Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2012, Vol. 3 Issue (3) : 248-259     DOI:
Age-Related Disruption of Steady-State Thymic Medulla Provokes Autoimmune Phenotype via Perturbing Negative Selection
Jiangyan Xia1, 2, Hongjun Wang1, Jianfei Guo1, 3, Zhijie Zhang1, Brandon Coder1, Dong-Ming Su1, *
1Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
2Southeast University Affiliated Zhongda Hospital, Nanjing, China
3Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
Download: PDF(1942 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The hymic medulla plays an essential role in the generation of central tolerance by eliminating self-reactive T-cell clones through thymic negative selection and developing natural regulatory T cells. Age-related FoxN1 decline induces disruption of medullary thymic epithelial cells (mTECs). However, it is unknown whether this perturbs central tolerance to increase autoimmune predisposition in the elderly. Using a loxP-floxed-FoxN1 (FoxN1flox) mouse model, which exhibits a spontaneous ubiquitous deletion of FoxN1 with age to accelerate thymic aging, we investigated whether disruption of steady-state thymic medulla results in an increase of autoimmune-prone associated with age. We demonstrated age-associated ubiquitous loss of FoxN1flox-formed two-dimensional thymic epithelial cysts were primarily located in the medulla. This resulted in disruption of thymic medullary steady state, with evidence of perturbed negative selection, including reduced expression of the autoimmune regulator (Aire) gene and disrupted accumulation of thymic dendritic cells in the medulla, which are required for negative selection. These provoke autoimmune phenotypes, including increased inflammatory cell infiltration in multiple organs in these mice. This finding in an animal model provides a mechanistic explanation of increased susceptibility to autoimmunity in aged humans, although they may not show clinic manifestations without induction.

Keywords Aging      Thymic microstructure      Central immunological tolerance      Negative selection      FoxN1 gene      Autoimmunity     
Corresponding Authors: Dong-Ming Su   
Issue Date: 01 March 2012
E-mail this article
E-mail Alert
Articles by authors
Jiangyan Xia
Hongjun Wang
Jianfei Guo
Zhijie Zhang
Brandon Coder
Dong-Ming Su
Cite this article:   
Jiangyan Xia,Hongjun Wang,Jianfei Guo, et al. Age-Related Disruption of Steady-State Thymic Medulla Provokes Autoimmune Phenotype via Perturbing Negative Selection[J]. Aging and Disease, 2012, 3(3): 248-259.
URL:     OR
[1] Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y(2008). Thymic microenvironments for T-cell repertoire formation. Adv Immunol, 99:59-94
[2] Kyewski B, Klein L(2006). A central role for central tolerance. Annu Rev Immunol, 24:571-606
[3] Hogquist KA, Baldwin TA, Jameson SC(2005). Central tolerance: learning self-control in the thymus. Nat Rev Immunol, 5:772-782
[4] Palmer E(2003). Negative selection--clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol, 3:383-391
[5] Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T(2006). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 212:8-27
[6] Wirnsberger G, Hinterberger M, Klein L(2011). Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol Cell Biol, 89:45-53
[7] Koble C, Kyewski B(2009). The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med, 206:1505-1513
[8] Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M(2011). Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol, 32:188-193
[9] Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B(2005). Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med, 202:33-45
[10] Villasenor J, Benoist C, Mathis D(2005). AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev, 204:156-164
[11] Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J, Webster KE, Scott HS, Boyd RL, Peltonen L, Goodnow CC(2004). Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med, 200:1015-1026
[12] Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, Proietto AI, Cannon PZ, Forehan S, Smyth GK, Wu L, Goodnow CC, Carbone FR, Scott HS, Heath WR(2011). Aire regulates transfer of antigen from mTEC to dendritic cells for induction of thymic tolerance. Blood
[13] Gallegos AM, Bevan MJ(2006). Central tolerance: good but imperfect. Immunol Rev, 209:290-296
[14] Fletcher AL, Seach N, Reiseger JJ, Lowen TE, Hammett MV, Scott HS, Boyd RL(2009). Reduced thymic Aire expression and abnormal NF-kappaB2 signaling in a model of systemic autoimmunity. J Immunol, 182:2690-2699
[15] Rucci F, Poliani PL, Caraffi S, Paganini T, Fontana E, Giliani S, Alt FW, Notarangelo LD(2011). Abnormalities of thymic stroma may contribute to immune dysregulation in murine models of leaky severe combined immunodeficiency. Front Immunol, 2
[16] Fontenot JD, Dooley JL, Farr AG, Rudensky AY(2005). Developmental regulation of Foxp3 expression during ontogeny. J Exp Med, 202:901-906
[17] Lomada D, Liu B, Coghlan L, Hu Y, Richie ER(2007). Thymus medulla formation and central tolerance are restored in IKKalpha-/- mice that express an IKKalpha transgene in keratin 5+ thymic epithelial cells. J Immunol, 178:829-837
[18] Guo J, Rahman M, Cheng L, Zhang S, Tvinnereim A, Su DM(2011). Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J Mol Med, 89:263-277
[19] Nakamura Y, Qu N, Terayama H, Naito M, Yi SQ, Moriyama H, Itoh M(2008). Structure of thymic cysts in congenital lymph nodes-lacking mice. Anat Histol Embryol, 37:126-130
[20] Nabarra B, Andrianarison I(1991). Thymus reticulum of autoimmune mice. 3. Ultrastructural study of NOD (non-obese diabetic) mouse thymus. Int J Exp Pathol, 72:275-287
[21] Nabarra B, Andrianarison I(1987). Ultrastructural studies of thymic reticulum: I. Epithelial [corrected] component. Thymus, 9:95-121
[22] Ortman CL, Dittmar KA, Witte PL, Le PT(2002). Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol, 14:813-822
[23] Sun L, Guo J, Brown R, Amagai T, Zhao Y, Su DM(2010). Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell, 9:347-357
[24] Hayashi S, McMahon AP(2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol, 244:305-318
[25] Matsuda T, Cepko CL(2007). Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A, 104:1027-1032
[26] Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, Chambon P, Oshima RG, Amagai T, Su DM(2010). Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem, 285:5836-5847
[27] Prelog M(2006). Aging of the immune system: a risk factor for autoimmunity?. Autoimmun Rev, 5:136-139
[28] Taub DD, Longo DL(2005). Insights into thymic aging and regeneration. Immunol Rev, 205:72-93
[29] Goronzy JJ, Shao L, Weyand CM(2010). Immune aging and rheumatoid arthritis. Rheum Dis Clin North Am, 36:297-310
[30] Zhang H, Podojil JR, Luo X, Miller SD(2008). Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. J Immunol, 181:4638-4647
[31] von Boehmer H, Melchers F(2010). Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol, 11:14-20
[32] Aw D, Silva AB, Palmer DB(2009). Is thymocyte development functional in the aged?. Aging (Albany NY)1:146-153
[33] Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM(2007). The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol, 19:1201-1211
[34] Gray DH, Chidgey AP, Boyd RL(2002). Analysis of thymic stromal cell populations using flow cytometry. J Immunol Methods, 260:15-28
[35] Danzl NM, Donlin LT, Alexandropoulos K(2010). Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin. J Exp Med
[36] Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, Malefyt Rde W, Nitta T, Takahama Y(2011). Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med, 208:383-394
[37] Derbinski J, Schulte A, Kyewski B, Klein L(2001). Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol, 2:1032-1039
[38] Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D(2002). Projection of an immunological self shadow within the thymus by the aire protein. Science, 298:1395-1401
[39] Gallegos AM, Bevan MJ(2004). Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med, 200:1039-1049
[40] Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T(1996). Two genetically separable steps in the differentiation of thymic epithelium. Science, 272:886-889
[41] Rodewald HR(2008). Thymus organogenesis. Annu Rev Immunol, 26:355-388
[42] Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB, Witte PL, Le PT(2011). Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood
[43] Klein L, Kyewski B(2000). “Promiscuous” expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity?. J Mol Med, 78:483-494
[44] Anderson MS, Su MA(2010). Aire and T cell development. Curr Opin Immunol, 23:198-206
[45] Dooley J, Erickson M, Roelink H, Farr AG(2005). Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev Dyn, 233:1605-1612
[46] Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N(1997). Positional cloning of the APECED gene. Nat Genet, 17:393-398
[47] Aaltonen J, Björses P, Perheentupa J, Horelli−Kuitunen Nina, Palotie Aarno, Peltonen Leena, Su Lee Yeon, Francis Fiona, Henning Steffen, Thiel Cora, Leharach H, Yaspo ML(1997). An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet, 17:399-403
[48] Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC(2003). Aire regulates negative selection of organ-specific T cells. Nat Immunol, 4:350-354
[49] Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M, Boyd RL, Takahama Y(2006). CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity, 24:165-177
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] J. Thomas Mock,Sherilynn G Knight,Philip H Vann,Jessica M Wong,Delaney L Davis,Michael J Forster,Nathalie Sumien. Gait Analyses in Mice: Effects of Age and Glutathione Deficiency[J]. A&D, 2018, 9(4): 634-646.
[3] Jiayu Wu,Weiying Ren,Li Li,Man Luo,Kan Xu,Jiping Shen,Jia Wang,Guilin Chang,Yi Lu,Yiming Qi,Binger Xu,Yuting He,Yu Hu. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats[J]. A&D, 2018, 9(4): 566-577.
[4] Carmen G Vinagre,Fatima R Freitas,Carlos H de Mesquita,Juliana C Vinagre,Ana Carolina Mariani,Roberto Kalil-Filho,Raul C Maranhão. Removal of Chylomicron Remnants from the Bloodstream is Delayed in Aged Subjects[J]. A&D, 2018, 9(4): 748-754.
[5] Aurore Marie,Johann Meunier,Emilie Brun,Susanna Malmstrom,Veronique Baudoux,Elodie Flaszka,Gaëlle Naert,François Roman,Sylvie Cosnier-Pucheu,Sergio Gonzalez-Gonzalez. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model[J]. A&D, 2018, 9(4): 664-673.
[6] Yali Chen,Mengmei Yin,Xuejin Cao,Gang Hu,Ming Xiao. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain[J]. A&D, 2018, 9(3): 374-390.
[7] Wenzhi Sun,Jiewen Tan,Zhuo Li,Shibao Lu,Man Li,Chao Kong,Yong Hai,Chunjin Gao,Xuehua Liu. Evaluation of Hyperbaric Oxygen Treatment in Acute Traumatic Spinal Cord Injury in Rats Using Diffusion Tensor Imaging[J]. A&D, 2018, 9(3): 391-400.
[8] Changjun Yang,Kelly M. DeMars,Eduardo Candelario-Jalil. Age-Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain[J]. A&D, 2018, 9(2): 322-330.
[9] Lin-Yuan Zhang,Pan Lin,Jiaji Pan,Yuanyuan Ma,Zhenyu Wei,Lu Jiang,Liping Wang,Yaying Song,Yongting Wang,Zhijun Zhang,Kunlin Jin,Qian Wang,Guo-Yuan Yang. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain[J]. A&D, 2018, 9(2): 262-272.
[10] Weiming Hu,Junwu Wu,Wenjing Jiang,Jianguo Tang. MicroRNAs and Presbycusis[J]. A&D, 2018, 9(1): 133-142.
[11] Barbara Strasser,Konstantinos Volaklis,Dietmar Fuchs,Martin Burtscher. Role of Dietary Protein and Muscular Fitness on Longevity and Aging[J]. A&D, 2018, 9(1): 119-132.
[12] Huaqin Liu,Zhui Yu,Ying Li,Bin Xu,Baihui Yan,Wulf Paschen,David S Warner,Wei Yang,Huaxin Sheng. Novel Modification of Potassium Chloride Induced Cardiac Arrest Model for Aged Mice[J]. A&D, 2018, 9(1): 31-39.
[13] Fangyu Peng,Fang Xie,Otto Muzik. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl2-PET/CT[J]. A&D, 2018, 9(1): 109-118.
[14] Nathalie K Zgheib,Fatima Sleiman,Lara Nasreddine,Mona Nasrallah,Nancy Nakhoul,Hussain Isma’eel,Hani Tamim. Short Telomere Length is Associated with Aging, Central Obesity, Poor Sleep and Hypertension in Lebanese Individuals[J]. A&D, 2018, 9(1): 77-89.
[15] Mari L. Sbardelotto,Giulia S. Pedroso,Fernanda T. Pereira,Helen R. Soratto,Stella MS. Brescianini,Pauline S. Effting,Anand Thirupathi,Renata T. Nesi,Paulo CL. Silveira,Ricardo A. Pinho. The Effects of Physical Training are Varied and Occur in an Exercise Type-Dependent Manner in Elderly Men[J]. A&D, 2017, 8(6): 887-898.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd