Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease
Orginal Article |
Pyroptosis Plays a Role in Osteoarthritis
Senbo An1, Huiyu Hu2, Yusheng Li1,3,*, Yihe Hu1,*
1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
2Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Download: PDF(500 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Recent studies have revealed novel forms of cell death beyond the canonical types of cellular apoptosis and necrosis, and these novel forms of cell death are induced by extreme microenvironmental factors. Pyroptosis, a type of regulated cell death, occurs when pattern recognition receptors (PRRs) induce the activation of cysteine-aspartic protease 1 (caspase-1) or caspase-11, which can trigger the release of the pyrogenic cytokines interleukin-1β (IL-1β) and IL-18. Osteoarthritis (OA), the most common joint disease worldwide, is characterized by low-grade inflammation and increased levels of cytokines, including IL-1β and IL-18. Additionally, some damaged chondrocytes associated with OA exhibit morphological changes consistent with pyroptosis, suggesting that this form of regulated cell death may contribute significantly to the pathology of OA. This review summarizes the molecular mechanisms of pyroptosis and shows the critical role of NLRP3 (NLR family, pyrin domain containing 3; NLR refers to “nucleotide-binding domain, leucine-rich repeat”) inflammasomes. We also provide evidence describing potential role of pyroptosis in OA, including the relationship with OA risk factors and the contribution to cartilage degradation, synovitis and OA pain.

Keywords pyroptosis      caspase      inflammation      osteoarthritis     
Corresponding Authors: Yusheng Li,Yihe Hu   
Just Accepted Date: 30 November 2019  
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Senbo An
Huiyu Hu
Yusheng Li
Yihe Hu
Cite this article:   
Senbo An,Huiyu Hu,Yusheng Li, et al. Pyroptosis Plays a Role in Osteoarthritis[J]. Aging and disease, 10.14336/AD.2019.1127
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2019.1127     OR     http://www.aginganddisease.org/EN/Y/V/I/0
Figure 1.  Pyroptosis in knee osteoarthritis progression. In macrophages or other cells in the synovium or synovial fluid of the knee joint, DAMPs can stimulate and combine with PRRs (e.g., TLRs) on the membrane, forming inflammasomes (ASC, pro-caspase-1 and NLRP3), which are activated by two steps: priming and activation. Inflammasomes can convert pro-caspase-1 into active caspase-1, which cleaves GSDMD and form GSDMD-N. GSDMD-N generates membrane pores and leads to cell swelling and eventual lysis. Moreover, caspase-1 induces the release of more mature proinflammatory cytokines, including IL-1β and IL-18, which can in turn lead to further inflammatory cytokine release and promote pyroptosis. This is the canonical pathway of pyroptosis. LPS can directly activate caspase-4/5 (human) or caspase-11 (mouse), which can also activate GSDMD, and this is a noncanonical pyroptosis pathway. Compared with the inflammatory activity in normal knee joints, the increased inflammatory activities caused by pyroptosis in the joint promote osteoarthritis progression, with exacerbated synovitis, cartilage degradation and increased sensory input to the central nervous system, which can generate more pain.
[1] Tait SW, Ichim G, Green DR (2014). Die another way--non-apoptotic mechanisms of cell death. J Cell Sci, 127:2135-2144.
[2] Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518:542-546.
[3] Fuchs Y, Steller H (2015). Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol, 16:329-344.
[4] Bortoluci KR, Medzhitov R (2010). Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci, 67:1643-1651.
[5] Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. (2015). Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 22:58-73.
[6] Majno G, Joris I (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 146:3-15.
[7] Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, et al. (2017). MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol, 19:1237-1247.
[8] Zebell SG, Dong X (2015). Cell-Cycle Regulators and Cell Death in Immunity. Cell Host Microbe, 18:402-407.
[9] Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 1:489-495.
[10] Xu YJ, Zheng L, Hu YW, Wang Q (2018). Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta, 476:28-37.
[11] Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149:1060-1072.
[12] Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434:658-662.
[13] Andrabi SA, Dawson TM, Dawson VL (2008). Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci, 1147:233-241.
[14] Bergsbaken T, Fink SL, Cookson BT (2009). Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 7:99-109.
[15] Cookson BT, Brennan MA (2001). Pro-inflammatory programmed cell death. Trends Microbiol, 9:113-114.
[16] Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. (2017). Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res, 5:16044.
[17] Hwang HS, Kim HA (2015). Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int J Mol Sci, 16:26035-26054.
[18] Zhang W, Ouyang H, Dass CR, Xu J (2016). Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res, 4:15040.
[19] McAllister MJ, Chemaly M, Eakin AJ, Gibson DS, McGilligan VE (2018). NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthritis Cartilage, 26:612-619.
[20] Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015). NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol, 6:262.
[21] Zhu S, Zhu J, Zhen G, Hu Y, An S, Li Y, et al. (2019). Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest, 129:1076-1093.
[22] Schaible HG (2012). Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep, 14:549-556.
[23] Boise LH, Collins CM (2001). Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol, 9:64-67.
[24] Fink SL, Cookson BT (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 73:1907-1916.
[25] Gao YL, Zhai JH, Chai YF (2018). Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm, 2018:5823823.
[26] Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A, 96:2396-2401.
[27] Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. (2007). The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ, 14:1590-1604.
[28] Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M (2000). Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med, 192:1035-1046.
[29] Santos RL, Tsolis RM, Zhang S, Ficht TA, Baumler AJ, Adams LG (2001). Salmonella-induced cell death is not required for enteritis in calves. Infect Immun, 69:4610-4617.
[30] Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005). Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med, 202:1043-1049.
[31] Schroder K, Tschopp J (2010). The inflammasomes. Cell, 140:821-832.
[32] Martinon F, Tschopp J (2007). Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ, 14:10-22.
[33] Martinon F, Burns K, Tschopp J (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 10:417-426.
[34] Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010). Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe, 8:471-483.
[35] Lamkanfi M, Dixit VM (2014). Mechanisms and functions of inflammasomes. Cell, 157:1013-1022.
[36] Takeuchi O, Akira S (2010). Pattern recognition receptors and inflammation. Cell, 140:805-820.
[37] Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. (2011). Non-canonical inflammasome activation targets caspase-11. Nature, 479:117-121.
[38] Swanson KV, Deng M, Ting JP (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19:477-489.
[39] Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 183:787-791.
[40] Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G, et al. (2017). Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. J Immunol, 199:1561-1566.
[41] Samways DS, Li Z, Egan TM (2014). Principles and properties of ion flow in P2X receptors. Front Cell Neurosci, 8:6.
[42] Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, et al. (2012). The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 492:123-127.
[43] Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA, Rock KL (2015). Multiple Cathepsins Promote Pro-IL-1beta Synthesis and NLRP3-Mediated IL-1beta Activation. J Immunol, 195:1685-1697.
[44] Courbet A, Bec N, Constant C, Larroque C, Pugniere M, El Messaoudi S, et al. (2017). Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One, 12:e0182022.
[45] Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. (2017). Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxid Redox Signal, 26:28-43.
[46] Chen J, Chen ZJ (2018). PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 564:71-76.
[47] Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V (2015). Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol, 45:2911-2917.
[48] Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013). Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 341:1250-1253.
[49] Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526:666-671.
[50] Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526:660-665.
[51] Zhaolin Z, Guohua L, Shiyuan W, Zuo W (2019). Role of pyroptosis in cardiovascular disease. Cell Prolif, 52:e12563.
[52] Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. (2017). Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 135:e146-e603.
[53] Zheng Y, Gardner SE, Clarke MC (2011). Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler Thromb Vasc Biol, 31:2781-2786.
[54] Zhang YN, Xie BD, Sun L, Chen W, Jiang SL, Liu W, et al. (2016). Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145. J Cell Mol Med, 20:1049-1061.
[55] Shi X, Xie WL, Kong WW, Chen D, Qu P (2015). Expression of the NLRP3 Inflammasome in Carotid Atherosclerosis. J Stroke Cerebrovasc Dis, 24:2455-2466.
[56] Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. (2014). NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One, 9:e104771.
[57] Soliman EZ, Prineas RJ (2017). Antihypertensive Therapies and Left Ventricular Hypertrophy. Curr Hypertens Rep, 19:79.
[58] Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, et al. (2011). Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 123:594-604.
[59] Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carle B, et al. (2019). Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology, 156:1082-1097.e1011.
[60] Hanson B (2016). Necroptosis: A new way of dying? Cancer Biol Ther, 17:899-910.
[61] Magna M, Pisetsky DS (2015). The Role of Cell Death in the Pathogenesis of SLE: Is Pyroptosis the Missing Link? Scand J Immunol, 82:218-224.
[62] Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC, Eyre S, et al. (2014). Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis, 73:1202-1210.
[63] Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. (2016). Osteoarthritis. Nat Rev Dis Primers, 2:16072.
[64] Wang X, Hunter D, Xu J, Ding C (2015). Metabolic triggered inflammation in osteoarthritis. Osteoarthritis Cartilage, 23:22-30.
[65] Felson DT, Anderson JJ, Naimark A, Kannel W, Meenan RF (1989). The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham Study. J Rheumatol, 16:1241-1245.
[66] Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM (1995). Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum, 38:1134-1141.
[67] Palazzo C, Nguyen C, Lefevre-Colau MM, Rannou F, Poiraudeau S (2016). Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med, 59:134-138.
[68] Cuervo AM, Wong E (2014). Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 24:92-104.
[69] Zhang Y, Niu J, Felson DT, Choi HK, Nevitt M, Neogi T (2010). Methodologic challenges in studying risk factors for progression of knee osteoarthritis. Arthritis Care Res (Hoboken), 62:1527-1532.
[70] Veronese N, Cereda E, Maggi S, Luchini C, Solmi M, Smith T, et al. (2016). Osteoarthritis and mortality: A prospective cohort study and systematic review with meta-analysis. Semin Arthritis Rheum, 46:160-167.
[71] Nishimura A, Hasegawa M, Kato K, Yamada T, Uchida A, Sudo A (2011). Risk factors for the incidence and progression of radiographic osteoarthritis of the knee among Japanese. Int Orthop, 35:839-843.
[72] Vina ER, Kwoh CK (2018). Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol, 30:160-167.
[73] Heinegard D, Saxne T (2011). The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol, 7:50-56.
[74] Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. (2016). Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 12:580-592.
[75] Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. (2013). Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med, 19:704-712.
[76] Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, et al. (2010). Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med, 16:687-693.
[77] Loeser RF (2014). Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol, 39:11-16.
[78] Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, et al. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther, 15:R5.
[79] Fosang AJ, Beier F (2011). Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol, 25:751-766.
[80] Haseeb A, Haqqi TM (2013). Immunopathogenesis of osteoarthritis. Clin Immunol, 146:185-196.
[81] Mueller MB, Tuan RS (2011). Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. Pm r, 3:S3-11.
[82] Scanzello CR, Goldring SR (2012). The role of synovitis in osteoarthritis pathogenesis. Bone, 51:249-257.
[83] Felson DT, Niu J, Neogi T, Goggins J, Nevitt MC, Roemer F, et al. (2016). Synovitis and the risk of knee osteoarthritis: the MOST Study. Osteoarthritis Cartilage, 24:458-464.
[84] Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012). Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 64:1697-1707.
[85] Liu-Bryan R, Terkeltaub R (2015). Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol, 11:35-44.
[86] Mathiessen A, Conaghan PG (2017). Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther, 19:18.
[87] Pincus T, Brooks RH, Callahan LF (1994). Prediction of long-term mortality in patients with rheumatoid arthritis according to simple questionnaire and joint count measures. Ann Intern Med, 120:26-34.
[88] Li Y, Liu Y, Yan X, Liu Q, Zhao YH, Wang DW (2018). Pharmacological Effects and Mechanisms of Chinese Medicines Modulating NLRP3 Inflammasomes in Ischemic Cardio/Cerebral Vascular Disease. Am J Chin Med, 46:1727-1741.
[89] Deuteraiou K, Kitas G, Garyfallos A, Dimitroulas T (2018). Novel insights into the role of inflammasomes in autoimmune and metabolic rheumatic diseases. Rheumatol Int, 38:1345-1354.
[90] Ahechu P, Zozaya G, Marti P, Hernandez-Lizoain JL, Baixauli J, Unamuno X, et al. (2018). NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol, 9:2918.
[91] Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010). Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage, 18:24-33.
[92] Teichtahl AJ, Wang Y, Wluka AE, Szramka M, English DR, Giles GG, et al. (2008). The longitudinal relationship between body composition and patella cartilage in healthy adults. Obesity (Silver Spring), 16:421-427.
[93] Berry PA, Wluka AE, Davies-Tuck ML, Wang Y, Strauss BJ, Dixon JB, et al. (2010). The relationship between body composition and structural changes at the knee. Rheumatology (Oxford), 49:2362-2369.
[94] Bao JP, Chen WP, Feng J, Hu PF, Shi ZL, Wu LD (2010). Leptin plays a catabolic role on articular cartilage. Mol Biol Rep, 37:3265-3272.
[95] Lenders CM, Feldman HA, Von Scheven E, Merewood A, Sweeney C, Wilson DM, et al. (2009). Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr, 90:459-467.
[96] Laslett LL, Quinn S, Burgess JR, Parameswaran V, Winzenberg TM, Jones G, et al. (2014). Moderate vitamin D deficiency is associated with changes in knee and hip pain in older adults: a 5-year longitudinal study. Ann Rheum Dis, 73:697-703.
[97] Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17:179-188.
[98] Busso N, So A (2012). Microcrystals as DAMPs and their role in joint inflammation. Rheumatology (Oxford), 51:1154-1160.
[99] Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A (2017). Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther, 19:23.
[100] Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B, Vignery A, et al. (2011). NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A, 108:14867-14872.
[101] Pazar B, Ea HK, Narayan S, Kolly L, Bagnoud N, Chobaz V, et al. (2011). Basic calcium phosphate crystals induce monocyte/macrophage IL-1beta secretion through the NLRP3 inflammasome in vitro. J Immunol, 186:2495-2502.
[102] TGFRII mediated modulation of IL-36 for OA.
[103] Goldberg EL, Dixit VD (2015). Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev, 265:63-74.
[104] Spadaro O, Goldberg EL, Camell CD, Youm YH, Kopchick JJ, Nguyen KY, et al. (2016). Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Rep, 14:1571-1580.
[105] Man SM, Kanneganti TD (2015). Regulation of inflammasome activation. Immunol Rev, 265:6-21.
[106] Mueller BU (2011). Hydroxyurea for children with sickle cell disease: are we starting too late? Pediatr Blood Cancer, 56:3-4.
[107] Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum, 58:15-25.
[108] Borgonio Cuadra VM, Gonzalez-Huerta NC, Romero-Cordoba S, Hidalgo-Miranda A, Miranda-Duarte A (2014). Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One, 9:e97690.
[109] Clavijo-Cornejo D, Martinez-Flores K, Silva-Luna K, Martinez-Nava GA, Fernandez-Torres J, Zamudio-Cuevas Y, et al. (2016). The Overexpression of NALP3 Inflammasome in Knee Osteoarthritis Is Associated with Synovial Membrane Prolidase and NADPH Oxidase 2. Oxid Med Cell Longev, 2016:1472567.
[110] Jenko B, Praprotnik S, Tomsic M, Dolzan V (2016). NLRP3 and CARD8 Polymorphisms Influence Higher Disease Activity in Rheumatoid Arthritis. J Med Biochem, 35:319-323.
[111] Bougault C, Gosset M, Houard X, Salvat C, Godmann L, Pap T, et al. (2012). Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum, 64:3972-3981.
[112] Denoble AE, Huffman KM, Stabler TV, Kelly SJ, Hershfield MS, McDaniel GE, et al. (2011). Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A, 108:2088-2093.
[113] Olee T, Hashimoto S, Quach J, Lotz M (1999). IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol, 162:1096-1100.
[114] Park KA, Vasko MR (2005). Lipid mediators of sensitivity in sensory neurons. Trends Pharmacol Sci, 26:571-577.
[115] Miller RJ, Jung H, Bhangoo SK, White FA (2009). Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol:417-449.
[116] Mapp PI, Walsh DA (2012). Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol, 8:390-398.
[117] Heppelmann B (1997). Anatomy and histology of joint innervation. J Peripher Nerv Syst, 2:5-16.
[118] Nasi S, Ea HK, So A, Busso N (2017). Revisiting the Role of Interleukin-1 Pathway in Osteoarthritis: Interleukin-1alpha and -1beta, and NLRP3 Inflammasome Are Not Involved in the Pathological Features of the Murine Menisectomy Model of Osteoarthritis. Front Pharmacol, 8:282.
[119] Vincent TL (2019). IL-1 in osteoarthritis: time for a critical review of the literature. F1000Res, 8.
[1] Wei Quan, Zhifei Zhang, Pan Li, Qilong Tian, Jinhao Huang, Yu Qian, Chuang Gao, Wanqiang Su, Zengguang Wang, Jianning Zhang, Alex Zacharek, Poornima Venkat, Jieli Chen, Rongcai Jiang. Role of Regulatory T cells in Atorvastatin Induced Absorption of Chronic Subdural Hematoma in Rats[J]. Aging and disease, 2019, 10(5): 992-1002.
[2] Chun-Sheng Yang, Ai Guo, Yulin Li, Kaibin Shi, Fu-Dong Shi, Minshu Li. Dl-3-n-butylphthalide Reduces Neurovascular Inflammation and Ischemic Brain Injury in Mice[J]. Aging and disease, 2019, 10(5): 964-976.
[3] Jiali Wu, Su Lin, Bo Wan, Bharat Velani, Yueyong Zhu. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms[J]. Aging and disease, 2019, 10(5): 1094-1108.
[4] Linsha Ma, Jingchao Hu, Yu Cao, Yilin Xie, Hua Wang, Zhipeng Fan, Chunmei Zhang, Jinsong Wang, Chu-Tse Wu, Songlin Wang. Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration[J]. Aging and disease, 2019, 10(4): 793-806.
[5] Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling[J]. Aging and disease, 2019, 10(4): 807-817.
[6] Navneet Kumar Dubey, Hong-Jian Wei, Sung-Hsun Yu, David F. Williams, Joseph R. Wang, Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng. Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade[J]. Aging and disease, 2019, 10(3): 483-496.
[7] Rongrong Han, Zeyue Liu, Nannan Sun, Shu Liu, Lanlan Li, Yan Shen, Jianbo Xiu, Qi Xu. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway[J]. Aging and disease, 2019, 10(3): 611-625.
[8] Kunyu Li, Jiatong Li, Jialin Zheng, Song Qin. Reactive Astrocytes in Neurodegenerative Diseases[J]. Aging and disease, 2019, 10(3): 664-675.
[9] Xianmei Li, Siyang Lin, Xiaoli Chen, Wensi Huang, Qian Li, Hongxia Zhang, Xudong Chen, Shaohua Yang, Kunlin Jin, Bei Shao. The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke[J]. Aging and disease, 2019, 10(3): 544-556.
[10] Hae Young Chung, Dae Hyun Kim, Eun Kyeong Lee, Ki Wung Chung, Sangwoon Chung, Bonggi Lee, Arnold Y. Seo, Jae Heun Chung, Young Suk Jung, Eunok Im, Jaewon Lee, Nam Deuk Kim, Yeon Ja Choi, Dong Soon Im, Byung Pal Yu. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept[J]. Aging and disease, 2019, 10(2): 367-382.
[11] Saumyendra N. Sarkar, Ashley E. Russell, Elizabeth B. Engler-Chiurazzi, Keyana N. Porter, James W. Simpkins. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma[J]. Aging and disease, 2019, 10(2): 329-352.
[12] Fabienne Cyprien, Philippe Courtet, Jerome Maller, Chantal Meslin, Karen Ritchie, Marie-Laure Ancelin, Sylvaine Artero. Increased Serum C-reactive Protein and Corpus Callosum Alterations in Older Adults[J]. Aging and disease, 2019, 10(2): 463-469.
[13] Michael G. Flynn,Melissa M. Markofski,Andres E. Carrillo. Elevated Inflammatory Status and Increased Risk of Chronic Disease in Chronological Aging: Inflamm-aging or Inflamm-inactivity?[J]. Aging and disease, 2019, 10(1): 147-156.
[14] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[15] Manuel Scimeca, Federica Centofanti, Monica Celi, Elena Gasbarra, Giuseppe Novelli, Annalisa Botta, Umberto Tarantino. Vitamin D Receptor in Muscle Atrophy of Elderly Patients: A Key Element of Osteoporosis-Sarcopenia Connection[J]. Aging and disease, 2018, 9(6): 952-964.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd