Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2010, Vol. 1 Issue (2) : 147-157     DOI:
|
Insulin, IGF-1 and longevity
Diana van Heemst1, *
1Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
Download: PDF(637 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

It has been demonstrated in invertebrate species that the evolutionarily conserved insulin and insulin-like growth factor (IGF) signaling (IIS) pathway plays a major role in the control of longevity. In the roundworm Caenorhabditis elegans, single mutations that diminish insulin/IGF-1 signaling can increase lifespan more than twofold and cause the animal to remain active and youthful much longer than normal. Likewise, substantial increases in lifespan are associated with mutations that reduce insulin/IGF-1 signaling in the fruit fly Drosophila melanogaster. In invertebrates, multiple insulin-like ligands exist that bind to a common single insulin/IGF-1 like receptor. In contrast, in mammals, different receptors exist that bind insulin, IGF-1 and IGF-2 with different affinities. In several mouse models, mutations that are associated with decreased GH/IGF-1 signaling or decreased insulin signaling have been associated with enhanced lifespan. However, the increased complexity of the mammalian insulin/IGF-1 system has made it difficult to separate the roles of insulin, GH and IGF-1 in mammalian longevity. Likewise, the relevance of reduced insulin and IGF-1 signaling in human longevity remains controversial. However, studies on the genetic and metabolic characteristics that are associated with healthy longevity and old age survival suggest that the conserved ancient IIS pathway may also play a role in human longevity.

Keywords Insulin      IGF-1      longevity      signaling     
Corresponding Authors: Diana van Heemst   
Issue Date: 01 February 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Diana van Heemst
Cite this article:   
Diana van Heemst. Insulin, IGF-1 and longevity[J]. Aging and Disease, 2010, 1(2): 147-157.
URL:  
http://www.aginganddisease.org/EN/     OR     http://www.aginganddisease.org/EN/Y2010/V1/I2/147
[1] Kenyon CJ(2010). The genetics of ageing. Nature, 464:504-12
[2] Braendle C, Milloz J, Felix MA(2008). Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol, 80:171-207
[3] Klass M, Hirsh D(1976). Non-ageing developmental variant of Caenorhabditis elegans. Nature, 260:523-5
[4] Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL(1998). Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics, 150:129-55
[5] Tissenbaum HA, Ruvkun G(1998). An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics, 148:703-17
[6] Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G(1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277:942-6
[7] Lin K, Dorman JB, Rodan A, Kenyon C(1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science, 278:1319-22
[8] Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G(1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389:994-9
[9] Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G(2002). Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem, 277:49591-7
[10] Morris JZ, Tissenbaum HA, Ruvkun G(1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382:536-9
[11] Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G(1999). A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev, 13:1438-52
[12] Dorman JB, Albinder B, Shroyer T, Kenyon C(1995). The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics, 141:1399-406
[13] Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C(2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424:277-83
[14] Toivonen JM, Partridge L(2009). Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol, 299:39-50
[15] Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS(2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 292:107-10
[16] Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L(2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292:104-6
[17] Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A(2007). FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci U S A, 104:15899-904
[18] Taniguchi CM, Emanuelli B, Kahn CR(2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 7:85-96
[19] Kornfeld S(1992). Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem, 61:307-30
[20] Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R(2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev, 30:586-623
[21] Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE(2003). Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem, 278:25323-30
[22] Foster FM, Traer CJ, Abraham SM, Fry MJ(2003). The phosphoinositide (PI) 3-kinase family. J Cell Sci, 116:3037-40
[23] Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD(1997). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci, 22:267-72
[24] van der Horst A, Burgering BM(2007). Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol, 8:440-50
[25] Lanning NJ, Carter-Su C(2006). Recent advances in growth hormone signaling. Rev Endocr Metab Disord, 7:225-35
[26] Bluher M, Kahn BB, Kahn CR(2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science, 299:572-4
[27] Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR(2002). Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell, 3:25-38
[28] Katic M, Kennedy AR, Leykin I, Norris A, McGettrick A, Gesta S, Russell SJ, Bluher M, Maratos-Flier E, Kahn CR(2007). Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell, 6:827-39
[29] Brown-Borg HM, Borg KE, Meliska CJ, Bartke A(1996). Dwarf mice and the ageing process. Nature, 384:33
[30] Flurkey K, Papaconstantinou J, Miller RA, Harrison DE(2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A, 98:6736-41
[31] Chandrashekar V, Bartke A, Coschigano KT, Kopchick JJ(1999). Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology, 140:1082-8
[32] Bartke A(2008). Insulin and aging. Cell Cycle, 7:3338-43
[33] Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y(2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421:182-7
[34] Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M(2005). Suppression of aging in mice by the hormone Klotho. Science, 309:1829-33
[35] Kuro-o M(2009). Klotho and aging. Biochim Biophys Acta, 1790:1049-58
[36] Masternak MM, Panici JA, Bonkowski MS, Hughes LF, Bartke A(2009). Insulin sensitivity as a key mediator of growth hormone actions on longevity. J Gerontol A Biol Sci Med Sci, 64:516-21
[37] Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E, Piper MD, Al-Qassab H, Speakman JR, Carmignac D, Robinson IC, Thornton JM, Gems D, Partridge L, Withers DJ(2008). Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J, 22:807-18
[38] Taguchi A, Wartschow LM, White MF(2007). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science, 317:369-72
[39] Besson A, Salemi S, Gallati S, Jenal A, Horn R, Mullis PS, Mullis PE(2003). Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab, 88:3664-7
[40] Shevah O, Laron Z(2007). Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res, 17:54-7
[41] Bonafe M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G(2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab, 88:3299-304
[42] van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RG(2005). Reduced insulin/IGF-1 signalling and human longevity. Aging Cell, 4:79-85
[43] Euser SM, van Heemst D, van Vliet P, Breteler MM, Westendorp RG(2008). Insulin/Insulin-like growth factor-1 signaling and cognitive function in humans. J Gerontol A Biol Sci Med Sci, 63:907-10
[44] Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P(2008). Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A, 105:3438-42
[45] Paolisso G, Ammendola S, Del Buono A, Gambardella A, Riondino M, Tagliamonte MR, Rizzo MR, Carella C, Varricchio M(1997). Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab, 82:2204-9
[46] Kojima T, Kamei H, Aizu T, Arai Y, Takayama M, Nakazawa S, Ebihara Y, Inagaki H, Masui Y, Gondo Y, Sakaki Y, Hirose N(2004). Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol, 39:1595-8
[47] Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E(2009). Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell, 8:460-72
[48] Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD(2008). FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A, 105:13987-92
[49] Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA(2009). Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res, 12:95-104
[50] Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A(2009). Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A, 106:2700-5
[51] Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL(2009). Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet, 18:4897-904
[52] Kuningas M, Magi R, Westendorp RG, Slagboom PE, Remm M, van Heemst D(2007). Haplotypes in the human Foxo1a and Foxo3a genes; impact on disease and mortality at old age. Eur J Hum Genet, 15:294-301
[53] Chen M, Bergman RN, Pacini G, Porte DJr(1985). Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function. J Clin Endocrinol Metab, 60:13-20
[54] Evert J, Lawler E, Bogan H, Perls T(2003). Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci, 58:232-7
[55] Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N(2004). Clinical phenotype of families with longevity. J Am Geriatr Soc, 52:274-7
[56] Westendorp RG, van Heemst D, Rozing MP, Frolich M, Mooijaart SP, Blauw GJ, Beekman M, Heijmans BT, de Craen AJ, Slagboom PE(2009). Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. J Am Geriatr Soc, 57:1634-7
[57] Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M, D’Onofrio F(1996). Glucose tolerance and insulin action in healty centenarians. Am J Physiol, 270:E890-E894
[58] Paolisso G, Barbieri M, Rizzo MR, Carella C, Rotondi M, Bonafe M, Franceschi C, Rose G, De Benedictis G(2001). Low insulin resistance and preserved beta-cell function contribute to human longevity but are not associated with TH-INS genes. Exp Gerontol, 37:149-56
[59] Rozing MP, Westendorp RG, de Craen AJ, Frolich M, de Goeij MC, Heijmans BT, Beekman M, Wijsman CA, Mooijaart SP, Blauw GJ, Slagboom PE, van Heemst D(2010). Favorable glucose tolerance and lower prevalence of metabolic syndrome in offspring without diabetes mellitus of nonagenarian siblings: the Leiden longevity study. J Am Geriatr Soc, 58:564-9
[60] Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, Rincon M, Siegel G, Katz M, Lipton RB, Shuldiner AR, Barzilai N(2008). Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci, 63:447-53
[61] Calnan DR, Brunet A(2008). The FoxO code. Oncogene, 27:2276-88
[62] Dansen TB, Kops GJ, Denis S, Jelluma N, Wanders RJ, Bos JL, Burgering BM, Wirtz KW(2004). Regulation of sterol carrier protein gene expression by the forkhead transcription factor FOXO3a. J Lipid Res, 45:81-8
[63] Puig O, Tjian R(2005). Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev, 19:2435-46
[64] Nunn AV, Bell J, Barter P(2007). The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. Nucl Recept, 5:1
[65] Salminen A, Kaarniranta K(2010). Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal, 22:573-7
[66] Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P(2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434:113-8
[67] Sohal RS, Allen RG(1985). Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory. Basic Life Sci, 35:75-104
[68] Lambert AJ, Wang B, Yardley J, Edwards J, Merry BJ(2004). The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp Gerontol, 39:289-95
[69] Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO(2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310:314-7
[70] Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R(2006). Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A, 103:1768-73
[71] Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME(2004). Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab, 286:E852-E861
[72] Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E(2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med, 4:e76
[73] Maassen JA, Janssen GM, Lemkes HH(2002). Mitochondrial diabetes mellitus. J Endocrinol Invest, 25:477-84
[74] Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B(2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science, 301:1387-91
[75] Fontana L, Partridge L, Longo VD(2010). Extending healthy life span--from yeast to humans. Science, 328:321-6
[1] Pedro Carrera-Bastos,Óscar Picazo,Maelán Fontes-Villalba,Helios Pareja-Galeano,Staffan Lindeberg,Manuel Martínez-Selles,Alejandro Lucia,Enzo Emanuele. Serum Zonulin and Endotoxin Levels in Exceptional Longevity versus Precocious Myocardial Infarction[J]. A&D, 2018, 9(2): 317-321.
[2] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[3] Qian Sun,Tian Wang,Tian-Fang Jiang,Pei Huang,Ying Wang,Qin Xiao,Jun Liu,Sheng-Di Chen. Clinical Profile of Chinese Long-Term Parkinson’s Disease Survivors With 10 Years of Disease Duration and Beyond[J]. A&D, 2018, 9(1): 8-16.
[4] Qianfa Long,Qiang Luo,Kai Wang,Adrian Bates,Ashok K. Shetty. Mash1-dependent Notch Signaling Pathway Regulates GABAergic Neuron-Like Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells[J]. A&D, 2017, 8(3): 301-313.
[5] Alberto Lana,Ana Valdés-Bécares,Antonio Buño,Fernando Rodríguez-Artalejo,Esther Lopez-Garcia. Serum Leptin Concentration is Associated with Incident Frailty in Older Adults[J]. A&D, 2017, 8(2): 240-249.
[6] Anargiros Mariolis,Alexandra Foscolou,Stefanos Tyrovolas,Suzanne Piscopo,Giuseppe Valacchi,Nikos Tsakountakis,Akis Zeimbekis,Vassiliki Bountziouka,Efthimios Gotsis,George Metallinos,Dimitra Tyrovola,Josep-Antoni Tur,Antonia-Leda Matalas,Christos Lionis,Evangelos Polychronopoulos,Demosthenes Panagiotakos,for the MEDIS study group. Successful Aging among Elders Living in the Mani Continental Region vs. Insular Areas of the Mediterranean: the MEDIS Study[J]. A&D, 2016, 7(3): 285-294.
[7] Gargi Chatterjee, Debashree Roy, Vineet Kumar Khemka, Mrittika Chattopadhyay, Sasanka Chakrabarti. Genistein, the Isoflavone in Soybean, Causes Amyloid Beta Peptide Accumulation in Human Neuroblastoma Cell Line: Implications in Alzheimer's Disease[J]. A&D, 2015, 6(6): 456-465.
[8] João M. N. Duarte. Metabolic Alterations Associated to Brain Dysfunction in Diabetes[J]. A&D, 2015, 6(5): 304-321.
[9] Stambler Ilia. Stop Aging Disease! ICAD 2014[J]. A&D, 2015, 6(2): 76-94.
[10] Kunlin Jin,James W. Simpkins,Xunming Ji,Miriam Leis,Ilia Stambler. The Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population[J]. Aging and Disease, 2015, 6(1): 1-5.
[11] Amanda Piano,Vladimir I. Titorenko. The Intricate Interplay between Mechanisms Underlying Aging and Cancer[J]. Aging and Disease, 2015, 6(1): 56-75.
[12] Atsuko Nakanishi,Yoko Wada,Yasuko Kitagishi,Satoru Matsuda. Link between PI3K/AKT/PTEN Pathway and NOX Proteinin Diseases[J]. Aging and Disease, 2014, 5(3): 203-211.
[13] Suresh I. S. Rattan. Aging Is Not a Disease: Implications for Intervention[J]. Aging and Disease, 2014, 5(3): 196-202.
[14] Jia-Ping Wu,Tong-Tong Che. Secondhand Smoke Exposure in Aging-related Cardiac Disease[J]. Aging and Disease, 2013, 4(3): 127-133.
[15] Gregory Oxenkrug. Interferon-gamma – Inducible Inflammation: Contribution to Aging and Aging-Associated Psychiatric Disorders[J]. Aging and Disease, 2011, 2(6): 474-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd