Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and Disease    2010, Vol. 1 Issue (2) : 158-168     DOI:
Aging and Neurogenesis, a Lesion from Alzheimer’s Disease
Philippe Taupin
School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
Download: PDF(651 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The evidence that neurogenesis occurs in the adult brain and neural stem cells (NSCs) reside in the adult central nervous system (CNS) of mammals opens new avenues and opportunities for our understanding of development and for therapy. Newly generated neuronal cells of the adult brain would contribute to the physio-pathology of the nervous system and the adult brain may be amenable to repair. The contribution of adult neurogenesis to the functioning of the nervous system remains to be elucidated and adult NSCs have yet to be brought to therapy. It is generally accepted that NSCs in the adult brain have a regenerative capacity. Yet, evidences suggest that they may also contribute to pathological developments in neurological diseases. Alzheimer’s disease (AD) is a neurodegenerative disease and the hippocampus is one of the regions of the brain the most affected by the disease. AD is characterized by neurodegeneration, amyloid plaques, neurofibrillary tangles, aneuploidy and enhanced neurogenesis in the adult brain. The process of adult neurogenesis holds the potential to generate populations of cells that are aneuploid, particularly in the neurogenic regions. Aneuploid newly generated neuronal cells of the adult brain would contribute to the pathology of AD. Adult neurogenesis would not only contribute to regenerative attempts in the CNS, but also to the pathogenesis of neurological diseases and disorders.

Keywords amyloid      aneuploidy      hippocampus      neural stem cells      regeneration      therapy     
Corresponding Authors: Philippe Taupin   
Issue Date: 01 February 2010
E-mail this article
E-mail Alert
Articles by authors
Philippe Taupin
Cite this article:   
Philippe Taupin. Aging and Neurogenesis, a Lesion from Alzheimer’s Disease[J]. Aging and Disease, 2010, 1(2): 158-168.
URL:     OR
[1] Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH(1998). Neurogenesis in the adult human hippocampus. Nat Med, 4:1313-7
[2] Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS(2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315:1243-9
[3] Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisén J(2006). Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A, 103:12564-8
[4] Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, van Praag H, Martone ME, Ellisman MH, Gage FH(2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10:727-34
[5] Taupin P(2009). Characterization and isolation of synapses of newly generated neuronal cells of the adult hippocampus at early stages of neurogenesis. J Neurodegener Regene, 2:9-17
[6] Taupin P(2006). Neurogenesis in the adult central nervous system. C R Biol, 329:465-75
[7] Duan X, Kang E, Liu CY, Ming GL, Song H(2008). Development of neural stem cell in the adult brain. Curr Opin Neurobiol, 18:108-15
[8] Lindvall O, Kokaia Z(2010). Stem cells in human neurodegenerative disorders--time for clinical translation?. J Clin Invest, 120:29-40
[9] Taupin P(2008). Adult neurogenesis pharmacology in neurological diseases and disorders. Expert Rev Neurother, 8:311-20
[10] Zhao C, Deng W, Gage FH(2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132:645-60
[11] Caraci F, Copani A, Nicoletti F, Drago F(2010). Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol, 626:64-71
[12] Galvan V, Bredesen DE(2007). Neurogenesis in the adult brain: implications for Alzheimer’s disease. CNS Neurol Disord Drug Targets, 6:303-10
[13] Li Y, Mu Y, Gage FH(2009). Development of neural circuits in the adult hippocampus. Curr Top Dev Biol, 87:149-74
[14] Ma DK, Bonaguidi MA, Ming GL, Song H(2009). Adult neural stem cells in the mammalian central nervous system. Cell Res, 19:672-82
[15] Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA(2004). Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A, 101:343-7
[16] Querfurth HW, LaFerla FM(2010). Alzheimer’s disease. N Engl J Med, 362:329-44
[17] Potter H, Geller LN(1996). Alzheimer’s disease, Down’s syndrome, and chromosome segregation. Lancet, 348:66
[18] Geller LN, Potter H(1999). Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis, 6:167-79
[19] Burns A, Byrne EJ, Maurer K(2002). Alzheimer’s disease. Lancet, 360:163-5
[20] Maurer K, Hoyer S(2006). Alois Alzheimer revisited: differences in origin of the disease carrying his name. J Neural Transm, 113:1645-58
[21] Joachim CL, Mori H, Selkoe DJ(1989). Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature, 341:226-30
[22] Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH(2002). The Alzheimer’s A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A, 99:11830-5
[23] Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV(2004). Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res, 78:243-56
[24] Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL(1988). Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature, 331:528-30
[25] Hammer ND, Wang X, McGuffie BA, Chapman MR(2008). Amyloids: friend or foe?. J Alzheimers Dis, 13:407-19
[26] Uversky VN(2008). Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res, 5:260-87
[27] Xu X(2009). Gamma-secretase catalyzes sequential cleavages of the AbetaPP transmembrane domain. J Alzheimers Dis, 16:211-24
[28] Neve RL, Rogers J, Higgins GA(1990). The Alzheimer amyloid precursor-related transcript lacking the beta/A4 sequence is specifically increased in Alzheimer’s disease brain. Neuron, 5:329-38
[29] Hardy J(2009). The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem, 110:1129-34
[30] Lublin AL, Gandy S(2010). Amyloid-beta oligomers: possible roles as key neurotoxins in Alzheimer’s Disease. Mt Sinai J Med, 77:43-9
[31] Terry RD(1996). The pathogenesis of Alzheimer disease: an alternative to the amyloidhypothesis. J Neuropathol Exp Neurol, 55:1023-5
[32] St George-Hyslop PH(2000). Piecing together Alzheimer’s. Sci Am, 283:76-83
[33] Fukutani Y, Kobayashi K, Nakamura I, Watanabe K, Isaki K, Cairns NJ(1995). Neurons, intracellular and extra cellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci Lett, 200:57-60
[34] Kim H, Jensen CG, Rebhun LI(1986). The binding of MAP-2 and tau on brain microtubules in vitro: implications for microtubule structure. Ann N Y Acad Sci, 466:218-39
[35] Kobayashi K, Nakano H, Hayashi M, Shimazaki M, Fukutani Y, Sasaki K, Sugimori K, Koshino Y(2003). Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer’s disease. J Neurol Sci, 208:17-24
[36] Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I(2009). Mechanisms of tau-induced neurodegeneration. Acta Neuropathol, 118:53-69
[37] Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M(2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol, 11:909-13
[38] Schellenberg GD, D’Souza I, Poorkaj P(2000). The genetics of Alzheimer’s disease. Curr Psychiatry Rep, 2:158-64
[39] Nishimura M, Yu G, St George-Hyslop PH(1999). Biology of presenilins as causative molecules for Alzheimer disease. Clin Genet, 55:219-25
[40] Newman M, Musgrave FI, Lardelli M(2007). Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim Biophys Acta, 1772:285-97
[41] St George-Hyslop PH, Petit A(2005). Molecular biology and genetics of Alzheimer’s disease. C R Biol, 328:119-30
[42] Fassbender K, Masters C, Beyreuther K(2000). Alzheimer’s disease: an inflammatory disease?. Neurobiol Aging, 21:433-6
[43] Prasher VP, Haque MS(2000). Apolipoprotein E, Alzheimer’s disease and Down’s syndrome. Br J Psychiatry, 177:469-70
[44] Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Filipcik P, Cente M, Ferencik M, Hulin I, Novak M(2006). The role of oxidative stress in the pathogenesis of Alzheimer’s disease. Bratisl Lek Listy, 107:384-94
[45] Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D(2010). Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther, 2:1
[46] Mahley RW(1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science, 240:622-30
[47] Raber J, Huang Y, Ashford JW(2004). ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging, 25:641-50
[48] Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P(2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet, 39:168-77
[49] Finckh U, von der Kammer H, Velden J, Michel T, Andresen B, Deng A, Zhang J, Müller-Thomsen T, Zuchowski K, Menzer G, Mann U, Papassotiropoulos A, Heun R, Zurdel J, Holst F, Benussi L, Stoppe G, Reiss J, Miserez AR, Staehelin HB, Rebeck GW, Hyman BT, Binetti G, Hock C, Growdon JH, Nitsch RM(2000). Genetic association of a cystatin C gene polymorphism with late-onset Alzheimer disease. Arch Neurol, 57:1579-83
[50] Chambraud B, Sardin E, Giustiniani J, Dounane O, Schumacher M, Goedert M, Baulieu EE(2010). A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A, 107:2658-63
[51] Sanders AE, Wang C, Katz M, Derby CA, Barzilai N, Ozelius L, Lipton RB(2010). Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA, 303:150-8
[52] Migliore L, Testa A, Scarpato R, Pavese N, Petrozzi L, Bonuccelli U(1997). Spontaneous and induced aneuploidy in peripheral blood lymphocytes of patients with Alzheimer’s disease. Hum Genet, 101:299-305
[53] Migliore L, Botto N, Scarpato R, Petrozzi L, Cipriani G, Bonuccelli U(1999). Preferential occurrence of chromosome 21 malsegregation in peripheral blood lymphocytes of Alzheimer disease patients. Cytogenet Cell Genet, 87:41-6
[54] Busser J, Geldmacher DS, Herrup K(1998). Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci, 18:2801-7
[55] Yang Y, Geldmacher DS, Herrup K(2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 21:2661-8
[56] Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J(2006). Aneuploidy in the normal and diseased brain. Cell Mol Life Sci, 63:2626-41
[57] Wen PH, Shao X, Shao Z, Hof PR, Wisniewski T, Kelley K, Friedrich VLJr, Ho L, Pasinetti GM, Shioi J, Robakis NK, Elder GA(2002). Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis, 10:8-19
[58] Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA(2004). Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci U S A, 101:13363-7
[59] Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C(2007). Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci, 27:6771-80
[60] Zhang C, McNeil E, Dressler L, Siman R(2007). Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol, 204:77-87
[61] Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A(2008). Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE, 3:e2935
[62] Yu Y, He J, Zhang Y, Luo H, Zhu S, Yang Y, Zhao T, Wu J, Huang Y, Kong J, Tan Q, Li XM(2009). Increased hippocampal neurogenesis in the progressive stage of Alzheimer’s disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus, 19:1247-53
[63] Miller MW, Nowakowski RS(1988). Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res, 457:44-52
[64] Nowakowski RS, Lewin SB, Miller MW(1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 18:311-8
[65] McGowan E, Eriksen J, Hutton M(2006). A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet, 22:281-9
[66] Heo C, Chang KA, Choi HS, Kim HS, Kim S, Liew H, Kim JA, Yu E, Ma J, Suh YH(2007). Effects of the monomeric, oligomeric, and fibrillar Abeta42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem, 102:493-500
[67] Nowakowski RS, Hayes NL(2001). Stem cells: the promises and pitfalls. Neuropsychopharmacology, 25:799-804
[68] Taupin P(2007). Protocols for Studying Adult Neurogenesis: Insights and Recent Developments. Regen Med, 2:51-62
[69] Torres EM, Williams BR, Amon A(2008). Aneuploidy: cells losing their balance. Genetics, 179:737-46
[70] Vincent I, Rosado M, Davies P(1996). Mitotic mechanisms in Alzheimer’s disease?. J Cell Biol, 132:413-25
[71] Yang Y, Mufson EJ, Herrup K(2003). Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci, 23:2557-63
[72] Herrup K, Yang Y(2007). Cell cycle regulation in the postmitotic neuron: oxymoron or new biology?. Nat Rev Neurosci, 8:368-78
[73] Herrup K, Arendt T(2002). Re-expression of cell cycle proteins induces neuronal cell death during Alzheimer’s disease. J Alzheimers Dis, 4:243-7
[74] Yang Y, Herrup K(2007). Cell division in the CNS: protective response or lethal event in post-mitotic neurons?. Biochim Biophys Acta, 1772:457-66
[75] Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC(1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science, 235:877-80
[76] Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM(1992). Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science, 258:668-71
[77] Chen Y, McPhie DL, Hirschberg J, Neve RL(2000). The amyloid precursor protein-binding protein APPBP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J Biol Chem, 275:8929-35
[78] Taupin P(2009). Adult neurogenesis, neural stem cells and Alzheimer’s disease: developments, limitations, problems and promises. Curr Alzheimer Res, 6:461-70
[79] Iqbal K, Grundke-Iqbal I, Smith AJ, George L, Tung YC, Zaidi T(1989). Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proc Natl Acad Sci U S A, 86:5646-50
[80] Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD(1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A, 90:1977-81
[81] Taupin P(2009). Adult neurogenesis in the pathogenesis of Alzheimer’s disease. J Neurodegener Regene, 2:6-8
[82] Kornack DR, Rakic P(1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A, 96:5768-73
[83] Cameron HA, McKay RD(2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435:406-17
[84] Li J, Xu M, Zhou H, Ma J, Potter H(1997). Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell, 90:917-27
[85] Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM, Potter H(2008). Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging, 29:319-28
[86] Langley B, Ratan RR(2004). Oxidative stress-induced death in the nervous system: cell cycle dependent or independent?. J Neurosci Res, 77:621-9
[87] Ramírez MJ, Puerto S, Galofré P, Parry EM, Parry JM, Creus A, Marcos R, Surrallés J(2000). Multicolour FISH detection of radioactive iodine-induced 17cen-p53 chromosomal breakage in buccal cells from therapeutically exposed patients. Carcinogenesis, 21:1581-6
[88] Taupin P(2010). A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Cent Nerv Syst Agents Med Chem, 10:16-21
[89] Taupin P(2010). Aneuploidy and adult neurogenesis in Alzheimer’s disease: therapeutic strategies. Drug Discovery TodayIn Press.
[1] Feng Tang,Meng-Hao Pan,Yujie Lu,Xiang Wan,Yu Zhang,Shao-Chen Sun. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes[J]. A&D, 2018, 9(4): 623-633.
[2] Jun Zhang,Kaiyin Liu,Omar Elmadhoun,Xunming Ji,Yunxia Duan,Jingfei Shi,Xiaoduo He,Xiangrong Liu,Di Wu,Ruiwen Che,Xiaokun Geng,Yuchuan Ding. Synergistically Induced Hypothermia and Enhanced Neuroprotection by Pharmacological and Physical Approaches in Stroke[J]. A&D, 2018, 9(4): 578-589.
[3] Zheng Zhang,Linlei Zhang,Yuchuan Ding,Zhao Han,Xunming Ji. Effects of Therapeutic Hypothermia Combined with Other Neuroprotective Strategies on Ischemic Stroke: Review of Evidence[J]. A&D, 2018, 9(3): 507-522.
[4] Wei Qin,Shiya Chen,Shasha Yang,Qian Xu,Chuanshan Xu,Jing Cai. The Effect of Traditional Chinese Medicine on Neural Stem Cell Proliferation and Differentiation[J]. A&D, 2017, 8(6): 792-811.
[5] Anindita Banerjee,Vineet Kumar Khemka,Debashree Roy,Aparajita Dhar,Tapan Kumar Sinha Roy,Atanu Biswas,Barun Mukhopadhyay,Sasanka Chakrabarti. Role of Pro-Inflammatory Cytokines and Vitamin D in Probable Alzheimer's Disease with Depression[J]. A&D, 2017, 8(3): 267-276.
[6] Murugesan Raju,Puttur Santhoshkumar,K. Krishna Sharma. Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis[J]. A&D, 2017, 8(1): 57-70.
[7] Johanna Baumgaertel,Robert Haussmann,Antonia Gruschwitz,Annett Werner,Antje Osterrath,Jan Lange,Katharina L. Donix,Jennifer Linn,Markus Donix. Education and Genetic Risk Modulate Hippocampal Structure in Alzheimer’s Disease[J]. A&D, 2016, 7(5): 553-560.
[8] Ryan J. Day,Katie L. McCarty,Kayla E. Ockerse,Elizabeth Head,Troy T. Rohn. Proteolytic Cleavage of Apolipoprotein E in the Down Syndrome Brain[J]. A&D, 2016, 7(3): 267-277.
[9] Amelia Maria Gaman,Adriana Uzoni,Aurel Popa-Wagner,Anghel Andrei,Eugen-Bogdan Petcu. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-“Chemobrain”[J]. A&D, 2016, 7(3): 307-317.
[10] Stephanie Plummer,Corinna Van den Heuvel,Emma Thornton,Frances Corrigan,Roberto Cappai. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury[J]. A&D, 2016, 7(2): 163-179.
[11] Sasanka Chakrabarti,Kochupurackal P. Mohanakumar. Aging and Neurodegeneration: A Tangle of Models and Mechanisms[J]. A&D, 2016, 7(2): 111-113.
[12] Zhiguo Chen. Cell Therapy for Parkinson’s Disease: New Hope from Reprogramming Technologies[J]. A&D, 2015, 6(6): 499-503.
[13] Gargi Chatterjee, Debashree Roy, Vineet Kumar Khemka, Mrittika Chattopadhyay, Sasanka Chakrabarti. Genistein, the Isoflavone in Soybean, Causes Amyloid Beta Peptide Accumulation in Human Neuroblastoma Cell Line: Implications in Alzheimer's Disease[J]. A&D, 2015, 6(6): 456-465.
[14] Natasa Mujovic,Nebojsa Mujovic,Dragan Subotic,Maja Ercegovac,Andjela Milovanovic,Ljubica Nikcevic,Vladimir Zugic,Dejan Nikolic. Influence of Pulmonary Rehabilitation on Lung Function Changes After the Lung Resection for Primary Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease[J]. A&D, 2015, 6(6): 466-477.
[15] J. De Reuck,F. Auger,N. Durieux,V. Deramecourt,C. Cordonnier,F. Pasquier,C.A. Maurage,D. Leys,R. Bordet. Topography of Cortical Microbleeds in Alzheimer’s Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study[J]. A&D, 2015, 6(6): 437-443.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd