Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2020, Vol. 11 Issue (5) : 1260-1275     DOI: 10.14336/AD.2020.0105
Review Article |
A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer’s Disease
Wenbo Li1, Ling Kui2, Tsirukis Demetrios3, Xun Gong4, Min Tang5,6,*
1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China.
2Dana-Farber Cancer Institute, Harvard Medical School, United States
3Boston Children’s Hospital, Harvard Medical School, United States
4Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, China
5Institute of Life Sciences, Jiangsu University, China
6Center for Innovation in Brain Science, University of Arizona, United States
Download: PDF(675 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Mitochondria are classically known to be cellular energy producers. Given the high-energy demanding nature of neurons in the brain, it is essential that the mitochondrial pool remains healthy and provides a continuous and efficient supply of energy. However, mitochondrial dysfunction is inevitable in aging and neurodegenerative diseases. In Alzheimer’s disease (AD), neurons experience unbalanced homeostasis like damaged mitochondrial biogenesis and defective mitophagy, with the latter promoting the disease-defining amyloid β (Aβ) and p-Tau pathologies impaired mitophagy contributes to inflammation and the aggregation of Aβ and p-Tau-containing neurotoxic proteins. Interventions that restore defective mitophagy may, therefore, alleviate AD symptoms, pointing out the possibility of a novel therapy. This review aims to illustrate mitochondrial biology with a focus on mitophagy and propose strategies to treat AD while maintaining mitochondrial homeostasis.

Keywords Alzheimer’s disease      mitochondria dysfunction      mitophagy      NAD+     
Corresponding Authors: Tang Min   
About author:

These authors contributed equally to this work.

Just Accepted Date: 10 January 2020   Issue Date: 21 September 2020
E-mail this article
E-mail Alert
Articles by authors
Li Wenbo
Kui Ling
Demetrios Tsirukis
Gong Xun
Tang Min
Cite this article:   
Li Wenbo,Kui Ling,Demetrios Tsirukis, et al. A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer’s Disease[J]. Aging and disease, 2020, 11(5): 1260-1275.
URL:     OR
Figure 1.  Mitochondrial cell biology. (A) structure of mitochondrion and general features of mitochondrial dynamics (B) fusion (C) fission.
Figure 2.  Overview of autophagy/mitophagy in neurons.
The PINK1/Parkin-dependent pathwayPINK1, Parkin, USP8, USP30, AMBRA1, Bcl2, FUNDC1, MUL1, Nix, ATG5, LC3[74, 119]
The Parkin-independent pathwayPINK1[120]
The Reticulocyte pathwayNix, LC3[60]
The Zygote pathwayVCPs, MUL1, LC3[121-123]
The MDVs pathwayPINK1, Parkin, LC3[124]
The mTOR pathwayULK1, Atg1, Atg13, Akt, PKC, FOXO3[45]
Table 1  Summary of different pathways and genes/proteins involved in autophagy/mitophagy.
AgentsStudy modelEffectRefs
2,4-Dinitrophenol (DNP)animal modelstimulate autophagy[139]
rapamycinAD mousereduce Aβ pathology[45]
spermidinehuman and yeast cells; nematodesinduce autophagy independent of SIRT1[140]
urolithin AC. elegans; mouseinduce mitophagy, prolong lifespan; increase muscle function[141]
antibioticthe mt-Keima mouseprovide a method to analyze mitophagy alterations[81]
2-deoxyglucoseAD female mousestimulate ketogenesis and induce mild bioenergetic stress;
enhance mitochondrial function; stimulate autophagy and clearance of Aβ
nicotinamide mononucleotide (NMN)Mouse model of fatty liver disease; AD mouseincrease NAD+ pool[150-154]
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)myopathy mouseactivates AMPK to acts on PGC-1[155-157]
actinoninCaenorhabditis elegansreverse memory impairment[77]
mdivi1excitotoxic mouseenhance DRP1 activity[158-164]
Table 2  Pharmacological agents potentially stimulate autophagy/mitophagy.
[1] Patterson C2018. World Alzheimer Report 2018- The state of the art of dementia research: New frontiers: Alzheimer’s Disease International (ADI), London.
[2] Bachman DL, Wolf PA, Linn R, Knoefel JE, Cobb J, Belanger A, et al. (1992). Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology, 42:5.
[3] Bachman DL, Wolf PA, Linn RT, Knoefel JE, Cobb JL, Belanger AJ, et al. (1993). Incidence of dementia and probable Alzheimer’s disease in a general population: The Framingham Study. Neurology, 43:515-519.
[4] Beard CM, Lane AW, O’Fallon WM, Riggs BL, Melton LJ (1994). Comparison of Respondents and Nonrespondents in an Osteoporosis Study. Ann Epidemiol, 4:398-403.
[5] Nussbaum JM, Seward ME, Bloom GS (2013). Alzheimer disease: a tale of two prions. Prion, 7:14-19.
[6] Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med, 1:a006189.
[7] Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14:388-405.
[8] Spires-Jones TL, Hyman BT (2014). The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 82:756-771.
[9] Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B, et al. (2018). An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Molecular and cellular biology, 38:e00011-00018.
[10] Cheng R, Tang M, Martinez I, Ayodele T, Baez P, Reyes-Dumeyer D, et al. (2018). Linkage analysis of multiplex Caribbean Hispanic families loaded for unexplained early-onset cases identifies novel Alzheimer’s disease loci. Alzheimers Dement (Amst), 10:554-562.
[11] Zhang Y, Kumar A, Tezel JB, Zhou Y (2016). Imaging Evidence for Cerebral Hyperperfusion Syndrome after Intravenous Tissue Plasminogen Activator for Acute Ischemic Stroke. Case Rep Neurol Med, 2016:8725494.
[12] Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. (2019). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet, 51:414-430.
[13] Bondi MW, Edmonds EC, Salmon DP (2017). Alzheimer’s Disease: Past, Present, and Future. Journal of the International Neuropsychological Society, 23:818-831.
[14] Bachurin SO, Bovina EV, Ustyugov AA (2017). Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Med Res Rev, 37:1186-1225.
[15] Canter RG, Penney J, Tsai L-H (2016). The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature, 539:187-196.
[16] Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, et al. (2017). Mitophagy and Alzheimer’s Disease- Cellular and Molecular Mechanisms. Trends in Neurosciences, 40:16.
[17] Wang Y, Xu E, Musich PR, Lin F (2019). Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther, 25:816-824.
[18] Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, et al. (2002). Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res, 70:357-360.
[19] Wai T, Langer T (2016). Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab, 27:105-117.
[20] Youle RJ, van der Bliek AM (2012). Mitochondrial fission, fusion, and stress. Science, 337:1062-1065.
[21] ME B, VI D, EN M, VP S (1998). Membrane potential generation coupled to oxidation of external NADH in liver mitochondria. FEBS Lett, 435:269-274.
[22] Hoffmann A, Dimroth P (1991). The electrochemical proton potential of Bacillus alcalophilus. Eur J Biochem, 201:467-473.
[23] Cowan K, Anichtchik O, Luo S (2019). Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther, 25:825-836.
[24] Tait SW, Green DR (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 11:621-632.
[25] Youle RJ, Strasser A (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 9:47-59.
[26] Nunnari J, Suomalainen A (2012). Mitochondria: in sickness and in health. Cell, 148:1145-1159.
[27] Mehta MM, Weinberg SE, Chandel NS (2017). Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol, 17:608-620.
[28] Suomalainen A, Battersby BJ (2018). Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol, 19:77-92.
[29] Ni HM, Williams JA, Ding WX (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 4:6-13.
[30] Wallace DC, Fan W, Procaccio V (2010). Mitochondrial energetics and therapeutics. Annu Rev Pathol, 5:297-348.
[31] Koopman WJH, Willems PHGM, Smeitink JAM (2012). Monogenic mitochondrial disorders. The new England journal of medicine, 366:1132-1141.
[32] Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012). Mitochondrial pharmacology. Trends Pharmacol Sci, 33:341-352.
[33] de Castro IP, Martins LM, Tufi R (2010). Mitochondrial quality control and neurological disease: an emerging connection. Expert Rev Mol Med, 12:e12.
[34] Chen H, Chan DC (2009). Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Human Molecular Genetics, 18:R169-R176.
[35] Murphy E, Bers D, Rizzuto R (2009). Mitochondria: from basic biology to cardiovascular disease. J Mol Cell Cardiol, 46:765-766.
[36] Hassani A, Horvath R, Chinnery PF (2010). Mitochondrial myopathies: developments in treatment. Curr Opin Neurol, 23:459-465.
[37] DeBerardinis RJ, Chandel NS (2016). Fundamentals of cancer metabolism. Science Advances, 2:e1600200.
[38] Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144:646-674.
[39] Ward PS, Thompson CB (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21:297-308.
[40] Elfawy HA, Das B (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sciences, 218:165-184.
[41] Zhang XJ, Chen S, Huang KX, Le WD (2013). Why should autophagic flux be assessed? Acta Pharmacol Sin, 34:595-599.
[42] Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12:1-222.
[43] Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. (2008). Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer’s Disease. Journal of Neuroscience, 28:6926-6937.
[44] Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P (2011). Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. The FASEB Journal, 25:219-231.
[45] Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One, 5:e9979.
[46] Tian Y, Bustos V, Flajolet M, Greengard P (2011). A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTFviaAtg5-dependent autophagy pathway. The FASEB Journal, 25:1934-1942.
[47] Butzlaff M, Hannan SB, Karsten P, Lenz S, Ng J, Vossfeldt H, et al. (2015). Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity. Hum Mol Genet, 24:3623-3637.
[48] Majid T, Ali YO, Venkitaramani DV, Jang MK, Lu HC, Pautler RG (2014). In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. Neuroimage Clin, 4:711-717.
[49] Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F (2014). Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain, 137:2834-2846.
[50] Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, et al. (2009). Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet, 18:4153-4170.
[51] Perez SE, He B, Nadeem M, Wuu J, Ginsberg SD, Ikonomovic MD, et al. (2015). Hippocampal Endosomal, Lysosomal, and Autophagic Dysregulation in Mild Cognitive Impairment- Correlation With AA and Tau Pathology. Journal of Neuropathology & Experimental Neurology, 74:345-358.
[52] Vidal RL, Matus S, Bargsted L, Hetz C (2014). Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci, 35:583-591.
[53] Wong E, Cuervo AM (2010). Autophagy gone awry in neurodegenerative diseases. Nat Neurosci, 13:805-811.
[54] Liang JH, Jia JP (2014). Dysfunctional autophagy in Alzheimer’s disease: pathogenic roles and therapeutic implications. Neurosci Bull, 30:308-316.
[55] Schneider JL, Cuervo AM (2014). Autophagy and human disease: emerging themes. Curr Opin Genet Dev, 26:16-23.
[56] Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007). Potential therapeutic applications of autophagy. Nat Rev Drug Discov, 6:304-312.
[57] Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007). Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys, 462:245-253.
[58] Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006). Tracker Dyes to Probe Mitochondrial Autophagy (Mitophagy) in Rat Hepatocytes. Autophagy, 2:39-46.
[59] Kissova I, Deffieu M, Manon S, Camougrand N (2004). Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem, 279:39068-39074.
[60] Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454:232-235.
[61] Sato M, Sato K (2011). Degradation of Paternal Mitochondria by Fertilization-Triggered Autophagy in C. elegans Embryos. Science, 334:1141-1144.
[62] Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018). Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol, 55:2547-2564.
[63] Narendra DP, Youle RJ (2011). Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal, 14:1929-1938.
[64] Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6:1090-1106.
[65] Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol, 191:933-942.
[66] Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304:1158-1160.
[67] Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12:119-131.
[68] Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 14:177-185.
[69] Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11:45-51.
[70] Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR (2013). Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell, 24:1153-1162.
[71] Ding WX, Yin XM (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem, 393:547-564.
[72] Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, et al. (2017). Mitophagy in neurodegeneration and aging. Neurochemistry International, 109:202-209.
[73] Palikaras K, Lionaki E, Tavernarakis N (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology, 20:1013-1022.
[74] Pickrell Alicia M, Youle Richard J (2015). The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease. Neuron, 85:257-273.
[75] Hoppe T, Branzei D (2017). Stefan Jentsch (1955-2016)-Maestro of the ubiquitin family. EMBO J, 36:1-2.
[76] Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, Zhang Z, et al. (2017). Mitochondrial fission facilitates the selective mitophagy of protein aggregates. The Journal of Cell Biology, 216:3231-3247.
[77] Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22:401-412.
[78] Fang EF, Palikaras K, Sun N, Fivenson EM, Spangler RD, Kerr JS, et al. (2017). In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans, and Mice. Journal of Visualized Experiments.
[79] Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U, Clague MJ, et al. (2018). Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. The Journal of Cell Biology, 217:1613-1622.
[80] McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. (2018). Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metabolism, 27:439-449.e435.
[81] Sun N, Yun J, Liu J, Malide D, Liu C, Rovira Ilsa I, et al. (2015). Measuring In Vivo Mitophagy. Molecular Cell, 60:685-696.
[82] Dannheisig DP, Beck E, Calzia E, Walther P, Behrends C, Pfister AS (2019). Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux. Cells, 8.
[83] Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010). Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802:2-10.
[84] Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA (2016). Nuclear DNA damage signalling to mitochondria in ageing. Nature Reviews Molecular Cell Biology, 17:308-321.
[85] Fang Evandro F, Scheibye-Knudsen M, Brace Lear E, Kassahun H, SenGupta T, Nilsen H, et al. (2014). Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction. Cell, 157:882-896.
[86] Cummins C, Seale M, Macente A, Certini D, Mastropaolo E, Viola IM, et al. (2018). A separated vortex ring underlies the flight of the dandelion. Nature, 562:414-418.
[87] Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, et al. (2016). NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 24:566-581.
[88] Hu Y, Li X-C, Wang Z-h, Luo Y, Zhang X, Liu X-P, et al. (2016). Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget, 7:17356.
[89] Barnett A, Brewer GJ (2011). Autophagy in aging and Alzheimer’s disease: pathologic or protective? J Alzheimers Dis, 25:385-394.
[90] Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest, 118:2190-2199.
[91] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402:672-676.
[92] Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011). Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis, 43:68-78.
[93] Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O’Kane CJ, et al. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 37:771-776.
[94] Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, et al. (2014). Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res, 102:68-78.
[95] Ju JS, Varadhachary AS, Miller SE, Weihl CC (2010). Quantitation of "autophagic flux" in mature skeletal muscle. Autophagy, 6:929-935.
[96] Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC (2008). Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy, 4:849-850.
[97] Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005). Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy. Autophagy., 1:84-91.
[98] Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19:5720-5728.
[99] Oh SH, Choi YB, Kim JH, Weihl CC, Ju JS (2017). Quantification of autophagy flux using LC3 ELISA. Anal Biochem, 530:57-67.
[100] Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282:24131-24145.
[101] Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, et al. (2019). Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences, 30:339-358.
[102] Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, et al. (2012). Involvement of PGC-1alpha in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3:1250.
[103] Mattson MP, Gleichmann M, Cheng A (2008). Mitochondria in Neuroplasticity and Neurological Disorders. Neuron, 60:748-766.
[104] Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, et al. (2016). Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab, 23:128-142.
[105] Donlea JM, Ramanan N, Shaw PJ (2009). S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury. Science, 324:105-108.
[106] DuBoff B, Feany M, Gotz J (2013). Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci, 36:325-335.
[107] Nixon RA (2013). The role of autophagy in neurodegenerative disease. Nat Med, 19:983-997.
[108] Wang X, Su B, Fujioka H, Zhu X (2008). Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol, 173:470-482.
[109] Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, et al. (2009). S-Nitrosylation of Drp1 Mediates b-Amyloid-Related Mitochondrial Fission and Neuronal Injury. Science, 324:102-105.
[110] Julien C, Tremblay C, Emond V, Lebbadi M, Salem NJr, Bennett DA, et al. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol, 68:48-58.
[111] Martire S, Mosca L, d’Erme M (2015). PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mechanisms of Ageing and Development, 146-148:53-64.
[112] Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010). NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci, 30:2967-2978.
[113] Onyango IG, Dennis J, Khan SM (2016). Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies. Aging Dis, 7:201-214.
[114] Cai Q, Tammineni P (2016). Alterations in Mitochondrial Quality Control in Alzheimer’s Disease. Frontiers in Cellular Neuroscience, 10:17.
[115] Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. (2016). Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife, 5.
[116] Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23:9314-9325.
[117] Lamb CA, Yoshimori T, Tooze SA (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14:759-774.
[118] Ye X, Sun X, Starovoytov V, Cai Q (2015). Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet, 24:2938-2951.
[119] Youle RJ, Narendra DP (2010). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12:9-14.
[120] Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524:309-314.
[121] Zhou Q, Li H, Li H, Nakagawa A, Lin JLJ, Lee E-S, et al. (2016). Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science, 353:394-399.
[122] Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P (2016). Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A, 113:E5261-5270.
[123] Rojansky R, Cha MY, Chan DC (2016). Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife, 5.
[124] Sugiura A, McLelland GL, Fon EA, McBride HM (2014). A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J, 33:2142-2156.
[125] Taylor JP, Hardy J, Fischbeck KH (2002). Toxic proteins in neurodegenerative disease. Science, 296:1991-1995.
[126] Ross CA, Poirier MA (2004). Protein aggregation and neurodegenerative disease. Nat Med, 10 Suppl:S10-17.
[127] Ross CA, Poirier MA (2005). What is the role of protein aggregation in neurodegeneration. Nature reviews Molecular cell biology, 6.
[128] Nixon RA, Yang DS (2011). Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol Dis, 43:38-45.
[129] Rubinsztein DC (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 443:780-786.
[130] Verhoef LGGC, Lindsten K, Masucci MG, Dantuma NP (2002). Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet, 11:2689-2700.
[131] Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, et al. (2006). Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet, 15:433-442.
[132] Ravikumar B, Duden R, Rubinsztein DC (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 11:11.
[133] Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, et al. (2009). Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci, 29:13578-13588.
[134] Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003). α-Synuclein Is Degraded by Both Autophagy and the Proteasome. Journal of Biological Chemistry, 278:25009-25013.
[135] Boya P, Gonza´lez-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N, et al. (2005). Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 25:16.
[136] Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006). Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet, 15:1209-1216.
[137] Wu Y-T, Tan H-L, Huang Q, Kim Y-S, Pan N, Ong W-Y, et al. (2008). Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy, 4:457-466.
[138] Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, et al. (2019). Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177:299-314.e216.
[139] Geisler JG, Marosi K, Halpern J, Mattson MP (2017). DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimers Dement, 13:582-591.
[140] Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, et al. (2011). Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 192:615-629.
[141] Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Felix AA, et al. (2016). Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med, 22:879-888.
[142] Duan W, Mattson MP (1999). Dietary Restriction and 2-Deoxyglucose Administration Improve Behavioral Outcome and Reduce Degeneration of Dopaminergic Neurons in Models of Parkinson’s Disease. J Neurosci Res., 57:195-206.
[143] Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011). 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One, 6:e21788.
[144] Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J, Zhang X, et al. (2019). Sex-specific effects of microbiome perturbations on cerebral Abeta amyloidosis and microglia phenotypes. J Exp Med, 216:1542-1560.
[145] Halbach JL, Wang AW, Hawisher D, Cauvi DM, Lizardo RE, Rosas J, et al. (2017). Why Antibiotic Treatment Is Not Enough for Sepsis Resolution- an Evaluation in an Experimental Animal Model. Infect Immun, 85.
[146] Thompson JM, Saini V, Ashbaugh AG, Miller RJ, Ordonez AA, Ortines RV, et al. (2017). Oral-Only Linezolid-Rifampin Is Highly Effective Compared with Other Antibiotics for Periprosthetic Joint Infection: Study of a Mouse Model. J Bone Joint Surg Am, 99:656-665.
[147] Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep, 6:30028.
[148] Chiaravalli M, Rowe I, Mannella V, Quilici G, Canu T, Bianchi V, et al. (2016). 2-Deoxy-d-Glucose Ameliorates PKD Progression. J Am Soc Nephrol, 27:1958-1969.
[149] Tolomeo D, Micotti E, Serra SC, Chappell M, Snellman A, Forloni G (2018). Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer’s Disease. Sci Rep, 8:9576.
[150] Wagner GR, Bhatt DP, O’Connell TM, Thompson JW, Dubois LG, Backos DS, et al. (2017). A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metab, 25:823-837 e828.
[151] Moehle EA, Shen K, Dillin A (2019). Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem, 294:5396-5407.
[152] Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, et al. (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol, 24:101192.
[153] Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab, 24:795-806.
[154] Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. (2018). NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A, 115:E1876-E1885.
[155] Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, et al. (2014). Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem, 25:66-72.
[156] Kingwell K (2019). Turning up mitophagy in Alzheimer disease. Nat Rev Drug Discov.
[157] Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I (2005). 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol, 175:566-574.
[158] Scarpulla RC (2011). Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta, 1813:1269-1278.
[159] Enrica A, Marinos D, Sara S, Carlos MT, Salvatore D, Eric SA (1991). Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet, 337:508-510.
[160] Valero T (2014). Mitochondrial biogenesis- pharmacological approaches. Curr Pharm Des, 20:5507-5509.
[161] Li YH, Xu F, Thome R, Guo MF, Sun ML, Song GB, et al. (2019). Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. J Neuroinflammation, 16:149.
[162] Manczak M, Kandimalla R, Yin X, Reddy PH (2019). Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet, 28:177-199.
[163] Veeranki S, Tyagi SC (2017). Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiol Rep, 5.
[164] Reddy PH, Manczak M, Yin X (2017). Mitochondria-Division Inhibitor 1 Protects Against Amyloid-beta induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer’s Disease. J Alzheimers Dis, 58:147-162.
[165] Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T (2019). Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int J Mol Sci, 20.
[166] Sabatini DM (2017). Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proceedings of the National Academy of Sciences, 114:11818-11825.
[167] Blommaart EFC, Luiken JJFP, Blommaart PJE, Woerkom GMv, Meijer AJ (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. The Journal of Biological Chemistry, 270:2320-2326.
[168] Wang T, Lao U, Edgar BA (2009). TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol, 186:703-711.
[169] Benjamin D, Colombi M, Moroni C, Hall MN (2011). Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 10:868-880.
[170] Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, et al. (2006). AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis. Journal of Biological Chemistry, 281:34870-34879.
[171] Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. (2007). Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth. Cancer Research, 67:6745-6752.
[172] Martini-Stoica H, Xu Y, Ballabio A, Zheng H (2016). The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci, 39:221-234.
[173] Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010). Short-term fasting induces profound neuronal autophagy. Autophagy, 6:702-710.
[174] Moreira PI, Cardosob SM, Santosc MS, Oliveirab CR (2006). The key role of mitochondria in Alzheimer’s disease. J Alzheimers Dis, 9:101-110.
[175] Moreira PI, Santos MS, Oliveira CR (2007). Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal, 9:1621-1630.
[176] Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR (2009). An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis, 16:741-761.
[177] Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004). Oxidative stress signaling in Alzheimer’s disease. Brain Res, 1000:32-39.
[178] Benedikt Z, Manuel SM, Wei H, Felix U, Hsing-Jung C-E, Matthew FP, et al. (2019). A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science, 365:559-565.
[179] Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D'Amico D, et al. (2017). Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature, 552:187-193.
[180] RX S, SC C, C C, S C, MS S, PI M (2011). Mitophagy in Neurodegeneration- An Opportunity for Therapy. Curr Drug Targets, 12:790-799.
[181] Lautrup S, Lou G, Aman Y, Nilsen H, Tao J, Fang EF (2019). Microglial mitophagy mitigates neuroinflammation in Alzheimer’s disease. Neurochemistry International, 129.
[182] Camins A, Ettcheto M, Busquets O (2019). Potential preventive disease-modifying pharmacological strategies to delay late onset Alzheimer’s disease. Neural Regeneration Research, 14.
[183] Fernandez-Moriano C, Gonzalez-Burgos E, Gomez-Serranillos MP (2015). Mitochondria-Targeted Protective Compounds in Parkinson’s and Alzheimer’s Diseases. Oxid Med Cell Longev, 2015:408927.
[184] Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, et al. (2017). NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends in Molecular Medicine, 23:899-916.
[185] Verdin E (2015). NAD+ in aging, metabolism, and neurodegeneration. Science, 350:7.
[186] Bonkowski MS, Sinclair DA (2016). Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol, 17:679-690.
[187] Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, et al. (2015). Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res, 34:102.
[188] Canto C, Sauve AA, Bai P (2013). Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med, 34:1168-1201.
[189] Vendin E (2015). NAD+ in aging, metabolism, and neurodegeneration. Science, 350:1208-1213.
[190] Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012). Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer’s Disease. Molecular Neurobiology, 46:78-84.
[191] Martire S, Fuso A, Mosca L, Forte E, Correani V, Fontana M, et al. (2016). Bioenergetic Impairment in Animal and Cellular Models of Alzheimer’s Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. J Alzheimers Dis, 54:307-324.
[192] Blacher E, Dadali T, Bespalko A, Haupenthal VJ, Grimm MOW, Hartmann T, et al. (2015). Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Annals of Neurology, 78:88-103.
[193] Longo VD, Mattson MP (2014). Fasting: molecular mechanisms and clinical applications. Cell Metab, 19:181-192.
[194] Mattson MP (2015). Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev, 20:37-45.
[195] Canto C, Auwerx J (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab, 20:325-331.
[196] Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019). A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease. Nat Rev Neurol.
[197] Mattson MP, Arumugam TV (2018). Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metabolism, 27:1176-1199.
[1] Chi Him Poon,Yingyi Wang,Man-Lung Fung,Chengfei Zhang,Lee Wei Lim. Rodent Models of Amyloid-Beta Feature of Alzheimer’s Disease: Development and Potential Treatment Implications[J]. Aging and disease, 2020, 11(5): 1235-1259.
[2] Kan Yin Wong,Jaydeep Roy,Man Lung Fung,Boon Chin Heng,Chengfei Zhang,Lee Wei Lim. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer’s Disease[J]. Aging and disease, 2020, 11(5): 1291-1316.
[3] Wei-Xing Ma,Jing Tang,Zhi-Wen Lei,Chun-Yan Li,Li-Qing Zhao,Chao Lin,Tao Sun,Zheng-Yi Li,Ying-Hui Jiang,Jun-Tao Jia,Cheng-Zhu Liang,Jun-Hong Liu,Liang-Jun Yan. Potential Biochemical Mechanisms of Brain Injury in Diabetes Mellitus[J]. Aging and disease, 2020, 11(4): 978-987.
[4] Seong Gak Jeon, Anji Yoo, Dong Wook Chun, Sang Bum Hong, Hyunju Chung, Jin-il Kim, Minho Moon. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer’s Disease-related Pathogenesis[J]. Aging and disease, 2020, 11(3): 705-724.
[5] Yongming Jia, Na Wang, Yingbo Zhang, Di Xue, Haoming Lou, Xuewei Liu. Alteration in the Function and Expression of SLC and ABC Transporters in the Neurovascular Unit in Alzheimer’s Disease and the Clinical Significance[J]. Aging and disease, 2020, 11(2): 390-404.
[6] Yu Sun, Fanghao Lu, Xiangjing Yu, Bingzhu Wang, Jian Chen, Fangping Lu, Shuo Peng, Xiaojiao Sun, Miao Yu, He Chen, Yan Wang, Linxue Zhang, Ning Liu, Haining Du, Dechao Zhao, Weihua Zhang. Exogenous H2S Promoted USP8 Sulfhydration to Regulate Mitophagy in the Hearts of db/db Mice[J]. Aging and disease, 2020, 11(2): 269-285.
[7] Yibo Yang, Tianyi Li, Zhibo Li, Ning Liu, Youyou Yan, Bin Liu. Role of Mitophagy in Cardiovascular Disease[J]. Aging and disease, 2020, 11(2): 419-437.
[8] Yanfang Zhao, Yuan Zhang, Lei Zhang, Yanhan Dong, Hongfang Ji, Liang Shen. The Potential Markers of Circulating microRNAs and long non-coding RNAs in Alzheimer's Disease[J]. Aging and disease, 2019, 10(6): 1293-1301.
[9] Jie Zhang, Lijun Wang, Xia Deng, Guoqiang Fei, Lirong Jin, Xiaoli Pan, Liuhan Cai, Anthony D Albano, Chunjiu Zhong. Five-Minute Cognitive Test as A New Quick Screening of Cognitive Impairment in The Elderly[J]. Aging and disease, 2019, 10(6): 1258-1269.
[10] Piotr Gronek, Stefan Balko, Joanna Gronek, Adam Zajac, Adam Maszczyk, Roman Celka, Agnieszka Doberska, Wojciech Czarny, Robert Podstawski, Cain C. T Clark, Fang Yu. Physical Activity and Alzheimer’s Disease: A Narrative Review[J]. Aging and disease, 2019, 10(6): 1282-1292.
[11] Yingnan Xue, Zhenhua Zhang, Caiyun Wen, Huiru Liu, Suyuan Wang, Jiance Li, Qichuan Zhuge, Weijian Chen, Qiong Ye. Characterization of Alzheimer’s Disease Using Ultra-high b-values Apparent Diffusion Coefficient and Diffusion Kurtosis Imaging[J]. Aging and disease, 2019, 10(5): 1026-1036.
[12] Xiao-Li Zhou, Meng-Bei Xu, Ting-Yu Jin, Pei-Qing Rong, Guo-Qing Zheng, Yan Lin. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer’s Disease[J]. Aging and disease, 2019, 10(5): 1075-1093.
[13] Zhi-Ying Tian, Chun-Yan Wang, Tao Wang, Yan-Chun Li, Zhan-You Wang. Glial S100A6 Degrades β-amyloid Aggregation through Targeting Competition with Zinc Ions[J]. Aging and disease, 2019, 10(4): 756-769.
[14] Takehiko Yamanaka, Yuto Uchida, Keita Sakurai, Daisuke Kato, Masayuki Mizuno, Toyohiro Sato, Yuta Madokoro, Yuko Kondo, Ayuko Suzuki, Yoshino Ueki, Fumiyasu Ishii, Cesar V Borlongan, Noriyuki Matsukawa. Anatomical Links between White Matter Hyperintensity and Medial Temporal Atrophy Reveal Impairment of Executive Functions[J]. Aging and disease, 2019, 10(4): 711-718.
[15] Yu-Sheng Li, Zhi-Hua Yang, Yao Zhang, Jing Yang, Dan-Dan Shang, Shu-Yu Zhang, Jun Wu, Yan Ji, Lu Zhao, Chang-He Shi, Yu-Ming Xu. Two Novel Mutations and a de novo Mutation in PSEN1 in Early-onset Alzheimer’s Disease[J]. Aging and disease, 2019, 10(4): 908-914.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd