Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2020, Vol. 11 Issue (1) : 108-117     DOI: 10.14336/AD.2019.0405
Orginal Article |
Type 2 Myocardial Infarction: A Geriatric Population-based Model of Pathogenesis
Alain Putot1,4,*, Melanie Jeanmichel2, Frederic Chague2, Patrick Manckoundia1,3, Yves Cottin2,4, Marianne Zeller4
1Geriatric Department, University Hospital of Dijon Bourgogne, France.
2Cardiology Department, University Hospital of Dijon Bourgogne, France.
3INSERM U1093 Cognition Action Plasticite, Universite de Bourgogne Franche Comte, France.
4Physiopathologie et Epidémiologie Cerebro-Cardiovasculaires (PEC2), Universite de Bourgogne Franche Comte, France.
Download: PDF(678 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Distinction between type 2 myocardial infarction (T2MI), defined as an imbalance between oxygen supply and demand without atherothrombosis, and type 1 myocardial infarction (T1MI), due to plaque disruption, is often a clinical challenge in frail elderly patients. We aimed to identify the characteristics and underlying causes of T2MI using a comprehensive geriatric approach. From a multicentre population-based prospective study in coronary care units, we adjudicated 4572 consecutive patients hospitalized for an acute T1MI or T2MI, according to the 3rd universal definition and a prespecified geriatric model of T2MI pathogenesis. In total, 3710 (81%) had T1MI and 862 (19%) T2MI. Patients with T2MI were 10 y older (77 vs 67 y, p<0.001), more frequently female (44 vs 26%, p<0.001) and had more frequent comorbidities. In multivariate analysis, acute heart failure, tachycardia and C-reactive protein elevation at admission were associated with a higher risk of T2MI vs T1MI, whereas chest pain, troponin I peak > 10 µg/L and ST-segment elevation were associated with a lower risk. Underlying mechanisms leading to T2MI highlighted 3 main patterns: 1) Age-related physiological cardiovascular decline 2) chronic predisposing factors including chronic anaemia (10%) and severe aortic stenosis (7%), 3) acute triggering factors, the most common being acute infection (39%), mainly respiratory tract infection, followed by tachyarrhythmia (13%) and acute heart failure (10%). 122 (14%) patients had combined predisposing and triggering conditions for T2MI. In our large population-based survey of T2MI, chronic anaemia and severe aortic stenosis increased predisposition to T2MI and acute respiratory infection was by far the most frequent trigger. Our data shed new light on the age-related pathophysiological basis for discrepancies in oxygen supply and demand leading to MI.

Keywords type 2 myocardial infarction      anemia      respiratory tract infection      aortic stenosis      tachyarrhythmia pathophysiology     
Corresponding Authors: Alain Putot   
About author:

These authors contributed equally to this work.

Just Accepted Date: 08 May 2019   Issue Date: 15 January 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alain Putot
Melanie Jeanmichel
Frederic Chague
Patrick Manckoundia
Yves Cottin
Marianne Zeller
Cite this article:   
Alain Putot,Melanie Jeanmichel,Frederic Chague, et al. Type 2 Myocardial Infarction: A Geriatric Population-based Model of Pathogenesis[J]. Aging and disease, 2020, 11(1): 108-117.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2019.0405     OR     http://www.aginganddisease.org/EN/Y2020/V11/I1/108
Figure 1.  Flow chart.
Figure 2.  Geriatric model applied to type 2 myocardial infarction pathogenesis.
Figure 3.  Multivariate analysis of factors associated with type 2 myocardial infarction. CRP: C-reactive protein; HF: heart failure; MI: myocardial infarction, SBPL systolic blood pressure; STEMI: ST-segment elevation myocardial infarction; Trpo I peak: cardiac troponin I peak.
Figure 4.  Predisposing and precipitating factors for type 2 myocardial infarction.
Figure 5.  Main combinations of etiologic factors for type 2 acute myocardial infarction. (A) Combination of acute factors. (B and C) Combinations of acute and chronic factors. (D) Acute and chronic factors combined with infection. (E) Acute and chronic factors combined with tachyarrhythmia. F. Acute and chronic factors combined with acute heart failure.
[1] Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al (2018). Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol, 72(18): 2231-2264.
[2] Friedberg CK, Horn H (1939). Acute myocardial infarction not due to coronary artery occlusion. J Am Med Assoc, 112(17): 1675-1679.
[3] Crea F, Libby P (2017). Acute Coronary Syndromes: The Way Forward From Mechanisms to Precision Treatment. Circulation, 136(12): 1155-1166.
[4] Alpert JS, Thygesen KA, White HD, Jaffe AS (2014). Diagnostic and Therapeutic Implications of Type 2 Myocardial Infarction: Review and Commentary. Am J Med, 127(2): 105-108.
[5] Sandoval Y, Thygesen K (2017). Myocardial Infarction Type 2 and Myocardial Injury. Clin Chem, 63(1): 101-107.
[6] Gaggin HK, Liu Y, Lyass A, Van Kimmenade RRJ, Motiwala SR, Kelly NP, et al (2017). Incident Type 2 Myocardial Infarction in a Cohort of Patients Undergoing Coronary or Peripheral Arterial Angiography. Circulation, 135(2): 116-127.
[7] Saaby L, Poulsen TS, Hosbond S, Larsen TB, Pyndt Diederichsen AC, Hallas J, et al (2013). Classification of Myocardial Infarction: Frequency and Features of Type 2 Myocardial Infarction. Am J Med, 126(9): 789-797.
[8] Landes U, Bental T, Orvin K, Vaknin-Assa H, Rechavia E, Iakobishvili Z, et al (2016). Type 2 myocardial infarction: A descriptive analysis and comparison with type 1 myocardial infarction. J Cardiol, 67(1): 51-56.
[9] Saaby L, Poulsen TS, Diederichsen ACP, Hosbond S, Larsen TB, Schmidt H, et al (2014). Mortality Rate in Type 2 Myocardial Infarction: Observations from an Unselected Hospital Cohort. Am J Med, 127(4): 295-302.
[10] Stein GY, Herscovici G, Korenfeld R, Matetzky S, Gottlieb S, Alon D, et al (2014). Type-II Myocardial Infarction - Patient Characteristics, Management and Outcomes. PLoS ONE, 9(1): e84285.
[11] Zeller M, Steg PG, Ravisy J, Lorgis L, Laurent Y, Sicard P, et al (2008). Relation between body mass index, waist circumference, and death after acute myocardial infarction. Circulation, 118(5): 482-490.
[12] Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al (2012). Third universal definition of myocardial infarction. Eur Heart J, 33(20): 2551-2567.
[13] Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al (2003). Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med, 163(19): 2345-2353.
[14] Arrebola MM, Lillo JA, Diez De Los RíosMJ, Rodríguez M, Dayaldasani A, Yahyaoui R, Pérez V (2010). Analytical performance of a sensitive assay for cardiac troponin I with loci technology. Clin Biochem, 43(12): 998-1002.
[15] Pasupathy S, Tavella R, Beltrame JF (2017). Myocardial Infarction With Nonobstructive Coronary Arteries (MINOCA): The Past, Present, and Future Management. Circulation, 135(16): 1490-1493.
[16] 2006 WRITING COMMITTEE MEMBERS, Bonow RO, Carabello BA, Chatterjee K, De Leon AC, Faxon DP, et al (2008). 2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation, 118(15): e523-e661.
[17] Landesberg G, Beattie WS, Mosseri M, Jaffe AS, Alpert JS (2009). Perioperative Myocardial Infarction. Circulation, 119(22): 2936-2944.
[18] Park J, Shin JH, Kim SH, Lim YH, Lee JU, Kim KS, et al (2011). Type 2 Myocardial Infarction Following Generalized Tonic-Clonic Seizure. Korean Circ J, 41(11): 681.
[19] Bouchon J-P (1984). 1 + 2 + 3 ou comment tenter d’être efficace en gériatrie? Rev Prat, 34:888-892
[20] Putot A, Derrida SB, Zeller M, Avondo A, Ray P, Manckoundia P, Cottin Y (2018). Short-Term Prognosis of Myocardial Injury, Type 1 and Type 2 Myocardial Infarction in the Emergency Unit. Am J Med, 131(10): 1209-1219.
[21] Baron T, Hambraeus K, Sundström J, Erlinge D, Jernberg T, Lindahl B, TOTAL-AMI study group (2015). Type 2 myocardial infarction in clinical practice. Heart, 101(2): 101-106.
[22] Ducrocq G, Puymirat E, Steg PG, Henry P, Martelet M, Karam C, et al (2015). Blood transfusion, bleeding, anemia, and survival in patients with acute myocardial infarction: FAST-MI registry. Am Heart J, 170(4): 726-734.e2.
[23] Putot A, Zeller M, Perrin S, Beer JC, Ravisy J, Guenancia C, et al (2017). Blood Transfusion in Elderly Patients with Acute Myocardial Infarction: Data From the RICO Survey. Am J Med, 131(4):422-429.e4.
[24] Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vallance P (2004). Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med, 351(25): 2611-2618
[25] Mihatov N, Januzzi JL, Gaggin HK (2017). Type 2 myocardial infarction due to supply-demand mismatch. Trends Cardiovasc Med, 27(6): 408-417.
[26] Ciszewski A, Bilinska ZT, Brydak LB, Kepka C, Kruk M, Romanowska M, et al (2008). Influenza vaccination in secondary prevention from coronary ischaemic events in coronary artery disease: FLUCAD study. Eur Heart J, 29(11): 1350-1358.
[27] Vlachopoulos CV, Terentes-Printzios DG, Aznaouridis KA, Pietri PG, Stefanadis CI (2015). Association between pneumococcal vaccination and cardiovascular outcomes: a systematic review and meta-analysis of cohort studies. Eur J Prev Cardiol, 22(9): 1185-1199.
[28] Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, et al (2006). Thyroid Status, Cardiovascular Risk, and Mortality in Older Adults: The Cardiovascular Health Study. JAMA J Am Med Assoc, 295(9): 1033-1041.
[29] Klein I, Danzi S (2007). Thyroid disease and the heart. Circulation, 116(15): 1725-1735.
[30] Lee SY, Yu CW, Choi YJ, Choi RK, Park JS, Lee HJ, et al (2014). A comparison of clinical features of coronary artery spasm with and without thyrotoxicosis. Coron Artery Dis, 25(2): 125-132.
[31] Chin PS, Branch KR, Becker KJ (2004). Myocardial infarction following brief convulsive seizures. Neurology, 63(12): 2453-2454.
[32] Blanc C, Zeller M, Cottin Y, Daubail B, Vialatte AL, Giroud M, Béjot Y (2015). Takotsubo Cardiomyopathy Following Acute Cerebral Events. Eur Neurol, 74(3-4): 163-168.
[33] Smilowitz NR, Weiss MC, Mauricio R, Mahajan AM, Dugan KE, Devanabanda A, et al (2016). Provoking conditions, management and outcomes of type 2 myocardial infarction and myocardial necrosis. Int J Cardiol, 218: 196-201.
[34] Smucker ML, Tedesco CL, Manning SB, Owen RM, Feldman MD (1988). Demonstration of an imbalance between coronary perfusion and excessive load as a mechanism of ischemia during stress in patients with aortic stenosis. Circulation, 78(3): 573-582.
[1] Costa Elísio,Fernandes João,Ribeiro Sandra,Sereno José,Garrido Patrícia,Rocha-Pereira Petronila,Coimbra Susana,Catarino Cristina,Belo Luís,Bronze-da-Rocha Elsa,Vala Helena,Alves Rui,Reis Flávio,Santos-Silva Alice. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression[J]. Aging and Disease, 2014, 5(6): 356-365.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd