Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease
Orginal Article |
Longitudinal Association of Telomere Attrition with the Effects of Antihypertensive Treatment and Blood Pressure Lowering
Shuyuan Zhang1, Rongxia Li1, Yunyun Yang1, Yu Chen1, Shujun Yang1, Jian Li1, Cunjin Wu2, Tao Kong1, Tianlong Liu1, Jun Cai3, Li Fu4, Yanan Zhao1, Rutai Hui1, Weili Zhang1
1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
2 The Second Hospital of Tianjin Medical University, Tianjin, China
3 Hypertension Centre, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
4Benxi Railway Hospital, Liaoning, China
Download: PDF(830 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Leukocytes telomere length has been associated with hypertension, but, whether longitudinal telomeres change could serve as a useful predictive tool in hypertension remains uncertain. This study aimed to examine the longitudinal trajectory of leukocytes telomere length in a population-based prospective study of 1,108 individuals with hypertension. Leukocytes telomere length were measured at baseline and again after a median 2.2 (range 1.5-2.4) years of follow-up. Age as an independent predictor was inversely associated with baseline telomeres and follow-up telomeres. Annual telomere attrition rate was calculated as (follow-up telomeres-baseline telomeres)/follow-up years, and participants were categorized into the shorten and the lengthen groups. Results showed that telomere lengthening was significantly correlated with decreased systolic blood pressure (SBP) (β=-3.28; P=0.02) and pulse pressure (PP) (β=-2.53; P=0.02), and the differences were respectively -3.3 mmHg (95%CI, -6.2 to -0.3; P=0.03) in ∆SBP and -2.4 mmHg (95%CI, -4.9 to -0.1; P=0.04) in ∆PP between two groups after adjustment for vascular risk factors and baseline blood pressures. When stratified by age and gender, the correlations were observed in women and patients ≤60 years. Furthermore, among patients using calcium channel blocker (CCB) and angiotensin receptor blocker (ARB), those with telomeres lengthening showed a significantly lower level of ∆SBP and ∆PP. There was no correlation between telomere attrition and incidence of cardiovascular events. Our data indicated that increased telomere length of leukocytes was associated with decreased SBP and PP, particularly for patients who received CCB and ARB, supporting that telomere attrition may provide new sight in clinical intervention for hypertension.

Keywords leukocytes telomere length      telomere attrition      blood pressure lowering      antihypertensive therapy     
Just Accepted Date: 21 August 2019  
E-mail this article
E-mail Alert
Articles by authors
Shuyuan Zhang
Rongxia Li
Yunyun Yang
Yu Chen
Shujun Yang
Jian Li
Cunjin Wu
Tao Kong
Tianlong Liu
Jun Cai
Li Fu
Yanan Zhao
Rutai Hui
Weili Zhang
Cite this article:   
Shuyuan Zhang,Rongxia Li,Yunyun Yang, et al. Longitudinal Association of Telomere Attrition with the Effects of Antihypertensive Treatment and Blood Pressure Lowering[J]. Aging and disease, 10.14336/AD.2019.0721
URL:     OR
Figure 1.  Inverse correlation between annual telomere attrition rate and baseline telomere length of leukocytes. The leukocyte telomere length of all participants was plotted as Lg-transformed T/S ratio. Annual telomere attrition rate was calculated by the equation: (follow-up telomere length- baseline telomere length)/follow-up years. The correlation coefficient β was -0.52 and R2 was 0.27 (P<0.001).
Annual telomere attrition rate
CharacteristicsTotal (n=1,108)Shorten group (n=386)Lengthen group (n=722)P value
Age, years61.7 ± 9.762.3 ± 9.661.4 ± 9.80.13
Men, No. (%)430 (38.8%)155 (40.2%)275 (38.1%)0.52
BMI, kg/m226.2 ± 3.126.3 ± 3.226.2 ± 3.10.85
Waist-to-hip ratio0.90 ± 0.050.90 ± 0.050.90 ± 0.050.09
Systolic BP, mm Hg160 ± 21159 ± 21160 ± 210.27
Diastolic BP, mm Hg89 ± 1289 ± 1189 ± 120.92
Fasting serum glucose, mmol/L6.2 ± 1.76.1 ± 1.56.3 ± 1.80.10
Lipids, mmol/L
Total cholesterol5.7 ± 1.15.6 ± 1.15.7 ± 1.10.41
Triglycerides1.6 (1.1-2.3)1.6 (1.1-2.2)1.6 (1.1-2.4)0.23
HDL-C1.3 ± 0.31.3 ± 0.31.3 ± 0.30.40
LDL-C3.6 ± 0.93.6 ± 0.93.6 ± 0.90.48
Smoking status, %
Alcohol intake, %
Medical history, %
Diabetes mellitus23.821.824.90.27
Coronary heart disease29.730.629.20.68
Antihypertensive drugs, No. (%)
Calcium channel blocker744 (67.1)251 (65.0)493 (68.3)0.28
Angiotensin receptor blocker590 (53.2)192 (49.7)398 (55.1)0.09
ACE inhibitor87 (7.9)35 (9.1)52 (7.2)0.29
Beta-blocker24 (2.2)11 (2.8)13 (1.8)0.28
Diuretics300 (27.1)104 (26.9)196 (27.1)0.99
Leukocytes telomere length, T/S ratio
At baseline1.4 (1.0-1.8)1.8 (1.4-2.3)1.2 (0.9-1.6)<0.001
At follow-up1.9 (1.3-2.5)1.1 (0.8-1.5)2.2 (1.7-3.0)<0.001
Telomere length, base pairs (Kb)*
At baseline6.6 (5.7-7.7)7.5 (6.5-8.9)6.3 (5.5-7.2)<0.001
At follow-up7.8 (6.3-9.4)6.0 (5.2-6.9)8.6 (7.4-10.4)<0.001
Table 1  Baseline characteristics of patients between the shorten and lengthen groups categorized by annual telomere attrition rate during 2014-2016.
Annual telomereMode I*Model II
Change in BPattrition rateβSEP valueβSEP value
Total (n=1,108)
?SBPShorten (n=386)Ref.Ref.
Lengthen (n=722)-3.201.350.02-3.281.370.02
?DBPShorten (n=386)Ref.Ref.
Lengthen (n=722)-0.580.730.43-0.780.740.29
?PPShorten (n=386)Ref.Ref.
Lengthen (n=722)-2.741.100.01-2.531.110.02
Men (n=430)
?SBPShorten (n=155)Ref.Ref.
Lengthen (n=275)-
?DBPShorten (n=155)Ref.Ref.
Lengthen (n=275)-0.781.200.52-
?PPShorten (n=155)Ref.Ref.
Lengthen (n=275)-1.481.730.39-1.341.720.44
Women (n=678)
?SBPShorten (n=231)Ref.Ref.
Lengthen (n=447)-3.911.730.02-3.561.760.04
?DBPShorten (n=231)Ref.Ref.
Lengthen (n=447)-0.710.920.45-0.810.940.39
?PPShorten (n=231)Ref.Ref.
Lengthen (n=447)-3.421.420.02-3.251.440.03
≤60 years (n=506)
?SBPShorten (n=169)Ref.Ref.
Lengthen (n=337)-6.411.900.001-6.821.91<0.001
?DBPShorten (n=169)Ref.Ref.
Lengthen (n=337)-2.371.100.03-2.491.110.03
?PPShorten (n=169)Ref.Ref.
Lengthen (n=337)-3.971.460.007-4.231.470.004
>60 years (n=602)
?SBPShorten (n=217)Ref.Ref.
Lengthen (n=385)-1.532.080.46-1.422.130.51
?DBPShorten (n=217)Ref.Ref.
Lengthen (n=385)0.760.970.430.411.00.68
?PPShorten (n=217)Ref.Ref.
Lengthen (n=385)-1.461.580.35-1.741.770.33
Table 2  Association of annual telomere attrition rate with BP change during 2014-2016.
Fig 2.  Differences of blood pressure lowering between the lengthen and the shorten groups during 2014-2016. Abbreviations: SBP, systolic blood pressure; PP, pulse pressure. *P<0.05, **P<0.01. P values and adjusted mean were calculated by generalized linear model adjustment for covariates including age, gender (except in gender-stratified analysis), smoking status, alcohol intake, medical history, the stage of baseline blood pressures, baseline telomere length, and changes in BMI, waist-to-hip, fasting glucose, TC, triglycerides, HDL-C, and LDL-C from 2014 to 2016. Error bars indicate 95%CI.
Change in bloodAnnual telomereModel I*Model II
pressureattrition rateβSEP valueβSEP value
CCB therapy (n=744)
?SBPShorten (n=251)Ref.Ref.
Lengthen (n=493)-4.721.950.02-4.731.980.02
?DBPShorten (n=251)Ref.Ref.
Lengthen (n=493)-1.560.980.11-1.620.990.10
?PPShorten (n=251)Ref.Ref.
Lengthen (n=493)-3.591.510.02-3.531.530.02
ARB therapy (n=590)
?SBPShorten (n=192)Ref.Ref.
Lengthen (n=398)-
?DBPShorten (n=192)Ref.Ref.
Lengthen (n=398)-
?PPShorten (n=192)Ref.Ref.
Lengthen (n=398)-4.201.680.01-3.561.700.04
Diuretic therapy (n=300)
?SBPShorten (n=104)Ref.Ref.
Lengthen (n=196)-4.192.990.16-2.863.060.35
?DBPShorten (n=104)Ref.Ref.
Lengthen (n=196)-1.391.530.36-1.371.530.37
?PPShorten (n=104)Ref.Ref.
Lengthen (n=196)-2.102.610.42-0.842.650.75
Table 3  Association of telomere attrition with effects of antihypertensive treatment.
Fig 3.  Effects of antihypertensive drugs on blood pressure lowering in the lengthen and shorten groups during 2014-2016. Abbreviations: SBP, systolic blood pressure; PP, pulse pressure; CCB, calcium channel blocker; ARB, angiotensin receptor blocker. *P<0.05, **P<0.01. P value and adjusted mean were calculated by generalized linear model adjustment for covariates mentioned in the Figure 2. Error bars indicate 95%CI.
[1] Blackburn EH (2001). Switching and signaling at the telomere. Cell, 106(6):661-673.
[2] Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, et al (2002). Telomere length in the newborn. Pediatr Res, 52(3):377-381.
[3] Bischoff C, Graakjaer J, Petersen HC, Hjelmborg JB, Vaupel JW, Bohr V, et al. (2005) The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet, 2005, 8(5):433-439.
[4] Müezzinler A, Zaineddin AK, Brenner H (2013). A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev, 12(2):509-519.
[5] Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH (2001). Telomere shortening in atherosclerosis. Lancet, 358(9280):472-473.
[6] Willeit P, Willeit J, Brandstatter A, Ehrlenbach S, Mayr A, Gasperi A, et al (2010). Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol, 30(8):1649-1656.
[7] Fyhrquist F, Saijonmaa O, Strandberg T (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol, 10(5):274-283.
[8] Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014). Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ, 349:g4227.
[9] Wilson WR, Herbert KE, Mistry Y, Stevens SE, Patel HR, Hastings RA, et al (2008). Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J, 29(21):2689-2694.
[10] Epel ES, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, et al (2008). The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY), 1(1):81-88.
[11] Masi S, D'Aiuto F, Martin-Ruiz C, Kahn T, Wong A, Ghosh AK, et al (2014). Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J, 35(46):3296-3303.
[12] Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A (2000). Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension, 36(2):195-200.
[13] Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, et al (2001). Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension, 37(2 Pt 2):381-385.
[14] Lung FW, Ku CS, Kao WT (2008). Telomere length may be associated with hypertension. J Hum Hypertens, 22(3):230-232.
[15] Yang Z, Huang X, Jiang H,Zhang Y, Liu H, Qin C, et al (2009). Short telomeres and prognosis of hypertension in a Chinese population. Hypertension, 53(4):639-645.
[16] Bhupatiraju C, Saini D, Patkar S, Deepak P, Das B, Padma T (2012). Association of shorter telomere length with essential hypertension in Indian population. Am J Hum Biol, 24(4):573-578.
[17] Morgan RG, Ives SJ, Walker AE, Cawthon RM, Andtbacka RH, Noyes D, et al (2014). Role of arterial telomere dysfunction in hypertension: relative contributions of telomere shortening and telomere uncapping. J Hypertens, 32(6):1293-1299.
[18] Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al (2006). Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell, 5(4):325-330.
[19] Vasan RS, Demissie S, Kimura M, Cupples LA, Rifai N, White C, et al (2008). Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system: the Framingham Heart Study. Circulation, 117(9):1138-1144.
[20] Baumann M, Bartholome R, Peutz-Kootstra CJ, Smits JF, Struijker-Boudier HA (2008). Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am J Hypertens, 21(2):177-182.
[21] Laragh JH, Baer L, Brunner HR, Buhler FR, Sealey JE, Vaughan EJ (1972). Renin, angiotensin and aldosterone system in pathogenesis and management of hypertensive vascular disease. Am J Med, 52(5):633-652.
[22] Hayashi T, Yamaguchi T, Sakakibara Y, Taguchi K, Maeda M, Kuzuya M, et al (2014). eNOS-dependent antisenscence effect of a calcium channel blocker in human endothelial cells. PLoS One, 9(2):e88391.
[23] Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al (2008). Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension, 51(6):1403-1419.
[24] Liu LS (2011). 2010 Chinese guidelines for the management of hypertension. Zhonghua Xin Xue Guan Bing Za Zhi, 39(7):579-615.
[25] Cawthon RM (2002). Telomere measurement by quantitative PCR. Nucleic Acids Res, 30(10):e47.
[26] Zhang W, Chen Y, Wang Y, Liu P, Zhang M, Zhang C, et al (2013). Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin Sci (Lond), 125(1):27-36.
[27] Insel KC, Merkle CJ, Hsiao CP, Vidrine AN, Montgomery DW (2012). Biomarkers for cognitive aging part I: telomere length, blood pressure and cognition among individuals with hypertension. Biol Res Nurs, 14(2):124-132.
[28] Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA (2010). Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One, 5(1):e8612.
[29] Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, et al (2009). Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol, 169(3):323-329.
[30] op den Buijs J, van den Bosch PP, Musters MW, van Riel NA (2004). Mathematical modeling confirms the length-dependency of telomere shortening. Mech Ageing Dev, 125(6):437-444.
[31] Imanishi T, Akasaka T (2006). Acceleration of cellular senescence. Nihon Rinsho, 64(Suppl 5):70-74.
[32] Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, et al (2005). Rise in insulin resistance is associated with escalated telomere attrition. Circulation, 111(17):2171-2177.
[33] Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, et al (2006). Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res, 99(2):156-164.
[34] Fuster JJ, Diez J, Andres V (2007). Telomere dysfunction in hypertension. J Hypertens, 25(11):2185-2192.
[35] Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A (2000). Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis, 152(2):391-398.
[36] Benetos A, Safar M, Rudnichi A, Smulyan H, Richard JL, Ducimetiere P, et al (1997). Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension, 30(6):1410-1141.
[37] Franklin SS, Khan SA, Wong ND, Larson MG, Levy D (1999). Is pulse pressure useful in predicting risk for coronary heart disease? Circulation, 100(4):354-360.
[38] Sun Z (2015). Aging, arterial stiffness, and hypertension. Hypertension, 65(2):252-256.
[39] Said MA, Eppinga RN, Lipsic E, Verweij N, van der Harst P (2018). Relationship of Arterial Stiffness Index and Pulse Pressure with Cardiovascular Disease and Mortality. J Am Heart Assoc, 7(2): e007621.
[40] Svensson J, Karlsson MK, Ljunggren O, Tivesten A, Mellstrom D, Moverare-Skrtic S (2014). Leukocyte telomere length is not associated with mortality in older men. Exp Gerontol, 57:6-12.
[41] Nawrot TS, Staessen JA, Gardner JP, Aviv A (2004). Telomere length and possible link to X chromosome. Lancet, 3639(9408):507-510.
[42] Bekaert S, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, Segers P, et al (2007). Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell, 6(5):639-647.
[43] Gardner M, Bann D, Wiley L, Unryn B, van der Harst P, Woo J, et al (2014). Gender and telomere length: systematic review and meta-analysis. Exp Gerontol, 51:15-27.
[44] Needham BL, Diez RA, Bird CE, Bradley R, Fitzpatrick AL, Jacobs DR, et al (2014). A test of biological and behavioral explanations for gender differences in telomere length: the multi-ethnic study of atherosclerosis. Biodemography Soc Biol, 60(2):156-173.
[45] Chen W, Kimura M, Kim S, Cao X, Srinivasan SR, Berenson GS, et al (2011). Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J GerontolA Biol Sci Med Sci, 66(3):312-319.
[46] Courtenay WH (2000). Behavioral factors associated with disease, injury, and death among men: evidence and implications for prevention. J Men Stud, 9(1):81-142.
[47] McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I (2007). Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev, 16(4):815-819.
[48] Lee M, Martin H, Firpo MA, Demerath EW (2011). Inverse association between adiposity and telomere length: the Fels Longitudinal Study. Am J Hum Biol, 23(1):100-106.
[49] Aviv A (2002). Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J Mol Med, 80(11):689-695.
[50] Godfraind T (2006). Calcium-channel modulators for cardiovascular disease. Expert OpinEmerg Drugs, 11(1): 49-73.
[51] D'Mello MJ, Ross SA, Briel M, Anand SS, Gerstein H, Pare G (2015). Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet, 8(1):82-90.
[52] Li J, Feng C, Li L, Yang S, Chen Y, Hui R, et al (2018). The association of telomere attrition with first-onset stroke in Southern Chinese: a case-control study and meta-analysis. Sci Rep, 8(1):2290.
[53] Goglin SE, Farzaneh-Far R, Epel ES, Lin J, Blackburn EH, Whooley MA, et al (2016). Change in Leukocyte Telomere Length Predicts Mortality in Patients with Stable Coronary Heart Disease from the Heart and Soul Study. PLoS One, 11(10):e160748.
[54] Baragetti A, Palmen J, Garlaschelli K, Grigore L, Pellegatta F, Tragni E, et al (2015). Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Intern Med, 277(4):478-487.
[55] Revesz D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BW (2015). Longitudinal Associations Between Metabolic Syndrome Components and Telomere Shortening. J Clin Endocrinol Metab, 100(8):3050-3059.
[56] Kuznetsova T, Codd V, Brouilette S, Thijs L, Gonzalez A, Jin Y, et al (2010). Association between left ventricular mass and telomere length in a population study. Am J Epidemiol, 172(4):440-450.
[57] Hemann MT, Strong MA, Hao LY, Greider CW (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell, 107(1): 67-77.
[58] Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, et al (2007). Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet, 369(9556):107-114.
[1] Supplementary data Download
No related articles found!
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd