. (2014). Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun, 5:4233.
[15] Tao R, Xiong X, Liangpunsakul S, Dong XC (2015). Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes, 64:1211-1223.
[16] Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, et al. (1999). PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene, 18:127-137.
[17] Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, et al. (2002). Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 21:6017-6031.
[18] Peeters H, Debeer P, Bairoch A, Wilquet V, Huysmans C, Parthoens E, et al. (2003). PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum. Genet., 112:573-580.
[19] Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science, 304:596-600.
[20] Finkel T, Holbrook NJ (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408:239-247.
[21] Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009). The TOR pathway comes of age. Biochim Biophys Acta, 1790:1067-1074.
[22] Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I, et al. (2016). Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. Elife, 5:e12204.
[23] Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka SO, et al. (2015). Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med, 78:156-167.
[24] Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI (2016). Nuclear Factor-kappaB-Dependent Sestrin2 Induction Mediates the Antioxidant Effects of BDNF Against Mitochondrial Inhibition in Rat Cortical Neurons. Mol Neurobiol, 53:4126-4142.
[25] Chuang YC, Yang JL, Yang DI, Lin TK, Liou CW, Chen SD (2015). Roles of Sestrin2 and Ribosomal Protein S6 in Transient Global Ischemia-Induced Hippocampal Neuronal Injury. Int J Mol Sci, 16: 26406-26416.
[26] Kim GT, Lee SH, Kim YM (2013). Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells. J Cancer Prev, 18:264-270.
[27] Cao Y, Gao Y, Xu S, Bao J, Lin Y, Luo X, et al. (2016). Glutamate carboxypeptidase II gene knockout attenuates oxidative stress and cortical apoptosis after traumatic brain injury. BMC Neurosci, 17:15.
[28] Emerit J, Edeas M, Bricaire F (2004). Neurodegenerative diseases and oxidative stress. Biomed Pharmacother, 58:39-46.
[29] Roberts CK, Sindhu KK (2009). Oxidative stress and metabolic syndrome. Life Sci, 84:705-712.
[30] Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005). The antioxidant function of the p53 tumor suppressor. Nat Med, 11:1306-1313.
[31] Shin BY, Jin SH, Cho IJ, Ki SH (2012). Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med, 53:834-841.
[32] Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF (2013). Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal, 25:150-158.
[33] Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, et al. (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci, 11:476-487.
[34] Ro S, Nam M, Jang I, Park H, Park H, Semple I, et al. (2014). Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A., 111:7849-7854.
[35] Yang Y, Cuevas S, Yang S, Villar VA, Escano C, Asico L, et al. (2014). Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension, 64:825-832.
[36] Hoeijmakers JH (2009). DNA damage, aging, and cancer. N Engl J Med, 361:1475-1485.
[37] Hay N (2008). p53 strikes mTORC1 by employing sestrins. Cell Metab, 8:184-185.
[38] Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A (2011). Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am J Physiol Lung Cell Mol Physiol, 301:L993-L1002.
[39] Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, et al. (2013). Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ, 20:611-619.
[40] Jegal KH, Park SM, Cho SS, Byun SH, Ku SK, Kim SC, et al. (2017). Activating transcription factor 6-dependent sestrin 2 induction ameliorates ER stress-mediated liver injury. Biochim Biophys Acta, 1864:1295-1307.
[41] Bae SH, Woo HA, Sung SH, Lee HE, Lee SK, Kil IS, et al. (2009). Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid Redox Signal, 11:937-948.
[42] Kaspar JW, Niture SK, Jaiswal AK (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med, 47:1304-1309.
[43] Kensler TW, Wakabayashi N, Biswal S (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 47:89-116.
[44] Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith A, Mitchell S, et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab., 15:361-371.
[45] Hybertson BM, Gao B, Bose SK, McCord JM (2011). Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med, 32:234-246.
[46] Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008). Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res, 103:1232-1240.
[47] Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, et al. (2010). Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy, 6:614-621.
[48] Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, Leon R (2016). Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther, 157:84-104.
[49] Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. (2010). ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A, 107:4153-4158.
[50] Wullschleger S, Loewith R, Hall MN (2006). TOR signaling in growth and metabolism. Cell, 124:471-484.
[51] Blagosklonny MV (2008). Aging: ROS or TOR. Cell Cycle, 7:3344-3354.
[52] Guertin DA, Sabatini DM (2007). Defining the role of mTOR in cancer. Cancer Cell, 12:9-22.
[53] Yang Q, Guan KL (2007). Expanding mTOR signaling. Cell Res, 17:666-681.
[54] Astrinidis A, Cash TP, Hunter DS, Walker CL, Chernoff J, Henske EP (2002). Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene, 21:8470-8476.
[55] Sarbassov D, Ali S, Kim D, Guertin D, Latek R, Erdjument-Bromage H, et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol., 14:1296-1302.
[56] Laplante M, Sabatini D (2009). mTOR signaling at a glance. J Cell. Sci., 122:3589-3594.
[57] Corradetti M, Guan K (2006). Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene, 25:6347-6360.
[58] Kwiatkowski D, Manning B (2005). Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet., 14 Spec No. 2:R251-258.
[59] Kishton R, Barnes C, Nichols A, Cohen S, Gerriets V, Siska P, et al. (2016). AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metab., 23:649-662.
[60] Toyama EQ, Herzig S, Courchet J, Lewis TLJr., Loson OC, Hellberg K, et al. (2016). Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 351:275-281.
[61] Shaw RJ (2009). LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf), 196:65-80.
[62] Inoki K, Zhu T, Guan KL (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115:577-590.
[63] Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 30:214-226.
[64] Costanzo-Garvey D, Pfluger P, Dougherty M, Stock J, Boehm M, Chaika O, et al. (2009). KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab., 10:366-378.
[65] Wang W, Guan KL (2009). AMP-activated protein kinase and cancer. Acta Physiol (Oxf), 196:55-63.
[66] Wempe F, De-Zolt S, Koli K, Bangsow T, Parajuli N, Dumitrascu R, et al. (2010). Inactivation of sestrin 2 induces TGF-beta signaling and partially rescues pulmonary emphysema in a mouse model of COPD. Dis Model Mech, 3:246-253.
[67] Sanli T, Linher-Melville K, Tsakiridis T, Singh G (2012). Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One, 7:e32035.
[68] Peng M, Yin N, Li M (2014). Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell, 159:122-133.
[69] Averous J, Fonseca BD, Proud CG (2008). Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene, 27:1106-1113.
[70] Averous J, Proud C (2006). When translation meets transformation: the mTOR story. Oncogene, 25:6423-6435.
[71] Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler L, Sonenberg N (2004). eIF4E--from translation to transformation. Oncogene, 23:3172-3179.
[72] Gottlieb R, Carreira R (2010). Autophagy in health and disease. 5. Mitophagy as a way of life. Am. J. Physiol., Cell Physiol., 299:C203-210.
[73] Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 20:1981-1991.
[74] Mair W, Morantte I, Rodrigues A, Manning G, Montminy M, Shaw R, et al. (2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature, 470:404-408.
[75] Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. (2015). Reduced expression of MYC increases longevity and enhances healthspan. Cell, 160:477-488.
[76] Wen X, Klionsky D (2016). Autophagy is a key factor in maintaining the regenerative capacity of muscle stem cells by promoting quiescence and preventing senescence. Autophagy, 12:617-618.
[77] Yamamoto T, Takabatake Y, Kimura T, Takahashi A, Namba T, Matsuda J, et al. (2016). Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy, 12:801-813.
[78] Seah N, de Magalhaes Filho C, Petrashen A, Henderson H, Laguer J, Gonzalez J, et al. (2016). Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy, 12:261-272.
[79] Hay N, Sonenberg N (2004). Upstream and downstream of mTOR. Genes Dev, 18:1926-1945.
[80] Towler M, Hardie D (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res., 100:328-341.
[81] Lee JH, Bodmer R, Bier E, Karin M (2010). Sestrins at the crossroad between stress and aging. Aging (Albany NY), 2:369-374.
[82] Um SH, D'Alessio D, Thomas G (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab, 3:393-402.
[83] Zoncu R, Efeyan A, Sabatini D (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol., 12:21-35.
[84] Bae E, Xu J, Oh D, Bandyopadhyay G, Lagakos W, Keshwani M, et al. (2012). Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J Biol. Chem., 287:18769-18780.
[85] Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. (2011). The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science, 332:1317-1322.
[86] Yu Y, Yoon S, Poulogiannis G, Yang Q, Ma X, Villén J, et al. (2011). Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 332:1322-1326.
[87] Yang L, Li P, Fu S, Calay E, Hotamisligil G (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab., 11:467-478.
[88] Ozcan U, Cao Q, Yilmaz E, Lee A, Iwakoshi N, Ozdelen E, et al. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 306:457-461.
[89] Liu X, Niu Y, Yuan H, Huang J, Fu L (2015). AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metab. Clin. Exp., 64:658-665.
[90] Jones RG, Thompson CB (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 23:537-548.
[91] Chen X, Wang Y, Tao J, Shi Y, Gai X, Huang F, et al. (2015). mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice. Gastroenterology, 149:741-752 e714.
[92] Witzig T, Reeder C, Han J, LaPlant B, Stenson M, Tun H, et al. (2015). The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood, 126:328-335.
[93] Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, et al. (2015). mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 517:497-500.
[94] Wei JL, Fu ZX, Fang M, Guo JB, Zhao QN, Lu WD, et al. (2015). Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol Rep, 33:1349-1357.
[95] Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, et al. (2009). Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle, 8:1571-1576.
[96] Zhao B, Shah P, Budanov AV, Qiang L, Ming M, Aplin A, et al. (2014). Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells. J Biol Chem, 289:35806-35814.
[97] Chen YR, Zweier JL (2014). Cardiac mitochondria and reactive oxygen species generation. Circ Res, 114:524-537.
[98] Ma X, Liu H, Foyil S, Godar R, Weinheimer C, Diwan A (2012). Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy, 8:1394-1396.
[99] Esposti D, Domart M, Sebagh M, Harper F, Pierron G, Brenner C, et al. (2010). Autophagy is induced by ischemic preconditioning in human livers formerly treated by chemotherapy to limit necrosis. Autophagy, 6:172-174.
[100] Sheng R, Zhang L, Han R, Liu X, Gao B, Qin Z (2010). Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy, 6:482-494.
[101] Yan L, Sadoshima J, Vatner DE, Vatner SF (2009). Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy, 5:709-712.
[102] Gottlieb RA, Mentzer RM (2010). Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol, 72:45-59.
[103] Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, et al. (2000). Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac. Cardiovasc. Surg., 120:660-667.
[104] Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, et al. (2007). Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab, 5:151-156.
[105] Quan N, Sun W, Wang L, Chen X, Bogan JS, Zhou X, et al. (2017). Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism. FASEB J, 31:4153-4167.
[106] Quan N, Wang L, Chen X, Luckett C, Cates C, Rousselle T, et al. (2018). Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. J Mol. Cell. Cardiol., 115:170-178.
[1] Ni Yu-Qing, Lin Xiao, Zhan Jun-Kun, Liu You-Shuo. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging[J]. Aging and disease, 2020, 11(1): 164-178.
[2] Zhao Xiaojie, Fan Yan, Vann Philip H., Wong Jessica M., Sumien Nathalie, He Johnny J.. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging[J]. Aging and disease, 2020, 11(1): 93-107.
[3] Gu Yu, Zhang Junhua, Zhou Zhirui, Liu Di, Zhu Hongcheng, Wen Junmiao, Xu Xinyan, Chen Tianxiang, Fan Min. Metastasis Patterns and Prognosis of Octogenarians with NSCLC: A Population-based Study[J]. Aging and disease, 2020, 11(1): 82-92.
[4] Guo Yan-Tong, Lu Yan, Jia Yi-Yang, Qu Hui-Nan, Qi Da, Wang Xin-Qi, Song Pei-Ye, Jin Xiang-Shu, Xu Wen-Hong, Dong Yuan, Liang Ying-Ying, Quan Cheng-Shi. Predictive Value of Pin1 in Cervical Low-Grade Squamous Intraepithelial Lesions and Inhibition of Pin1 Exerts Potent Anticancer Activity against Human Cervical Cancer[J]. Aging and disease, 2020, 11(1): 44-59.
[5] Shijin Xia, Changxi Zhou, Bill Kalionis, Xiaoping Shuang, Haiyan Ge, Wen Gao. Combined Antioxidant, Anti-inflammaging and Mesenchymal Stem Cell Treatment: A Possible Therapeutic Direction in Elderly Patients with Chronic Obstructive Pulmonary Disease[J]. Aging and disease, 2020, 11(1): 129-140.
[6] Jinfan Tian, Sharif Popal Mohammad, Yingke Zhao, Yanfei Liu, Keji Chen, Yue Liu . Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application[J]. Aging and disease, 2019, 10(6): 1302-1310.
[7] Dae Hyun Kim, June Whoun Park, Hyoung Oh Jeong, Bonggi Lee, Ki Wung Chung, Yujeong Lee, Hee Jin Jung, Min Kyung Hyun, A Kyoung Lee, Byeong Moo Kim, Byung Pal Yu, Hae Young Chung. Novel Role of Lck in Leptin-Induced Inflammation and Implications for Renal Aging[J]. Aging and disease, 2019, 10(6): 1174-1186.
[8] Piotr Gronek, Stefan Balko, Joanna Gronek, Adam Zajac, Adam Maszczyk, Roman Celka, Agnieszka Doberska, Wojciech Czarny, Robert Podstawski, Cain C. T Clark, Fang Yu. Physical Activity and Alzheimer’s Disease: A Narrative Review[J]. Aging and disease, 2019, 10(6): 1282-1292.
[9] Artur Anisiewicz, Beata Filip-Psurska, Agata Pawlik, Anna Nasulewicz-Goldeman, Tomasz Piasecki, Konrad Kowalski, Magdalena Maciejewska, Joanna Jarosz, Joanna Banach, Diana Papiernik, Andrzej Mazur, Andrzej Kutner, Jeanette A Maier, Joanna Wietrzyk. Calcitriol Analogues Decrease Lung Metastasis but Impair Bone Metabolism in Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Tumours[J]. Aging and disease, 2019, 10(5): 977-991.
[10] Meili Wang, Xiaochen Yin, Suli Zhang, Chenfeng Mao, Ning Cao, Xiaochun Yang, Jingwei Bian, Weiwei Hao, Qian Fan, Huirong Liu. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence[J]. Aging and disease, 2019, 10(5): 1012-1025.
[11] Yingnan Xue, Zhenhua Zhang, Caiyun Wen, Huiru Liu, Suyuan Wang, Jiance Li, Qichuan Zhuge, Weijian Chen, Qiong Ye. Characterization of Alzheimer’s Disease Using Ultra-high b-values Apparent Diffusion Coefficient and Diffusion Kurtosis Imaging[J]. Aging and disease, 2019, 10(5): 1026-1036.
[12] Aibo Wang, Rui Wang, Dehua Cui, Xinrui Huang, Lan Yuan, Huipo Liu, Yu Fu, Lei Liang, Wei Wang, Qingyuan He, Chunyan Shi, Xiangping Guan, Ze Teng, Guomei Zhao, Yuanyuan Li, Yajuan Gao, Hongbin Han. The Drainage of Interstitial Fluid in the Deep Brain is Controlled by the Integrity of Myelination[J]. Aging and disease, 2019, 10(5): 937-948.
[13] Brian Z Wang, Jane J Yang, Hongxia Zhang, Charity A Smith, Kunlin Jin. AMPK Signaling Regulates the Age-Related Decline of Hippocampal Neurogenesis[J]. Aging and disease, 2019, 10(5): 1058-1074.
[14] Georg Fuellen, Ludger Jansen, Alan A Cohen, Walter Luyten, Manfred Gogol, Andreas Simm, Nadine Saul, Francesca Cirulli, Alessandra Berry, Peter Antal, Rüdiger Köhling, Brecht Wouters, Steffen Möller. Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways[J]. Aging and disease, 2019, 10(4): 883-900.
[15] Dingqiao Xu, Shanting Liao, Pei Li, Qian Zhang, Yan Lv, Xiaowei Fu, Minghua Yang, Junsong Wang, Lingyi Kong. Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis[J]. Aging and disease, 2019, 10(4): 854-870.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd