Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2011, Vol. 2 Issue (2) : 158-173     DOI:
Aging and Cardiac Fibrosis
Anna Biernacka, Nikolaos G Frangogiannis
Division of Cardiology, Albert Einstein College of Medicine, Bronx NY, USA
Download: PDF(830 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The aging heart is characterized by morphological and structural changes that lead to its functional decline and are associated with diminished ability to meet increased demand. Extensive evidence, derived from both clinical and experimental studies suggests that the aging heart undergoes fibrotic remodeling. Age-dependent accumulation of collagen in the heart leads to progressive increase in ventricular stiffness and impaired diastolic function. Increased mechanical load, due to reduced arterial compliance, and direct senescence-associated fibrogenic actions appear to be implicated in the pathogenesis of cardiac fibrosis in the elderly. Evolving evidence suggests that activation of several distinct molecular pathways may contribute to age-related fibrotic cardiac remodeling. Reactive oxygen species, chemokine-mediated recruitment of mononuclear cells and fibroblast progenitors, transforming growth factor (TGF)-β activation, endothelin-1 and angiotensin II signaling mediate interstitial and perivascular fibrosis in the senescent heart. Reduced collagen degradation may be more important than increased de novo synthesis in the pathogenesis of aging-associated fibrosis. In contrast to the baseline activation of fibrogenic pathways in the senescent heart, aging is associated with an impaired reparative response to cardiac injury and defective activation of reparative fibroblasts in response to growth factors. Because these reparative defects result in defective scar formation, senescent hearts are prone to adverse dilative remodeling following myocardial infarction. Understanding the pathogenesis of interstitial fibrosis in the aging heart and dissecting the mechanisms responsible for age-associated healing defects following cardiac injury are critical in order to design new strategies for prevention of adverse remodeling and heart failure in elderly patients.

Keywords Aging      cardiac fibrosis      chemokine      MCP-1      TGF-β      angiotensin II      cardiac remodeling     
Corresponding Authors: Nikolaos G Frangogiannis   
Issue Date: 01 February 2011
E-mail this article
E-mail Alert
Articles by authors
Anna Biernacka
Nikolaos G Frangogiannis
Cite this article:   
Anna Biernacka,Nikolaos G Frangogiannis. Aging and Cardiac Fibrosis[J]. Aging and Disease, 2011, 2(2): 158-173.
URL:     OR
[1] Lakatta EG, Levy D(2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation, 107:346-54
[2] Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R, Aurigemma G, Marino EK, Lyles M, Cushman M, Enright PL(2001). Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group Cardiovascular Health Study. Am J Cardiol, 87:413-9
[3] Vanoverschelde JJ, Essamri B, Vanbutsele R, d’Hondt A, Cosyns JR, Detry JR, Melin JA(1993). Contribution of left ventricular diastolic function to exercise capacity in normal subjects. J Appl Physiol, 74:2225-33
[4] Gagliano N, Arosio B, Santambrogio D, Balestrieri MR, Padoani G, Tagliabue J, Masson S, Vergani C, Annoni G(2000). Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex. J Gerontol A Biol Sci Med Sci, 55:B365-72
[5] Abrass CK, Adcox MJ, Raugi GJ(1995). Aging-associated changes in renal extracellular matrix. Am J Pathol, 146:742-52
[6] Hinton DE, Williams WL(1968). Hepatic fibrosis associated with aging in four stocks of mice. J Gerontol, 23:205-11
[7] Gagliano N, Grizzi F, Annoni G(2007). Mechanisms of aging and liver functions. Dig Dis, 25:118-23
[8] Glaser J, Stienecker K(2000). Pancreas and aging: a study using ultrasonography. Gerontology, 46:93-6
[9] Calabresi C, Arosio B, Galimberti L, Scanziani E, Bergottini R, Annoni G, Vergani C(2007). Natural aging, expression of fibrosis-related genes and collagen deposition in rat lung. Exp Gerontol, 42:1003-11
[10] Mukherjee D, Sen S(1990). Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res, 67:1474-80
[11] Song Y, Yao Q, Zhu J, Luo B, Liang S(1999). Age-related variation in the interstitial tissues of the cardiac conduction system; and autopsy study of 230 Han Chinese. Forensic Sci Int, 104:133-42
[12] Burkauskiene A, Mackiewicz Z, Virtanen I, Konttinen YT(2006). Age-related changes in myocardial nerve and collagen networks of the auricle of the right atrium. Acta Cardiol, 61:513-8
[13] Burlew BS(2004). Diastolic dysfunction in the elderly--the interstitial issue. Am J Geriatr Cardiol, 13:29-38
[14] Nag AC(1980). Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, 28:41-61
[15] Gersch C, Dewald O, Zoerlein M, Michael LH, Entman ML, Frangogiannis NG(2002). Mast cells and macrophages in normal C57/BL/6 mice. Histochem Cell Biol, 118:41-9
[16] Zeisberg EM, Kalluri R(2010). Origins of cardiac fibroblasts. Circ Res, 107:1304-12
[17] Weber KT(1989). Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol, 13:1637-52
[18] Berk BC, Fujiwara K, Lehoux S(2007). ECM remodeling in hypertensive heart disease. J Clin Invest, 117:568-75
[19] Shirwany A, Weber KT(2006). Extracellular matrix remodeling in hypertensive heart disease. J Am Coll Cardiol, 48:97-8
[20] Anderson KR, Sutton MG, Lie JT(1979). Histopathological types of cardiac fibrosis in myocardial disease. J Pathol, 128:79-85
[21] Isoyama S, Nitta-Komatsubara Y(2002). Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev, 7:63-9
[22] Hasenfuss G(1998). Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res, 39:60-76
[23] Pugh KG, Wei JY(2001). Clinical implications of physiological changes in the aging heart. Drugs Aging, 18:263-76
[24] Chen MA(2009). Heart failure with preserved ejection fraction in older adults. Am J Med, 122:713-23
[25] Olivetti G, Melissari M, Capasso JM, Anversa P(1991). Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res, 68:1560-8
[26] Lakatta EG(2002). Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev, 7:29-49
[27] Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P(1996). Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol, 271:H1215-28
[28] Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM(1990). Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res, 67:871-85
[29] Eghbali M, Robinson TF, Seifter S, Blumenfeld OO(1989). Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res, 23:723-9
[30] Orlandi A, Francesconi A, Marcellini M, Ferlosio A, Spagnoli LG(2004). Role of ageing and coronary atherosclerosis in the development of cardiac fibrosis in the rabbit. Cardiovasc Res, 64:544-52
[31] Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML(2008). Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol, 43:296-306
[32] Mays PK, Bishop JE, Laurent GJ(1988). Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev, 45:203-12
[33] Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R(2001). Age related changes of the collagen network of the human heart. Mech Ageing Dev, 122:1049-58
[34] de Souza RR(2002). Aging of myocardial collagen. Biogerontology, 3:325-35
[35] Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG(2008). Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol, 173:57-67
[36] Mays PK, McAnulty RJ, Campa JS, Laurent GJ(1991). Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochem J, 276(Pt 2):307-13
[37] Besse S, Robert V, Assayag P, Delcayre C, Swynghedauw B(1994). Nonsynchronous changes in myocardial collagen mRNA and protein during aging: effect of DOCA-salt hypertension. Am J Physiol, 267:H2237-44
[38] Annoni G, Luvara G, Arosio B, Gagliano N, Fiordaliso F, Santambrogio D, Jeremic G, Mircoli L, Latini R, Vergani C, Masson S(1998). Age-dependent expression of fibrosis-related genes and collagen deposition in the rat myocardium. Mech Ageing Dev, 101:57-72
[39] Robert V, Besse S, Sabri A, Silvestre JS, Assayag P, Nguyen VT, Swynghedauw B, Delcayre C(1997). Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest, 76:729-38
[40] Gagliano N, Arosio B, Grizzi F, Masson S, Tagliabue J, Dioguardi N, Vergani C, Annoni G(2002). Reduced collagenolytic activity of matrix metalloproteinases and development of liver fibrosis in the aging rat. Mech Ageing Dev, 123:413-25
[41] van der Rest M, Garrone R(1991). Collagen family of proteins. FASEB J, 5:2814-23
[42] Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE(2001). Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur J Appl Physiol, 85:164-9
[43] Choi SY, Chang HJ, Choi SI, Kim KI, Cho YS, Youn TJ, Chung WY, Chae IH, Choi DJ, Kim HS, Kim CH, Oh BH, Kim MH(2009). Long-term exercise training attenuates age-related diastolic dysfunction: association of myocardial collagen cross-linking. J Korean Med Sci, 24:32-9
[44] Thomas DP, Zimmerman SD, Hansen TR, Martin DT, McCormick RJ(2000). Collagen gene expression in rat left ventricle: interactive effect of age and exercise training. J Appl Physiol, 89:1462-8
[45] Aronson D(2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens, 21:3-12
[46] Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ(2000). An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A, 97:2809-13
[47] Shapiro BP, Owan TE, Mohammed SF, Meyer DM, Mills LD, Schalkwijk CG, Redfield MM(2008). Advanced glycation end products accumulate in vascular smooth muscle and modify vascular but not ventricular properties in elderly hypertensive canines. Circulation, 118:1002-10
[48] Dannenberg AL, Levy D, Garrison RJ(1989). Impact of age on echocardiographic left ventricular mass in a healthy population (the Framingham Study)Am J Cardiol, 64:1066-8
[49] Zile MR, Brutsaert DL(2002). New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation, 105:1387-93
[50] Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S(2002). Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol, 39:1384-91
[51] Janicki JS, Brower GL(2002). The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail, 8:S319-25
[52] Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG, Zile MR(2003). Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol, 284:H122-32
[53] Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K, Ruiz-Lozano P, Ross JJr, Tryggvason K, Chien KR(2006). Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient mice. J Biol Chem, 281:213-20
[54] Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P(1994). Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation, 89:151-63
[55] Khan R, Sheppard R(2006). Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 118:10-24
[56] Ljungqvist A, Unge G(1973). The proliferative activity of the myocardial tissue in various forms of experimental cardiac hypertrophy. Acta Pathol Microbiol Scand A, 81:233-40
[57] Mandache E, Unge G, Appelgren LE, Ljungqvist A(1973). The proliferative activity of the heart tissues in various forms of experimental cardiac hypertrophy studied by electron microscope autoradiography. Virchows Arch B Cell Pathol, 12:112-22
[58] Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS(2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol, 176:85-97
[59] van Amerongen MJ, Bou-Gharios G, Popa E, van Ark J, Petersen AH, van Dam GM, van Luyn MJ, Harmsen MC(2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol, 214:377-86
[60] Kania G, Blyszczuk P, Stein S, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U(2009). Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res, 105:462-70
[61] Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML(2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A, 103:18284-9
[62] Abe R, Donnelly SC, Peng T, Bucala R, Metz CN(2001). Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol, 166:7556-62
[63] Olivey HE, Mundell NA, Austin AF, Barnett JV(2006). Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn, 235:50-9
[64] Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M(2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol, 230:230-42
[65] Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, Carmeliet P, Iruela-Arispe ML(2006). VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn, 235:759-67
[66] Lugus JJ, Park C, Ma YD, Choi K(2009). Both primitive and definitive blood cells are derived from Flk-1+ mesoderm. Blood, 113:563-6
[67] Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R(2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med, 13:952-61
[68] Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW, Vaughan DE(2010). Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation, 122:1200-9
[69] Jankun J, Skrzypczak-Jankun E(2009). Yin and yang of the plasminogen activator inhibitor. Pol Arch Med Wewn, 119:410-7
[70] Moriwaki H, Stempien-Otero A, Kremen M, Cozen AE, Dichek DA(2004). Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ Res, 95:637-44
[71] Wynn TA(2008). Cellular and molecular mechanisms of fibrosis. J Pathol, 214:199-210
[72] Frangogiannis NG(2006). Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem, 13:1877-93
[73] Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML(2011). Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol, 50:248-56
[74] Dobaczewski M, Frangogiannis NG(2009). Chemokines and cardiac fibrosis. Front Biosci (Schol Ed)1:391-405
[75] Bujak M, Dobaczewski M, Gonzalez-Quesada C, Xia Y, Leucker T, Zymek P, Veeranna V, Tager AM, Luster AD, Frangogiannis NG(2009). Induction of the CXC chemokine interferon-gamma-inducible protein 10 regulates the reparative response following myocardial infarction. Circ Res, 105:973-83
[76] Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN(2000). Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol, 164:2585-91
[77] Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A(2006). IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med, 12:99-106
[78] Shearer GM(1997). Th1/Th2 changes in aging. Mech Ageing Dev, 94:1-5
[79] Deng Y, Jing Y, Campbell AE, Gravenstein S(2004). Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J Immunol, 172:3437-46
[80] Jing Y, Gravenstein S, Chaganty NR, Chen N, Lyerly KH, Joyce S, Deng Y(2007). Aging is associated with a rapid decline in frequency, alterations in subset composition, and enhanced Th2 response in CD1d-restricted NKT cells from human peripheral blood. Exp Gerontol, 42:719-32
[81] Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS(2009). Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation, 119:2789-97
[82] Groban L, Pailes NA, Bennett CD, Carter CS, Chappell MC, Kitzman DW, Sonntag WE(2006). Growth hormone replacement attenuates diastolic dysfunction and cardiac angiotensin II expression in senescent rats. J Gerontol A Biol Sci Med Sci, 61:28-35
[83] Lakatta EG(2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation, 107:490-7
[84] Sadoshima J, Izumo S(1993). Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res, 73:413-23
[85] Rosenkranz S(2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res, 63:423-32
[86] Weber KT, Swamynathan SK, Guntaka RV, Sun Y(1999). Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol, 31:395-403
[87] Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F(2007). Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol, 293:H1351-8
[88] Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G(2009). Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest, 119:524-30
[89] Billet S, Bardin S, Verp S, Baudrie V, Michaud A, Conchon S, Muffat-Joly M, Escoubet B, Souil E, Hamard G, Bernstein KE, Gasc JM, Elghozi JL, Corvol P, Clauser E(2007). Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice. J Clin Invest, 117:1914-25
[90] Stein M, Boulaksil M, Jansen JA, Herold E, Noorman M, Joles JA, van Veen TA, Houtman MJ, Engelen MA, Hauer RN, de Bakker JM, van Rijen HV(2010). Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model. Am J Physiol Heart Circ Physiol, 299:H310-21
[91] Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF(2007). Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell, 130:247-58
[92] Ventura-Clapier R, Garnier A, Veksler V(2008). Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res, 79:208-17
[93] Sawada M, Carlson JC(1987). Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev, 41:125-37
[94] Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS(2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science, 308:1909-11
[95] Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA(2010). Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY)2:914-23
[96] Siwik DA, Pagano PJ, Colucci WS(2001). Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol, 280:C53-60
[97] Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ(2003). Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol, 42:1845-54
[98] Frangogiannis NG(2004). Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res, 53:585-95
[99] Frangogiannis NG(2007). Chemokines in ischemia and reperfusion. Thromb Haemost, 97:738-47
[100] Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G(1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 122:103-11
[101] Bujak M, Frangogiannis NG(2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res, 74:184-95
[102] Schiller M, Javelaud D, Mauviel A(2004). TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci, 35:83-92
[103] Mauviel A(2005). Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med, 117:69-80
[104] Parker TG, Packer SE, Schneider MD(1990). Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest, 85:507-14
[105] Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS(1986). Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med, 163:1037-50
[106] Lee G, Ellingsworth LR, Gillis S, Wall R, Kincade PW(1987). Beta transforming growth factors are potential regulators of B lymphopoiesis. J Exp Med, 166:1290-9
[107] Fan K, Ruan Q, Sensenbrenner L, Chen B(1992). Transforming growth factor-beta 1 bifunctionally regulates murine macrophage proliferation. Blood, 79:1679-85
[108] Shi Y, Massague J(2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113:685-700
[109] Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K(2002). Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells, 7:1191-204
[110] Derynck R, Zhang YE(2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425:577-84
[111] Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schluter KD, Bohm M(2002). Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1)Am J Physiol Heart Circ Physiol, 283:H1253-62
[112] Brooks WW, Conrad CH(2000). Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol, 32:187-95
[113] Barcellos-Hoff MH, Dix TA(1996). Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol, 10:1077-83
[114] Park SK, Kim J, Seomun Y, Choi J, Kim DH, Han IO, Lee EH, Chung SK, Joo CK(2001). Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun, 284:966-71
[115] Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ(1995). Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol, 27:2347-57
[116] Campbell SE, Katwa LC(1997). Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol, 29:1947-58
[117] D’Souza SP, Davis M, Baxter GF(2004). Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther, 101:113-29
[118] Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H(1992). Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest, 90:1145-9
[119] Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K(2003). Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology, 144:2279-84
[120] Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JCJr(2011). The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension, 57:201-7
[121] Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DCJr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P(2006). Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 113:e85-151
[122] Ertl G, Frantz S(2005). Healing after myocardial infarction. Cardiovasc Res, 66:22-32
[123] Maggioni AP, Maseri A, Fresco C, Franzosi MG, Mauri F, Santoro E, Tognoni G(1993). Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2)N Engl J Med, 329:1442-8
[124] Frangogiannis NG(2008). The immune system and cardiac repair. Pharmacol Res, 58:88-111
[125] Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG(2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol, 48:504-11
[126] Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG(2008). Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol, 51:1384-92
[127] Swift ME, Burns AL, Gray KL, DiPietro LA(2001). Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol, 117:1027-35
[128] Ding A, Hwang S, Schwab R(1994). Effect of aging on murine macrophages. Diminished response to IFN-gamma for enhanced oxidative metabolism. J Immunol, 153:2146-52
[129] Flanders KC(2004). Smad3 as a mediator of the fibrotic response. Int J Exp Pathol, 85:47-64
[130] Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG(2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116:2127-38
[131] Shivakumar K, Dostal DE, Boheler K, Baker KM, Lakatta EG(2003). Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. Am J Physiol Heart Circ Physiol, 284:H1454-9
[132] Dobaczewski M, Chen W, Frangogiannis NG(2010). Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol
[133] Jugdutt BI, Jelani A(2008). Aging and defective healing, adverse remodeling, and blunted postconditioning in the reperfused wounded heart. J Am Coll Cardiol, 51:1399-403
[134] Jugdutt BI(2008). Pleiotropic effects of cardiac drugs on healing post-MI. The good, bad, and ugly. Heart Fail Rev, 13:439-52
[135] Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT(2005). Custom design of the cardiac microenvironment with biomaterials. Circ Res, 97:8-15
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] J. Thomas Mock,Sherilynn G Knight,Philip H Vann,Jessica M Wong,Delaney L Davis,Michael J Forster,Nathalie Sumien. Gait Analyses in Mice: Effects of Age and Glutathione Deficiency[J]. A&D, 2018, 9(4): 634-646.
[3] Jiayu Wu,Weiying Ren,Li Li,Man Luo,Kan Xu,Jiping Shen,Jia Wang,Guilin Chang,Yi Lu,Yiming Qi,Binger Xu,Yuting He,Yu Hu. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats[J]. A&D, 2018, 9(4): 566-577.
[4] Carmen G Vinagre,Fatima R Freitas,Carlos H de Mesquita,Juliana C Vinagre,Ana Carolina Mariani,Roberto Kalil-Filho,Raul C Maranhão. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. A&D, 2018, 9(4): 748-754.
[5] Aurore Marie,Johann Meunier,Emilie Brun,Susanna Malmstrom,Veronique Baudoux,Elodie Flaszka,Gaëlle Naert,François Roman,Sylvie Cosnier-Pucheu,Sergio Gonzalez-Gonzalez. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model[J]. A&D, 2018, 9(4): 664-673.
[6] Yali Chen,Mengmei Yin,Xuejin Cao,Gang Hu,Ming Xiao. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. A&D, 2018, 9(3): 374-390.
[7] Wenzhi Sun,Jiewen Tan,Zhuo Li,Shibao Lu,Man Li,Chao Kong,Yong Hai,Chunjin Gao,Xuehua Liu. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging[J]. A&D, 2018, 9(3): 391-400.
[8] Changjun Yang,Kelly M. DeMars,Eduardo Candelario-Jalil. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain[J]. A&D, 2018, 9(2): 322-330.
[9] Lin-Yuan Zhang,Pan Lin,Jiaji Pan,Yuanyuan Ma,Zhenyu Wei,Lu Jiang,Liping Wang,Yaying Song,Yongting Wang,Zhijun Zhang,Kunlin Jin,Qian Wang,Guo-Yuan Yang. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. A&D, 2018, 9(2): 262-272.
[10] Yu Zhang,Hongxia Zhang,Siyang Lin,Xudong Chen,Yu Yao,XiaoOu Mao,Bei Shao,Qichuan Zhuge,Kunlin Jin. SDF-1/CXCR7 Chemokine Signaling is Induced in the Peri-Infarct Regions in Patients with Ischemic Stroke[J]. A&D, 2018, 9(2): 287-295.
[11] Weiming Hu,Junwu Wu,Wenjing Jiang,Jianguo Tang. MicroRNAs and Presbycusis[J]. A&D, 2018, 9(1): 133-142.
[12] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[13] Huaqin Liu,Zhui Yu,Ying Li,Bin Xu,Baihui Yan,Wulf Paschen,David S Warner,Wei Yang,Huaxin Sheng. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice[J]. A&D, 2018, 9(1): 31-39.
[14] Fangyu Peng,Fang Xie,Otto Muzik. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. A&D, 2018, 9(1): 109-118.
[15] Nathalie K Zgheib,Fatima Sleiman,Lara Nasreddine,Mona Nasrallah,Nancy Nakhoul,Hussain Isma’eel,Hani Tamim. Short Telomere Length is Associated with Aging, Central Obesity, Poor Sleep and Hypertension in Lebanese Individuals[J]. A&D, 2018, 9(1): 77-89.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd