Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2020, Vol. 11 Issue (2) : 419-437     DOI: 10.14336/AD.2019.0518
Review Article |
Role of Mitophagy in Cardiovascular Disease
Yibo Yang, Tianyi Li, Zhibo Li, Ning Liu, Youyou Yan, Bin Liu*
Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
Download: PDF(709 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Cardiovascular disease is the leading cause of mortality worldwide, and mitochondrial dysfunction is the primary contributor to these disorders. Recent studies have elaborated on selective autophagy-mitophagy, which eliminates damaged and dysfunctional mitochondria, stabilizes mitochondrial structure and function, and maintains cell survival and growth. Numerous recent studies have reported that mitophagy plays an important role in the pathogenesis of various cardiovascular diseases. This review summarizes the mechanisms underlying mitophagy and advancements in studies on the role of mitophagy in cardiovascular disease.

Keywords cardiomyocyte      cardiovascular disease      mitochondria      mitophagy     
Corresponding Authors: Liu Bin   
About author:

These authors contributed equally to this work.

Just Accepted Date: 22 July 2019   Issue Date: 13 March 2020
E-mail this article
E-mail Alert
Articles by authors
Yang Yibo
Li Tianyi
Li Zhibo
Liu Ning
Yan Youyou
Liu Bin
Cite this article:   
Yang Yibo,Li Tianyi,Li Zhibo, et al. Role of Mitophagy in Cardiovascular Disease[J]. Aging and disease, 2020, 11(2): 419-437.
URL:     OR
Figure 1.  The mechanisms underlying mitophagy. (A) An overview of the mechanisms underlying mitophagy. (B) Step1: Phagophores are formed by the isolated membrane and LC3. Step2: Thereafter, through LC3 adaptors and LC3 receptors, damaged mitochondria can be recognized and form mitophagosomes. The detailed mechanism can be divided into six stages. a. CHDH accumulates on the outer mitochondrial membrane (OMM) and interacts with p62 and binds with LC3. b. PINK1 accumulates on the OMM, phosphorylates Parkin and Mfn2, thus recruiting Parkin to the OMM, and Parkin helps generate ubiquitin chains on the OMM, which can recognize p62 and bind with LC3. c. PINK1 phosphorylates ubiquitin on the OMM and LC3 adapters can bind with it. d. LC3 directly recognizes BNIP3 or Nix through LIR, and phosphorylation of LIR in BNIP3 promotes the interaction between BNIP3 and LC3. e. Dephosphorylation of FUNDC1 restores its ability to interact with LC3 through LIR. f. AMBRA1, Bcl2L13, and cardiophospholipids directly recognize LC3 through LIR. Step3: Mitophagosomes and lysosomes fuse into mitolysosomes.
Cardiac Lipotoxicity, DCMMiR-133aNix-protection[167]

Clinical drugs and chemical reagents

I/RSevoflurane postconditioningParkin-protection[174]
I/RTEMPOL preconditioningPINK1/Parkin+protection[175]
CardiotoxicityEllagic acidBNIP3-protection[177]
StrokeTunicamycin and thapsigarginMitophagy+protection[178]

Signal pathways

ASNR4A1/CaMKII activationParkin+damage[145]
StrokeMAPK-ERK-CREB blockadeMfn2-damage[181]
I/RRab5 endosomal pathway activationParkin+protection[182].
I/RP53/TIGAR activationBNIP3-damage[183]
HFJNK/FOXO3a activationBNIP3+damage[184].

Activators/inhibitors, genes knock in/out

I/RSTAT1 activationMitophagy-damage[185]
ASPINK1/Parkin knockoutPINK1/Parkin-damage[146, 147]
I/RGPER activationPINK1/Parkin-protection[93]
I/RALDH2 activationPINK1/Parkin-protection[186]
DCMSirt3 overexpressionParkin+protection[187]
DCMMst1 knockoutParkin+protection[188]
HFBAG3 knockdownParkin-damage[189]
HFAkt2 knockoutBNIP3/PINK1/Parkin+protection[192]
StrokeNix knockoutNix-damage[161]
I/RDUSP1 activationBNIP3-protection[98]
HFSWI/SNF deletionBNIP3+damage[193]
I/RFUNDC1 knockoutFUNDC1-damage[96]

Environmental stimuli

I/RMild hypothermiaParkin-protection[194]
I/RHypoxic preconditioningFUNDC1+protection[96]
Myocardial inflammatoryAcute exerciseBNIP3+protection[80]
I/RExercise preconditioningParkin+protection[195]
StrokeAcidic postconditioningMitophagy+protection[196]
StrokeRemote ischemic post conditioningParkin+protection[197]
Table1  Therapeutic application of mitophagy.
Figure 2.  The graphical abstract. Mitophagy plays an important role in cardiovascular disease, and the degree of mitophagy can be detected via TEM, western blotting, fluorescence labeling, and mitochondrial mass determination, and the related molecular mechanism depends on PINK1/Parkin, CHDH, Nix/BNIP3, FUNDC1, etc. Mitophagy is related with certain physiological and pathological phenomena including stress, cellular defense, maintenance of cellular homeostasis, regulation of cell growth and development, and aging; these phenomena are also involved in the pathogenesis of cardiovascular diseases including ischemic heart disease, diabetic cardiomyopathy, heart failure, hypertension, atherosclerosis, arrhythmia, and stroke, and these diseases are closely associated with mitophagy. Therefore, certain factors including microRNAs, clinical drugs and chemical reagents, signaling pathways, activators/inhibitors and gene knock in/out, and environmental stimuli can regulate the level of mitophagy to alter the progression of these diseases.
[1] Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. (2017). Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res, 121:677-694.
[2] Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al. (2017). Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet, 390:2050-2062.
[3] Naghavi M, Abajobir A, Abbafati C, Abbas K, Abd-Allah F, Abera S, et al. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390:1151-1210.
[4] Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al. (2014). Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med, 371:818-827.
[5] Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L (2019). Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol, 16:33-55.
[6] Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012). Mitochondrial control of cellular life, stress, and death. Circ Res, 111:1198-1207.
[7] Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, et al. (2017). Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol, 14:342-360.
[8] Nah J, Miyamoto S, Sadoshima J (2017). Mitophagy as a Protective Mechanism against Myocardial Stress. Compr Physiol, 7:1407-1424.
[9] Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016). Aging and Autophagy in the Heart. Circ Res, 118:1563-1576.
[10] Nah J, Fernandez AF, Kitsis RN, Levine B, Sadoshima J (2016). Does Autophagy Mediate Cardiac Myocyte Death During Stress? Circ Res, 119:893-895.
[11] Lemasters JJ (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res, 8:3-5.
[12] Dorn GW 2nd, Vega RB, Kelly DP (2015). Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev, 29:1981-1991.
[13] Lesnefsky EJ, Chen Q, Hoppel CL (2016). Mitochondrial Metabolism in Aging Heart. Circ Res, 118:1593-1611.
[14] Liang Q, Kobayashi S (2016). Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol, 95:57-69.
[15] Moyzis AG, Sadoshima J, Gustafsson AB (2015). Mending a broken heart: the role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol, 308:H183-192.
[16] Saito T, Sadoshima J (2015). Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res, 116:1477-1490.
[17] Shi R, Guberman M, Kirshenbaum LA (2018). Mitochondrial quality control: The role of mitophagy in aging. Trends Cardiovasc Med, 28:246-260.
[18] Shirihai OS, Song M, Dorn GW 2nd, (2015). How mitochondrial dynamism orchestrates mitophagy. Circ Res, 116:1835-1849.
[19] Sun N, Youle RJ, Finkel T (2016). The Mitochondrial Basis of Aging. Mol Cell, 61:654-666.
[20] Tong M, Sadoshima J (2016). Mitochondrial autophagy in cardiomyopathy. Curr Opin Genet Dev, 38:8-15.
[21] Woodall BP, Gustafsson AB (2018). Autophagy-A key pathway for cardiac health and longevity. Acta Physiol (Oxf), 223:e13074.
[22] Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. (2018). Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem, 46:1650-1667.
[23] Baines CP (2010). The cardiac mitochondrion: nexus of stress. Annu Rev Physiol, 72:61-80.
[24] Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, et al. (2010). Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell, 9:536-544.
[25] Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309:481-484.
[26] Dai DF, Rabinovitch PS, Ungvari Z (2012). Mitochondria and cardiovascular aging. Circ Res, 110:1109-1124.
[27] Wallace DC (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet, 39:359-407.
[28] Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, et al. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem, 288:915-926.
[29] Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018). Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol, 55:2547-2564.
[30] Tang YC, Tian HX, Yi T, Chen HB (2016). The critical roles of mitophagy in cerebral ischemia. Protein Cell, 7:699-713.
[31] Cuervo AM, Wong E (2014). Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 24:92-104.
[32] Farre JC, Krick R, Subramani S, Thumm M (2009). Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol, 21:522-530.
[33] Hamacher-Brady A, Brady NR (2016). Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci, 73:775-795.
[34] Tan S, Wong E (2017). Mitophagy Transcriptome: Mechanistic Insights into Polyphenol-Mediated Mitophagy. Oxid Med Cell Longev, 2017:9028435.
[35] Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009). A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy, 5:1203-1205.
[36] Kissova I, Deffieu M, Manon S, Camougrand N (2004). Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem, 279:39068-39074.
[37] Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell, 17:98-109.
[38] Dunn WA Jr, (1990). Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol, 110:1923-1933.
[39] Gustafsson AB, Gottlieb RA (2008). Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol, 44:654-661.
[40] Lemasters JJ (2014). Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol, 2:749-754.
[41] Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j, 19:5720-5728.
[42] Yoo SM, Jung YK (2018). A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells, 41:18-26.
[43] Youle RJ, Narendra DP (2011). Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 12:9-14.
[44] Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol, 191:933-942.
[45] Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 8:e1000298.
[46] Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, et al. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep, 13:378-385.
[47] Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, et al. (2011). Autoregulation of Parkin activity through its ubiquitin-like domain. Embo j, 30:2853-2867.
[48] Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524:309-314.
[49] Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, et al. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet, 20:1726-1737.
[50] Park S, Choi SG, Yoo SM, Son JH, Jung YK (2014). Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy, 10:1906-1920.
[51] Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler T, et al. (2009). Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy, 5:690-698.
[52] Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11:45-51.
[53] Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem, 287:19094-19104.
[54] Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454:232-235.
[55] Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 14:177-185.
[56] Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, et al. (2014). ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep, 15:566-575.
[57] Boudreau DM, Guzauskas GF, Chen E, Lalla D, Tayama D, Fagan SC, et al. (2014). Cost-effectiveness of recombinant tissue-type plasminogen activator within 3 hours of acute ischemic stroke: current evidence. Stroke, 45:3032-3039.
[58] Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, et al. (2015). AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ, 22:419-432.
[59] Hayashi M, Raimondi A, O'Toole E, Paradise S, Collesi C, Cremona O, et al. (2008). Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci U S A, 105:2175-2180.
[60] Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11:1433-1437.
[61] Kirkin V, McEwan DG, Novak I, Dikic I (2009). A role for ubiquitin in selective autophagy. Mol Cell, 34:259-269.
[62] Kim I, Lemasters JJ (2011). Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol, 300:C308-317.
[63] Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. (2018). Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ, 25:873-884.
[64] Moscat J, Diaz-Meco MT (2009). p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 137:1001-1004.
[65] Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137:1062-1075.
[66] Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature, 461:654-658.
[67] Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, et al. (2009). Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood, 114:157-164.
[68] Honda S, Arakawa S, Nishida Y, Yamaguchi H, Ishii E, Shimizu S (2014). Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun, 5:4004.
[69] Wilson RJ, Drake JC, Cui D, Zhang M, Perry HM, Kashatus JA, et al. (2019). Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion, 44:20-26.
[70] Williams JA, Zhao K, Jin S, Ding WX (2017). New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp. Biol. Med. (Maywood), 242:781-787.
[71] Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, Gottlieb RA, et al. (2013). MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy, 9:1887-1896.
[72] Hernandez G, Thornton C, Stotland A, Lui D, Sin J, Ramil J, et al. (2013). MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy, 9:1852-1861.
[73] Shirakabe A, Fritzky L, Saito T, Zhai P, Miyamoto S, Gustafsson Å B, et al. (2016). Evaluating mitochondrial autophagy in the mouse heart. J. Mol. Cell. Cardiol., 92:134-139.
[74] Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, et al. (2019). Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ. Res., 124:1360-1371.
[75] Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127:1109-1122.
[76] Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem, 286:19630-19640.
[77] Chazotte B (2011). Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc, 2011:990-992.
[78] Melser S, Lavie J, Bénard G (2015). Mitochondrial degradation and energy metabolism. Biochim. Biophys. Acta, 1853:2812-2821.
[79] Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, et al. (2015). Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res, 116:264-278.
[80] Li H, Miao W, Ma J, Xv Z, Bo H, Li J, et al. (2016). Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy. Oxid Med Cell Longev, 2016:1987149.
[81] Ido MS, Okosun IS, Bayakly R, Clarkson L, Lugtu J, Floyd S, et al. (2016). Door to Intravenous Tissue Plasminogen Activator Time and Hospital Length of Stay in Acute Ischemic Stroke Patients, Georgia, 2007-2013. J Stroke Cerebrovasc Dis, 25:866-871.
[82] Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, et al. (2013). Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy, 9:1837-1851.
[83] Li J, Shi W, Zhang J, Ren L (2019). To Explore the Protective Mechanism of PTEN-Induced Kinase 1 (PINK1)/Parkin Mitophagy-Mediated Extract of Periplaneta Americana on Lipopolysaccharide-Induced Cardiomyocyte Injury. Med Sci Monit, 25:1383-1391.
[84] Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, et al. (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med, 22:1428-1438.
[85] Chen H, Ren S, Clish C, Jain M, Mootha V, McCaffery JM, et al. (2015). Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J Cell Biol, 211:795-805.
[86] Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, et al. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun, 4:2308.
[87] Bell RM, Yellon DM (2011). There is more to life than revascularization: therapeutic targeting of myocardial ischemia/reperfusion injury. Cardiovasc Ther, 29:e67-79.
[88] Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ, et al. (2014). Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation, 129:1483-1492.
[89] Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515:431-435.
[90] Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017). Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol, 57:535-565.
[91] Li Y, Liu X (2018). Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol, 233:5589-5597.
[92] Kubli DA, Gustafsson AB (2012). Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res, 111:1208-1221.
[93] Feng Y, Madungwe NB, da Cruz Junho CV, Bopassa JC (2017). Activation of G protein-coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy. Br J Pharmacol, 174:4329-4344.
[94] Li YZ, Wu XD, Liu XH, Li PF (2018). Mitophagy imbalance in cardiomyocyte ischaemia/reperfusion injury. Acta Physiol (Oxf), 225:e13228.
[95] Liu XW, Lu MK, Zhong HT, Wang LH, Fu YP (2019). Panax Notoginseng Saponins Attenuate Myocardial Ischemia-Reperfusion Injury Through the HIF-1alpha/BNIP3 Pathway of Autophagy. J Cardiovasc Pharmacol, 73:92-99.
[96] Zhang W, Siraj S, Zhang R, Chen Q (2017). Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy, 13:1080-1081.
[97] Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ, 14:146-157.
[98] Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, et al. (2018). DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol, 14:576-587.
[99] Yu W, Xu M, Zhang T, Zhang Q, Zou C (2019). Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci, 69:113-127.
[100] Galloway CA, Yoon Y (2015). Mitochondrial dynamics in diabetic cardiomyopathy. Antioxid Redox Signal, 22:1545-1562.
[101] Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404:787-790.
[102] Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. (2000). Myocardial cell death in human diabetes. Circ Res, 87:1123-1132.
[103] Shen X, Zheng S, Metreveli NS, Epstein PN (2006). Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55:798-805.
[104] Zorov DB, Juhaszova M, Sollott SJ (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94:909-950.
[105] Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014). Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther, 142:375-415.
[106] Johansen JS, Harris AK, Rychly DJ, Ergul A (2005). Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol, 4:5.
[107] Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, et al. (2004). Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab, 287:E896-905.
[108] Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T (1996). Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J, 60:673-682.
[109] Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, et al. (2013). Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem, 288:18077-18092.
[110] Mellor KM, Reichelt ME, Delbridge LM (2011). Autophagy anomalies in the diabetic myocardium. Autophagy, 7:1263-1267.
[111] Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM (2011). Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol, 50:1035-1043.
[112] Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, et al. (2011). Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 60:1770-1778.
[113] Durga Devi T, Babu M, Makinen P, Kaikkonen MU, Heinaniemi M, Laakso H, et al. (2017). Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. Am J Pathol, 187:2659-2673.
[114] Koncsos G, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, et al. (2016). Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol, 311:H927-h943.
[115] Scheele C, Nielsen AR, Walden TB, Sewell DA, Fischer CP, Brogan RJ, et al. (2007). Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration? Faseb j, 21:3653-3665.
[116] Tang Y, Liu J, Long J (2015). Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: Role of mitophagy. J Diabetes Investig, 6:250-255.
[117] Wu W, Xu H, Wang Z, Mao Y, Yuan L, Luo W, et al. (2015). PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury. PLoS One, 10:e0132499.
[118] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. (2016). Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 133:e38-360.
[119] Grieve DJ, Shah AM (2003). Oxidative stress in heart failure. More than just damage. Eur Heart J, 24:2161-2163.
[120] von Hardenberg A, Maack C (2017). Mitochondrial Therapies in Heart Failure. Handb Exp Pharmacol, 243:491-514.
[121] Rosca MG, Hoppel CL (2013). Mitochondrial dysfunction in heart failure. Heart Fail Rev, 18:607-622.
[122] Shires SE, Gustafsson AB (2015). Mitophagy and heart failure. J Mol Med (Berl), 93:253-262.
[123] Qiu Z, Hu Y, Geng Y, Wu H, Bo R, Shi J, et al. (2018). Xin Fu Kang oral liquid inhibits excessive myocardial mitophagy in a rat model of advanced heart failure. Am J Transl Res, 10:3198-3210.
[124] Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, et al. (2009). Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation, 120:S191-197.
[125] Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013). Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol, 63:98-106.
[126] Wang B, Nie J, Wu L, Hu Y, Wen Z, Dong L, et al. (2018). AMPKalpha2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circ Res, 122:712-729.
[127] Shires SE, Gustafsson AB (2018). Regulating Renewable Energy: Connecting AMPKalpha2 to PINK1/Parkin-Mediated Mitophagy in the Heart. Circ Res, 122:649-651.
[128] Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW (2011). PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A, 108:9572-9577.
[129] Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW 2nd, (2008). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation, 117:396-404.
[130] Gakidou E, Afshin A, Abajobir A, Abate K, Abbafati C, Abbas K, et al. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392:1923-1994.
[131] Lahera V, de Las Heras N, Lopez-Farre A, Manucha W, Ferder L (2017). Role of Mitochondrial Dysfunction in Hypertension and Obesity. Curr Hypertens Rep, 19:11.
[132] Dikalov SI, Dikalova A (2019). Crosstalk between mitochondrial hyperacetylation and oxidative stress in vascular dysfunction and hypertension. Antioxid Redox Signal.
[133] Dikalov S, Itani HA, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, et al. (2019). Tobacco Smoking Induces Cardiovascular Mitochondrial Oxidative Stress, Promotes Endothelial Dysfunction and Enhances Hypertension. Am J Physiol Heart Circ Physiol, 316:H639-h646.
[134] Smolders VF, Zodda E, Quax PHA, Carini M, Barbera JA, Thomson TM, et al. (2018). Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci, 5:120.
[135] Neubauer S (2007). The failing heart--an engine out of fuel. N Engl J Med, 356:1140-1151.
[136] Togliatto G, Lombardo G, Brizzi MF (2017). The Future Challenge of Reactive Oxygen Species (ROS) in Hypertension: From Bench to Bed Side. Int J Mol Sci, 18:E1988.
[137] Fang L, Moore XL, Gao XM, Dart AM, Lim YL, Du XJ (2007). Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci, 80:2154-2160.
[138] Ashrafian H, Docherty L, Leo V, Towlson C, Neilan M, Steeples V, et al. (2010). A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet, 6:e1001000.
[139] Wu MY, Li CJ, Hou MF, Chu PY (2017). New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci, 18:E2034.
[140] Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, et al. (2008). Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res, 102:1529-1538.
[141] Hansson GK, Hermansson A (2011). The immune system in atherosclerosis. Nat Immunol, 12:204-212.
[142] Shioi A, Ikari Y (2018). Plaque Calcification During Atherosclerosis Progression and Regression. J Atheroscler Thromb, 25:294-303.
[143] Grootaert MOJ, Roth L, Schrijvers DM, De Meyer GRY, Martinet W (2018). Defective Autophagy in Atherosclerosis: To Die or to Senesce? Oxid Med Cell Longev, 2018:7687083.
[144] Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL (2017). Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep, 19:42.
[145] Li P, Bai Y, Zhao X, Tian T, Tang L, Ru J, et al. (2018). NR4A1 contributes to high-fat associated endothelial dysfunction by promoting CaMKII-Parkin-mitophagy pathways. Cell Stress Chaperones, 23:749-761.
[146] Swiader A, Nahapetyan H, Faccini J, D'Angelo R, Mucher E, Elbaz M, et al. (2016). Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget, 7:28821-28835.
[147] Docherty CK, Carswell A, Friel E, Mercer JR (2018). Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis, 268:1-11.
[148] Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017). Autophagy and Mitophagy in Cardiovascular Disease. Circ Res, 120:1812-1824.
[149] Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G (2014). Atrial fibrillation and microRNAs. Front Physiol, 5:15.
[150] Yang KC, Bonini MG, Dudley SC Jr, (2014). Mitochondria and arrhythmias. Free Radic Biol Med, 71:351-361.
[151] Wirth KJ, Rosenstein B, Uhde J, Englert HC, Busch AE, Scholkens BA (1999). ATP-sensitive potassium channel blocker HMR 1883 reduces mortality and ischemia-associated electrocardiographic changes in pigs with coronary occlusion. J Pharmacol Exp Ther, 291:474-481.
[152] Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ (2006). Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res, 72:313-321.
[153] Gambardella J, Sorriento D, Ciccarelli M, Del Giudice C, Fiordelisi A, Napolitano L, et al. (2017). Functional Role of Mitochondria in Arrhythmogenesis. Adv Exp Med Biol, 982:191-202.
[154] Xi G, Keep RF, Hoff JT (2006). Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol, 5:53-63.
[155] Kuramatsu JB, Huttner HB, Schwab S (2013). Advances in the management of intracerebral hemorrhage. J Neural Transm (Vienna), 120 Suppl 1:S35-41.
[156] Manno EM, Atkinson JL, Fulgham JR, Wijdicks EF (2005). Emerging medical and surgical management strategies in the evaluation and treatment of intracerebral hemorrhage. Mayo Clin Proc, 80:420-433.
[157] Jin Z, Wu J, Yan LJ (2016). Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target. Int J Mol Sci, 17:351.
[158] Watts LT, Lloyd R, Garling RJ, Duong T (2013). Stroke neuroprotection: targeting mitochondria. Brain Sci, 3:540-560.
[159] Kim-Han JS, Kopp SJ, Dugan LL, Diringer MN (2006). Perihematomal mitochondrial dysfunction after intracerebral hemorrhage. Stroke, 37:2457-2462.
[160] Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM (2014). BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther, 20:1045-1055.
[161] Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, et al. (2017). BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy, 13:1754-1766.
[162] Lan R, Wu JT, Wu T, Ma YZ, Wang BQ, Zheng HZ, et al. (2018). Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull, 142:63-77.
[163] Feng J, Chen X, Shen J (2017). Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets, 21:305-317.
[164] Mohr AM, Mott JL (2015). Overview of microRNA biology. Semin Liver Dis, 35:3-11.
[165] Yang F, Li T, Dong Z, Mi R (2018). MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. J Cell Biochem, 119:2427-2439.
[166] Li W, Zhang X, Zhuang H, Chen HG, Chen Y, Tian W, et al. (2014). MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem, 289:10691-10701.
[167] Mughal W, Nguyen L, Pustylnik S, da Silva Rosa SC, Piotrowski S, Chapman D, et al. (2015). A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death Dis, 6:e1944.
[168] Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, et al. (2017). Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res, 63:e12413.
[169] Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, et al. (2018). Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med, 22:5132-5144.
[170] Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, et al. (2018). Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Oxid Med Cell Longev, 2018:9286458.
[171] Andres AM, Hernandez G, Lee P, Huang C, Ratliff EP, Sin J, et al. (2014). Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal, 21:1960-1973.
[172] Qiao H, Ren H, Du H, Zhang M, Xiong X, Lv R (2018). Liraglutide repairs the infarcted heart: The role of the SIRT1/Parkin/mitophagy pathway. Mol Med Rep, 17:3722-3734.
[173] Bian X, Teng T, Zhao H, Qin J, Qiao Z, Sun Y, et al. (2018). Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radic Res, 52:80-91.
[174] Yu P, Zhang J, Yu S, Luo Z, Hua F, Yuan L, et al. (2015). Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLoS One, 10:e0134666.
[175] Ma L, Zhu J, Gao Q, Rebecchi MJ, Wang Q, Liu L (2017). Restoring Pharmacologic Preconditioning in the Aging Heart: Role of Mitophagy/Autophagy. J Gerontol A Biol Sci Med Sci, 72:489-498.
[176] Thompson JW, Wei J, Appau K, Wang H, Yu H, Spiga MG, et al. (2015). Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology. PLoS One, 10:e0136847.
[177] Dhingra A, Jayas R, Afshar P, Guberman M, Maddaford G, Gerstein J, et al. (2017). Ellagic acid antagonizes Bnip3-mediated mitochondrial injury and necrotic cell death of cardiac myocytes. Free Radic Biol Med, 112:411-422.
[178] Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. (2014). Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy, 10:1801-1813.
[179] Feng J, Chen X, Guan B, Li C, Qiu J, Shen J (2018). Inhibition of Peroxynitrite-Induced Mitophagy Activation Attenuates Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol, 55:6369-6386.
[180] Feng J, Chen X, Lu S, Li W, Yang D, Su W, et al. (2018). Naringin Attenuates Cerebral Ischemia-Reperfusion Injury Through Inhibiting Peroxynitrite-Mediated Mitophagy Activation. Mol Neurobiol, 55:9029-9042.
[181] Zhang Z, Yu J (2018). NR4A1 Promotes Cerebral Ischemia Reperfusion Injury by Repressing Mfn2-Mediated Mitophagy and Inactivating the MAPK-ERK-CREB Signaling Pathway. Neurochem Res, 43:1963-1977.
[182] Hammerling BC, Najor RH, Cortez MQ, Shires SE, Leon LJ, Gonzalez ER, et al. (2017). A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun, 8:14050.
[183] Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, et al. (2012). p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol, 52:175-184.
[184] Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, et al. (2012). JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis, 3:265.
[185] Bourke LT, Knight RA, Latchman DS, Stephanou A, McCormick J (2013). Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy. Jakstat, 2:e25666.
[186] Ji W, Wei S, Hao P, Xing J, Yuan Q, Wang J, et al. (2016). Aldehyde Dehydrogenase 2 Has Cardioprotective Effects on Myocardial Ischaemia/Reperfusion Injury via Suppressing Mitophagy. Front Pharmacol, 7:101.
[187] Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, et al. (2017). Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis, 1863:1973-1983.
[188] Wang S, Zhao Z, Fan Y, Zhang M, Feng X, Lin J, et al. (2018). Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Biochim Biophys Acta Mol Basis Dis, 18:S0925-4439.
[189] Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM, et al. (2017). Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes. J Cell Physiol, 232:797-805.
[190] He L, Zhou Q, Huang Z, Xu J, Zhou H, Lv D, et al. (2018). PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions. J Cell Physiol, 234:8668-8682.
[191] Zha Z, Wang J, Wang X, Lu M, Guo Y (2017). Involvement of PINK1/Parkin-mediated mitophagy in AGE-induced cardiomyocyte aging. Int J Cardiol, 227:201-208.
[192] Ren J, Yang L, Zhu L, Xu X, Ceylan AF, Guo W, et al. (2017). Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell, 16:976-987.
[193] Bultman SJ, Holley DW, G GdR, Pizzo SV, Sidorova TN, Murray KT, et al. (2016). BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol, 25:258-269.
[194] Lu J, Qian HY, Liu LJ, Zhou BC, Xiao Y, Mao JN, et al. (2014). Mild hypothermia alleviates excessive autophagy and mitophagy in a rat model of asphyxial cardiac arrest. Neurol Sci, 35:1691-1699.
[195] Yuan Y, Pan SS (2018). Parkin Mediates Mitophagy to Participate in Cardioprotection Induced by Late Exercise Preconditioning but Bnip3 Does Not. J. Cardiovasc. Pharmacol., 71:303-316.
[196] Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. (2017). PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy, 13:473-485.
[197] Zhou M, Xia ZY, Lei SQ, Leng Y, Xue R (2015). Role of mitophagy regulated by Parkin/DJ-1 in remote ischemic postconditioning-induced mitigation of focal cerebral ischemia-reperfusion. Eur Rev Med Pharmacol Sci, 19:4866-4871.
[1] Jinfan Tian, Mohammad Sharif Popal, RongChong Huang, Min Zhang, Xin Zhao, Min Zhanggduo, Xiantao Song. Caveolin as a Novel Potential Therapeutic Target in Cardiac and Vascular Diseases: A Mini Review[J]. Aging and disease, 2020, 11(2): 378-389.
[2] Piotr Gronek, Dariusz Wielinski, Piotr Cyganski, Andrzej Rynkiewicz, Adam Zając, Adam Maszczyk, Joanna Gronek, Robert Podstawski, Wojciech Czarny, Stefan Balko, Cain CT. Clark, Roman Celka. A Review of Exercise as Medicine in Cardiovascular Disease: Pathology and Mechanism[J]. Aging and disease, 2020, 11(2): 327-340.
[3] Yu Sun, Fanghao Lu, Xiangjing Yu, Bingzhu Wang, Jian Chen, Fangping Lu, Shuo Peng, Xiaojiao Sun, Miao Yu, He Chen, Yan Wang, Linxue Zhang, Ning Liu, Haining Du, Dechao Zhao, Weihua Zhang. Exogenous H2S Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db Mice[J]. Aging and disease, 2020, 11(2): 269-285.
[4] Jinfan Tian, Sharif Popal Mohammad, Yingke Zhao, Yanfei Liu, Keji Chen, Yue Liu . Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application[J]. Aging and disease, 2019, 10(6): 1302-1310.
[5] Jinghui Xu, Xiaodi Fu, Mengqiu Pan, Xiao Zhou, Zhaoyu Chen, Dongmei Wang, Xiaomei Zhang, Qiong Chen, Yanhui Li, Xiaoxian Huang, Guanghui Liu, Jianjun Lu, Yan Liu, Yafang Hu, Suyue Pan, Qing Wang, Qun Wang, Yunqi Xu. Mitochondrial Creatine Kinase is Decreased in the Serum of Idiopathic Parkinson’s Disease Patients[J]. Aging and disease, 2019, 10(3): 601-610.
[6] Yaiza Potes, Zulema Pérez-Martinez, Juan C. Bermejo-Millo, Adrian Rubio-Gonzalez, María Fernandez-Fernández, Manuel Bermudez, Jose M. Arche, Juan J. Solano, Jose A. Boga, Mamen Oliván, Beatriz Caballero, Ignacio Vega-Naredo, Ana Coto-Montes. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity[J]. Aging and disease, 2019, 10(2): 217-230.
[7] Lucy A. Murtha, Matthew Morten, Michael J. Schuliga, Nishani S. Mabotuwana, Sean A. Hardy, David W. Waters, Janette K. Burgess, Doan TM. Ngo, Aaron L. Sverdlov, Darryl A. Knight, Andrew J. Boyle. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis[J]. Aging and disease, 2019, 10(2): 419-428.
[8] Fan Liu, Jianfei Lu, Anatol Manaenko, Junjia Tang, Qin Hu. Mitochondria in Ischemic Stroke: New Insight and Implications[J]. Aging and disease, 2018, 9(5): 924-937.
[9] Zhang Li, Hao Junwei, Zheng Yan, Su Ruijun, Liao Yajin, Gong Xiaoli, Liu Limin, Wang Xiaomin. Fucoidan Protects Dopaminergic Neurons by Enhancing the Mitochondrial Function in a Rotenone-induced Rat Model of Parkinson’s Disease[J]. Aging and disease, 2018, 9(4): 590-604.
[10] Yang Yao-Chih, Tsai Cheng-Yen, Chen Chien-Lin, Kuo Chia-Hua, Hou Chien-Wen, Cheng Shi-Yann, Aneja Ritu, Huang Chih-Yang, Kuo Wei-Wen. Pkcδ Activation is Involved in ROS-Mediated Mitochondrial Dysfunction and Apoptosis in Cardiomyocytes Exposed to Advanced Glycation End Products (Ages)[J]. Aging and disease, 2018, 9(4): 647-663.
[11] Eckert Schamim H, Gaca Janett, Kolesova Nathalie, Friedland Kristina, Eckert Gunter P, Muller Walter E. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer’s Disease[J]. Aging and disease, 2018, 9(4): 729-744.
[12] Kleipool Emma EF., Hoogendijk Emiel O., Trappenburg Marijke C., Handoko M. Louis, Huisman Martijn, Peters Mike JL., Muller Majon. Frailty in Older Adults with Cardiovascular Disease: Cause, Effect or Both?[J]. Aging and disease, 2018, 9(3): 489-497.
[13] Zhang Meng, Deng Yong-Ning, Zhang Jing-Yi, Liu Jie, Li Yan-Bo, Su Hua, Qu Qiu-Min. SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway[J]. Aging and disease, 2018, 9(2): 273-286.
[14] Li Xiaoting, Yu Lu, Gao Jing, Bi Xukun, Zhang Juhong, Xu Shiming, Wang Meihui, Chen Mengmeng, Qiu Fuyu, Fu Guosheng. Apelin Ameliorates High Glucose-Induced Downregulation of Connexin 43 via AMPK-Dependent Pathway in Neonatal Rat Cardiomyocytes[J]. Aging and disease, 2018, 9(1): 66-76.
[15] Tidwell Tia R., Søreide Kjetil, Hagland Hanne R.. Aging, Metabolism, and Cancer Development: from Peto’s Paradox to the Warburg Effect[J]. Aging and disease, 2017, 8(5): 662-676.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd