Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2021, Vol. 12 Issue (5) : 1323-1336     DOI: 10.14336/AD.2020.1229
Review Article |
The Role of SGLT2 Inhibitors in Vascular Aging
Le Liu1,2, Yu-Qing Ni1,2, Jun-Kun Zhan1,2,*, You-Shuo Liu1,2,*
1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China.
Download: PDF(737 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.

Keywords vascular aging      sodium-dependent glucose transporters 2 inhibitor      arterial stiffness      endothelial cells      vascular smooth muscle cells     
Corresponding Authors: Zhan Jun-Kun,Liu You-Shuo   
About author:

These authors equally contributed this work.

Just Accepted Date: 05 January 2021   Issue Date: 01 August 2021
E-mail this article
E-mail Alert
Articles by authors
Liu Le
Ni Yu-Qing
Zhan Jun-Kun
Liu You-Shuo
Cite this article:   
Liu Le,Ni Yu-Qing,Zhan Jun-Kun, et al. The Role of SGLT2 Inhibitors in Vascular Aging[J]. Aging and disease, 2021, 12(5): 1323-1336.
URL:     OR
Dosage100mg daily, 300mg max5mg daily, 10mg max10mg daily, 25mg max
Half-life100mg: 10.6 h, 300mg: 13.1 h12.9h12.4h
Time to reach peak plasma concentration1h-2h2h1.5h
Oral bioavailability65%78%70-90%
Protein binding99%91%86.2%
MetabolismUGT1A9, UGT2B4, CYP3A4UGT1A9,
Excretion51.7% feces, 33% urine75% urine, 21% feces54.4% urine, 41.2% feces
Molecular formulaC24H25FO5S1/2H2OC21H25CIO6·C3H8O2·H2OC23H27ClO7
Volume of distribution83.5L118L73.8L
Table 1  Three common SGLT2 inhibitors
Figure 1.  The mechanism of vascular aging.
Figure 2.  The effect of SGLT2 inhibitor on vascular aging.
[1] Niiranen TJ, Lyass A, Larson MG, Hamburg NM, Benjamin EJ, Mitchell GF, et al. (2017). Prevalence, Correlates, and Prognosis of Healthy Vascular Aging in a Western Community-Dwelling Cohort: The Framingham Heart Study. Hypertension, 70:267-274.
[2] Lin X, Zhan JK, Wang YJ, Tan P, Chen YY, Deng HQ, et al. (2016). Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. Biomed Res Int, 2016:6021394.
[3] Ni YQ, Lin X, Zhan JK, Liu YS (2020). Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis, 11:164-178.
[4] Lin X, Zhan JK, Zhong JY, Wang YJ, Wang Y, Li S, et al. (2019). lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging (Albany NY), 11:523-535.
[5] Pradhan A, Vohra S, Vishwakarma P, Sethi R (2019). Review on sodium-glucose cotransporter 2 inhibitor (SGLT2i) in diabetes mellitus and heart failure. J Family Med Prim Care, 8:1855-1862.
[6] Brown AJM, Lang C, McCrimmon R, Struthers A (2017). Does dapagliflozin regress left ventricular hypertrophy in patients with type 2 diabetes? A prospective, double-blind, randomised, placebo-controlled study. BMC Cardiovasc Disord, 17:229.
[7] Mordi NA, Mordi IR, Singh JS, Baig F, Choy AM, McCrimmon RJ, et al. (2017). Renal and Cardiovascular Effects of sodium-glucose cotransporter 2 (SGLT2) inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure (RECEDE-CHF): protocol for a randomised controlled double-blind cross-over trial. BMJ Open, 7:e018097.
[8] Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C, et al. (2019). SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol, 316:F173-f185.
[9] Thomas MC, Cherney DZI (2018). The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia, 61:2098-2107.
[10] Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI (2017). Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation, 136:1643-1658.
[11] Chao J, Guo Y, Chao L (2018). Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation. Oxid Med Cell Longev, 2018:4138560.
[12] Donato AJ, Machin DR, Lesniewski LA (2018). Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ Res, 123:825-848.
[13] Badi I, Burba I, Ruggeri C, Zeni F, Bertolotti M, Scopece A, et al. (2015). MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors. J Gerontol A Biol Sci Med Sci, 70:1304-1311.
[14] Oikawa S, Wada S, Lee M, Maeda S, Akimoto T (2018). Role of endothelial microRNA-23 clusters in angiogenesis in vivo. Am J Physiol Heart Circ Physiol, 315:H838-h846.
[15] Zong Y, Wu P, Nai C, Luo Y, Hu F, Gao W, et al. (2017). Effect of MicroRNA-30e on the Behavior of Vascular Smooth Muscle Cells via Targeting Ubiquitin-Conjugating Enzyme E2I. Circ J, 81:567-576.
[16] Tian X, Yu C, Shi L, Li D, Chen X, Xia D, et al. (2018). MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp Ther Med, 16:595-602.
[17] Gray K, Bennett M (2011). Role of DNA damage in atherosclerosis--bystander or participant? Biochem Pharmacol, 82:693-700.
[18] Botto N, Berti S, Manfredi S, Al-Jabri A, Federici C, Clerico A, et al. (2005). Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res, 570:81-88.
[19] Botto N, Rizza A, Colombo MG, Mazzone AM, Manfredi S, Masetti S, et al. (2001). Evidence for DNA damage in patients with coronary artery disease. Mutat Res, 493:23-30.
[20] Mahmoudi M, Gorenne I, Mercer J, Figg N, Littlewood T, Bennett M (2008). Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res, 103:717-725.
[21] Wang JC, Bennett M (2012). Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res, 111:245-259.
[22] LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR (2012). Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol, 590:3305-3316.
[23] LaRocca TJ, Gioscia-Ryan RA, Hearon CMJr., Seals DR (2013). The autophagy enhancer spermidine reverses arterial aging. Mech Ageing Dev, 134:314-320.
[24] Grootaert MO, da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GR, Martinet W, et al. (2015). Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy, 11:2014-2032.
[25] Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, et al. (2018). Impairment of an Endothelial NAD(+)-H(2)S Signaling Network Is a Reversible Cause of Vascular Aging. Cell, 173:74-89.e20.
[26] Chen HZ, Wang F, Gao P, Pei JF, Liu Y, Xu TT, et al. (2016). Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic Aneurysm. Circ Res, 119:1076-1088.
[27] Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR (2011). SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol, 589:4545-4554.
[28] Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, et al. (2008). Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res, 80:191-199.
[29] Li DJ, Huang F, Ni M, Fu H, Zhang LS, Shen FM (2016). α7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity. Arterioscler Thromb Vasc Biol, 36:1566-1576.
[30] Li DJ, Tong J, Zeng FY, Guo M, Li YH, Wang H, et al. (2019). Nicotinic ACh receptor α7 inhibits PDGF-induced migration of vascular smooth muscle cells by activating mitochondrial deacetylase sirtuin 3. Br J Pharmacol, 176:4388-4401.
[31] Li DJ, Tong J, Li YH, Meng HB, Ji QX, Zhang GY, et al. (2019). Melatonin safeguards against fatty liver by antagonizing TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner. J Pineal Res, 67:e12611.
[32] Cho K, Choi SH (2019). ASK1 Mediates Apoptosis and Autophagy during oxLDL-CD36 Signaling in Senescent Endothelial Cells. Oxid Med Cell Longev, 2019:2840437.
[33] Yokoi T, Fukuo K, Yasuda O, Hotta M, Miyazaki J, Takemura Y, et al. (2006). Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes, 55:1660-1665.
[34] Jia G, Aroor AR, Jia C, Sowers JR (2019). Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis, 1865:1802-1809.
[35] Uryga AK, Bennett MR (2016). Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol, 594:2115-2124.
[36] Chi C, Li DJ, Jiang YJ, Tong J, Fu H, Wu YH, et al. (2019). Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis, 1865:1810-1821.
[37] Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB (2012). The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res, 95:194-204.
[38] Gardner SE, Humphry M, Bennett MR, Clarke MC (2015). Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α-Dependent Senescence-Associated Secretory Phenotype. Arterioscler Thromb Vasc Biol, 35:1963-1974.
[39] Chirinos JA, Segers P, Hughes T, Townsend R (2019). Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol, 74:1237-1263.
[40] Mehta S, Khoury PR, Madsen NL, Dolan LM, Kimball TR, Urbina EM (2018). Arterial Thickness and Stiffness Are Independently Associated with Left Ventricular Strain. J Am Soc Echocardiogr, 31:99-104.
[41] Jaroch J, Łoboz-Grudzień K, Magda S, Florescu M, Bociąga Z, Ciobanu AO, et al. (2016). The Relationship of Carotid Arterial Stiffness and Left Ventricular Concentric Hypertrophy in Hypertension. Adv Clin Exp Med, 25:263-272.
[42] Zhang X, Lim SC, Tavintharan S, Yeoh LY, Sum CF, Ang K, et al. (2019). Association of central arterial stiffness with the presence and severity of diabetic retinopathy in Asians with type 2 diabetes. Diab Vasc Dis Res, 16:498-505.
[43] Yeboah K, Agyekum JA, Owusu Mensah RNA, Affrim PK, Adu-Gyamfi L, Doughan RO, et al. (2018). Arterial Stiffness Is Associated with Peripheral Sensory Neuropathy in Diabetes Patients in Ghana. J Diabetes Res, 2018:2320737.
[44] Fu S, Guo Y, Luo L, Ye P (2018). Association of arterial stiffness and central hemodynamics with moderately reduced glomerular filtration rate in Chinese middle-aged and elderly community residents: a cross-sectional analysis. BMC Nephrol, 19:103.
[45] Hughes TM, Wagenknecht LE, Craft S, Mintz A, Heiss G, Palta P, et al. (2018). Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET Study. Neurology, 90:e1248-e1256.
[46] Jin J, Liu Y, Huang L, Tan H (2019). Advances in epigenetic regulation of vascular aging. Rev Cardiovasc Med, 20:19-25.
[47] Pescatore LA, Gamarra LF, Liberman M (2019). Multifaceted Mechanisms of Vascular Calcification in Aging. Arterioscler Thromb Vasc Biol, 39:1307-1316.
[48] Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, et al. (2017). Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med, 281:471-482.
[49] Cisternas P, Taylor X, Perkins A, Maldonado O, Allman E, Cordova R, et al. (2020). Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell, 19:e13233.
[50] Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, et al. (2010). Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol, 69:1034-1043.
[51] Li H, Zhu H, Wallack M, Mwamburi M, Abdul-Hay SO, Leissring MA, et al. (2016). Age and its association with low insulin and high amyloid-β peptides in blood. J Alzheimers Dis, 49:129-137.
[52] Stamatelopoulos K, Sibbing D, Rallidis LS, Georgiopoulos G, Stakos D, Braun S, et al. (2015). Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J Am Coll Cardiol, 65:904-916.
[53] Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. (2019). Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol Biochem, 53:865-886.
[54] Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018). Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol, 100:1-19.
[55] Behnammanesh G, Durante GL, Khanna YP, Peyton KJ, Durante W (2020). Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox Biol, 32:101527.
[56] Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M (2016). Glycemic Control with Ipragliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic Mouse. Front Cardiovasc Med, 3:43.
[57] Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. (2019). Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia, 62:1154-1166.
[58] Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, et al. (2018). Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol, 17:108.
[59] Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. (2018). SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol, 17:62.
[60] Takahashi H, Nomiyama T, Terawaki Y, Horikawa T, Kawanami T, Hamaguchi Y, et al. (2019). Combined treatment with DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice. Biochem Biophys Rep, 18:100640.
[61] Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, et al. (2017). The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol, 13:370-385.
[62] Li C, Zhang J, Xue M, Li X, Han F, Liu X, et al. (2019). SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol, 18:15.
[63] Chen YY, Wu TT, Ho CY, Yeh TC, Sun GC, Kung YH, et al. (2019). Dapagliflozin Prevents NOX- and SGLT2-Dependent Oxidative Stress in Lens Cells Exposed to Fructose-Induced Diabetes Mellitus. Int J Mol Sci, 20.
[64] Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. (2017). SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine, 20:137-149.
[65] Wang XX, Levi J, Luo Y, Myakala K, Herman-Edelstein M, Qiu L, et al. (2017). SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 PROTEIN INHIBITION DECREASES RENAL LIPID ACCUMULATION, INFLAMMATION, AND THE DEVELOPMENT OF NEPHROPATHY IN DIABETIC MICE. J Biol Chem, 292:5335-5348.
[66] Dimitriadis GK, Nasiri-Ansari N, Agrogiannis G, Kostakis ID, Randeva MS, Nikiteas N, et al. (2019). Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice. Mol Cell Endocrinol, 494:110487.
[67] Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G, Perrea D, Kostakis ID, Kaltsas G, et al. (2018). Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol, 17:106.
[68] Nakatsu Y, Kokubo H, Bumdelger B, Yoshizumi M, Yamamotoya T, Matsunaga Y, et al. (2017). The SGLT2 Inhibitor Luseogliflozin Rapidly Normalizes Aortic mRNA Levels of Inflammation-Related but Not Lipid-Metabolism-Related Genes and Suppresses Atherosclerosis in Diabetic ApoE KO Mice. Int J Mol Sci, 18.
[69] Hidalgo Santiago JC, Maraver Delgado J, Cayón Blanco M, López Saez JB, Gómez-Fernández P (2020). Effect of dapagliflozin on arterial stiffness in patients with type 2 diabetes mellitus. Med Clin (Barc), 154:171-174.
[70] Lunder M, Janić M, Japelj M, Juretič A, Janež A, Šabovič M (2018). Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol, 17:153.
[71] Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. (2017). Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol, 16:138.
[72] Devineni D, Polidori D, Curtin CR, Murphy J, Wang SS, Stieltjes H, et al. (2015). Pharmacokinetics and pharmacodynamics of once- and twice-daily multiple-doses of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. Int J Clin Pharmacol Ther, 53:438-446.
[73] Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, et al. (2019). The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J Clin Endocrinol Metab, 104:4253-4263.
[74] Cai X, Ji L, Chen Y, Yang W, Zhou L, Han X, et al. (2017). Comparisons of weight changes between sodium-glucose cotransporter 2 inhibitors treatment and glucagon-like peptide-1 analogs treatment in type 2 diabetes patients: A meta-analysis. J Diabetes Investig, 8:510-517.
[75] Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E (2015). Energy Balance After Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Care, 38:1730-1735.
[76] Mazidi M, Rezaie P, Gao HK, Kengne AP (2017). Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients. J Am Heart Assoc, 6.
[77] Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. (2017). Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 6.
[78] Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, et al. (2018). Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab, 20:458-462.
[79] Sano M, Takei M, Shiraishi Y, Suzuki Y (2016). Increased Hematocrit During Sodium-Glucose Cotransporter 2 Inhibitor Therapy Indicates Recovery of Tubulointerstitial Function in Diabetic Kidneys. J Clin Med Res, 8:844-847.
[80] Tang H, Zhang X, Zhang J, Li Y, Del Gobbo LC, Zhai S, et al. (2016). Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia, 59:2546-2551.
[81] Filippatos TD, Tsimihodimos V, Liamis G, Elisaf MS (2018). SGLT2 inhibitors-induced electrolyte abnormalities: An analysis of the associated mechanisms. Diabetes Metab Syndr, 12:59-63.
[82] Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 373:2117-2128.
[83] Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med, 377:644-657.
[84] Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al. (2017). Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation, 136:249-259.
[85] Capitão M, Soares R (2016). Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J Cell Biochem, 117:2443-2453.
[86] Wong TY, Cheung CM, Larsen M, Sharma S, Simó R (2016). Diabetic retinopathy. Nat Rev Dis Primers, 2:16012.
[87] Lim JC, Perwick RD, Li B, Donaldson PJ (2017). Comparison of the expression and spatial localization of glucose transporters in the rat, bovine and human lens. Exp Eye Res, 161:193-204.
[88] Ott C, Jumar A, Striepe K, Friedrich S, Karg MV, Bramlage P, et al. (2017). A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol, 16:26.
[89] Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S (2018). AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol, 833:158-164.
[90] Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S (2015). Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm Metab Res, 47:686-692.
[91] Hatanaka T, Ogawa D, Tachibana H, Eguchi J, Inoue T, Yamada H, et al. (2016). Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol Res Perspect, 4:e00239.
[92] Gallo LA, Ward MS, Fotheringham AK, Zhuang A, Borg DJ, Flemming NB, et al. (2016). Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep, 6:26428.
[93] Heerspink HJ, Desai M, Jardine M, Balis D, Meininger G, Perkovic V (2017). Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. J Am Soc Nephrol, 28:368-375.
[94] Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. (2019). Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med, 380:2295-2306.
[95] DeFronzo RA (2017). Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes Obes Metab, 19:1353-1362.
[96] Abdel-Wahab AF, Bamagous GA, Al-Harizy RM, ElSawy NA, Shahzad N, Ibrahim IA, et al. (2018). Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomed Pharmacother, 103:59-66.
[97] Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundström J, et al. (2016). Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol, 4:411-419.
[98] Pfeifer M, Townsend RR, Davies MJ, Vijapurkar U, Ren J (2017). Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol, 16:29.
[99] Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. (2015). Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab, 17:1180-1193.
[100] Schernthaner G, Lavalle-González FJ, Davidson JA, Jodon H, Vijapurkar U, Qiu R, et al. (2016). Canagliflozin provides greater attainment of both HbA1c and body weight reduction versus sitagliptin in patients with type 2 diabetes. Postgrad Med, 128:725-730.
[101] Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, et al. (2015). Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab, 17:294-303.
[102] Calapkulu M, Cander S, Gul OO, Ersoy C (2019). Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr, 13:1031-1034.
[103] Milonas D, Tziomalos K (2018). Sodium-glucose Cotransporter 2 Inhibitors and Ischemic Stroke. Cardiovasc Hematol Disord Drug Targets, 18:134-138.
[104] Guo M, Ding J, Li J, Wang J, Zhang T, Liu C, et al. (2018). SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab, 20:1977-1982.
[105] Sato K, Mano T, Iwata A, Toda T (2019). Subtype-Dependent Reporting of Stroke With SGLT2 Inhibitors: Implications From a Japanese Pharmacovigilance Study. J Clin Pharmacol.
[1] Mahesh Kandasamy,Muthuswamy Anusuyadevi,Kiera M Aigner,Michael S Unger,Kathrin M Kniewallner,Diana M Bessa de Sousa,Barbara Altendorfer,Heike Mrowetz,Ulrich Bogdahn,Ludwig Aigner. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia?[J]. Aging and disease, 2020, 11(4): 828-850.
[2] Yu-Qing Ni, Xiao Lin, Jun-Kun Zhan, You-Shuo Liu. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging[J]. Aging and disease, 2020, 11(1): 164-178.
[3] Meili Wang, Xiaochen Yin, Suli Zhang, Chenfeng Mao, Ning Cao, Xiaochun Yang, Jingwei Bian, Weiwei Hao, Qian Fan, Huirong Liu. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence[J]. Aging and disease, 2019, 10(5): 1012-1025.
[4] Xu Xianglai, Wang Brian, Ren Changhong, Hu Jiangnan, Greenberg David A., Chen Tianxiang, Xie Liping, Jin Kunlin. Age-related Impairment of Vascular Structure and Functions[J]. Aging and disease, 2017, 8(5): 590-610.
[5] Xu Xianglai, Wang Brian, Ren Changhong, Hu Jiangnan, Greenberg David A., Chen Tianxiang, Xie Liping, Jin Kunlin. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases[J]. Aging and disease, 2017, 8(4): 486-505.
[6] Sesti Federico. Oxidation of K+ Channels in Aging and Neurodegeneration[J]. Aging and disease, 2016, 7(2): 130-135.
[7] Hu Heng, N. Doll Danielle, Sun Jiahong, E. Lewis Sara, H. Wimsatt Jeffrey, J. Kessler Matthew, W. Simpkins James, Ren Xuefang. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity[J]. Aging and disease, 2016, 7(1): 14-27.
[8] Peter M Nilsson. Hemodynamic Aging as the Consequence of Structural Changes Associated with Early Vascular Aging (EVA)[J]. Aging and Disease, 2014, 5(2): 109-113.
[9] João Luis Carvalho-de-Souza,Wamberto A. Varanda,Rita C. Tostes,Andreia Z. Chignalia. BK Channels in Cardiovascular Diseases and Aging[J]. Aging and Disease, 2013, 4(1): 38-49.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd