Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2015, Vol. 6 Issue (6) : 486-498     DOI: 10.14336/AD.2015.0505
Original Article |
Relationship between CYP17A1 Genetic Polymorphism and Essential Hypertension in a Chinese Population
Dai Chuan-Fang, Xie* Xiang(), Ma* Yi-Tong(), Yang Yi-Ning, Li Xiao-Mei, Fu Zhen-Yan, Liu Fen, Chen Bang-Dang, Gai Min-Tao
Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
Download: PDF(1188 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The relationship between CYP17A1 genetic polymorphisms and essential hypertension (EH) remains unclear. The aim of this study was to investigate the association of CYP17A1 genetic polymorphisms with EH in Han and Uighur populations in China. A Han population including 558 people (270 EH patients and 288 controls) and a Uighur population including 473 people (181 EH patients and 292 controls) were selected. Five single-nucleotide polymorphisms (SNPs) (rs4919686, rs1004467, rs4919687, rs10786712, and rs2486758) were genotyped using real-time PCR (TaqMan). In the Uighur population, for the total and the men, rs4919686, rs4919687 and rs10786712 were found to be associated with EH (rs4919686: P≤0.02, rs4919687: P≤0.002, rs10786712: P≤0.004, respectively). The difference remained statistically significant after the multivariate adjustment (all P<0.05). The overall distributions of the haplotypes established by SNP1-SNP3, SNP1-SNP4, SNP1-SNP3-SNP5 and SNP1-SNP4-SNP5 were significantly different between the EH patients and the control subjects (for the total: P=0.013, P=0.008, P=0.032, P=0.010, for men: P<0.001, P=0.001, P=0.010, P=0.00). In the Han population, for men, rs2486758 was found to be associated with EH in a recessive model (P=0.007); the significant difference was not retained after the adjustment for the covariates (date not shown). The A allele of rs4919686 could be a susceptible genetic marker, and the T allele of rs10786712 could be a protective genetic marker of EH. The AC genotype of rs4919686, the AG genotype of rs4919687 and the TT genotype of rs10786712 could be protective genetic markers of EH.

Keywords CYP17A1 gene      single nucleotide polymorphism      essential hypertension      case-control study     
About author:

present address: Kunming Biomed International, Kunming, Yunnan, 650500, China

Issue Date: 01 December 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dai Chuan-Fang
Xie* Xiang
Ma* Yi-Tong
Yang Yi-Ning
Li Xiao-Mei
Fu Zhen-Yan
Liu Fen
Chen Bang-Dang
Gai Min-Tao
Cite this article:   
Dai Chuan-Fang,Xie* Xiang,Ma* Yi-Tong, et al. Relationship between CYP17A1 Genetic Polymorphism and Essential Hypertension in a Chinese Population[J]. Aging and disease, 2015, 6(6): 486-498.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2015.0505     OR     http://www.aginganddisease.org/EN/Y2015/V6/I6/486
Han
TotalMenWomen
EHcontrolsPEHcontrolsPEHcontrolsP
Number (n)270288145157125131
Age, mean (SD)62.47(9.88)61.52(10.03)0.26460.15(11.08)60.19(11.19)0.77964.75(7.71)63.12(8.2)0.103
Diabetes (%)35(13.0)19(6.6)0.01117(11.7)15(9.6)0.54018(14.4)4(3.1)0.001
Smoking (%)41(15.2)29(10.1)0.06841(28.3)28(17.8)0.03101(0.9)0.328
Drinking (%)36(13.3)23(8.0)0.04036(25.1)23(14.6)0.018001
BMI, mean (SD)26.35(3.66)25.44(3.31)0.00226.94(3.85)26.04(3.15)0.10625.69(3.33)24.73(3.37)0.023
Glu(mmol/L)5.79(2.17)5.49(1.56)0.0625.97(2.21)5.53(1.59)0.0775.61(1.48)5.44(1.53)0.525
TG(mmol/L)2.05(1.96)1.90(1.44)0.3262.19(2.17)2.09(1.68)0.6511.89(1.69)1.69(1.06)0.250
TC(mmol/L)4.30(1.36)4.30(0.997)0.9694.14(1.11)4.16(0.97)0.8554.51(0.95)4.46(1.00)0.703
HDL(mmol/L)1.11(0.32)1.12(0.32)0.6051.03(0.28)1.04(0.30)0.6511.20(0.33)1.21(0.32)0.771
LDL(mmol/L)2.53(0.94)2.55(0.83)0.8262.48(1.02)2.53(0.82)0.6152.85(2.25)2.57(0.84)0.303
UA(umol/L)330.82(91.34)312.89(75.23)0.012355.18(79.27)340.57(73.76)0.101303.59(96.77)279.32(62.43)0.019
Cr(umol/L)73.60(17.45)71.15(17.80)0.10479.49(15.27)78.31(17.83)0.54266.63(17.34)62.54(13.46)0.038
BUN(mmol/L)5.36(1.93)5.23(1.76)0.3055.55(1.52)5.52(1.85)0.8685.22(2.31)4.88(1.59)0.183
Table 1  Demographic and clinical characteristics of study participants
Uighur
TotalMenWomen
EHcontrolsPEHcontrolsPEHcontrolsP
Number (n)1812921032107882
Age, mean (SD)58.78(9.08)58.30(9.36)0.58158.55(9.11)58.51(9.43)0.96959.09(9.09)59.33(8.98)0.867
Diabetes (%)26(14.4)23(7.9)0.02413(12.6)15(7.1)0.13912(15.4)8(9.8)0.282
Smoking (%)26(14.36)16(5.48)0.00126(25.2)16(7.6)<0.001001
Drinking (%)17(9.39)12(4.11)0.02017(16.5)11(5.2)0.00101(1.2)0.328
BMI, mean (SD)26.97(3.73)26.54(4.69)0.25127.17(3.46)26.69(3.96)0.27226.68(4.25)26.17(4.33)0.443
Glu(mmol/L)5.89(2.56)5.53(2.08)0.1015.82(2.60)5.44(1.89)0.1565.99(2.51)5.76(2.48)0.561
TG(mmol/L)1.84(1.16)1.78(1.07)0.6291.71(1.00)1.80(1.06)0.4842.00(1.33)1.73(1.09)0.179
TC(mmol/L)4.31(1.34)4.27(1.19)0.6974.22(0.98)4.29(1.27)0.6354.44(1.31)4.21(0.99)0.235
HDL(mmol/L)1.02(0.34)1.03(0.36)0.7450.99(0.34)1.02(0.36)0.4091.07(0.33)1.06(0.36)0.924
LDL(mmol/L)2.77(0.99)2.62(0.87)0.1152.74(0.93)2.62(0.87)0.2912.80(1.07)2.63(0.90)0.300
UA(umol/L)297.57(94.43)293.25(94.41)0.639319.29(79.93)312.23(94.76)0.527268.70(104.55)244.73(76.66)0.107
Cr(umol/L)74.65(31.63)72.33(30.79)0.44380.10(21.40)78.08(33.35)0.58167.40(40.55)57.69(15.34)0.049
BUN(mmol/L)5.51(2.02)5.35(1.50)0.3275.75(1.91)5.39(1.54)0.0865.19(2.12)5.23(1.39)0.913
Table 1(Continue)  Demographic and clinical characteristics of study participants
VariantsTotalMenWomen
EH
n(%)
Control
n(%)
PEH
n(%)
Control
n(%)
PEH
n(%)
Control
n(%)
P
Rs4919686 (SNP1)
GenotypingAA183(74.4)203(78.4)0.56794(71.8)111(78.2)0.46589(77.4)92(78.6)0.974
AC60(24.4)53(20.5)35(26.7)29(20.4)25(21.7)24(20.5)
CC3(1.2)3(1.2)2(1.5)2(1.4)1(0.9)1(0.9)
Recessive modelCC3(1.2)3(1.2)0.9492(1.5)2(1.4)0.9351(0.9)1(0.9)0.990
AA+AC243(98.8)256(98.8)129(98.5)140(98.6)114(99.0)116(99.1)
Dominant modelAA183(74.4)203(78.4)0.29137(28.2)111(78.2)0.22189(77.4)92(78.6)0.819
AC+CC63(25.6)56(21.6)57(27.0)31(21.8)26(22.6)25(21.4)
Additive modelAC60(24.4)53(20.5)0.29035(26.7)29(20.4)0.22025(21.7)24(20.5)0.819
AA+CC186(75.6)206(79.5)96(73.3)113(79.6)90(78.3)93(79.5)
AlleleA426(86.6)459(88.6)0.329223(85.1)251(88.4)0.260203(88.3)208(88.9)0.832
C66(13.4)59(11.4)39(14.9)33(11.6)27(11.7)26(11.1)
Rs1004467 (SNP2)
GenotypingCC52(20.1)46(15.9)0.24030(20.7)24(15.3)0.36423(19.3)22(16.5)0.592
CT124(47.9)158(54.7)71(49.0)88(56.1)55(46.2)70(52.6)
TT83(32.0)85(29.4)44(30.3)45(28.7)41(34.5)41(30.8)
Recessive modelCC52(20.1)46(15.9)0.20530(20.7)24(15.3)0.22123(19.3)22(16.5)0.564
CT+TT207(79.9)243(84.1)115(79.3)133(84.7096(80.7)111(83.5)
Dominant modelTT83(32.0)85(29.4)0.50444(30.3)45(28.7)0.47941(34.5)41(30.8)0.540
CC+CT176(68.0)204(70.6)101(69.7)112(71.3)78(65.5)92(69.2)
Additive modelCT124(47.9)158(54.7)0.11271(49.0)88(56.1)0.21855(46.2)70(52.6)0.309
CC+TT135(52.1)131(45.3)74(51.0)69(43.9)64(53.8)64(47.4)
AlleleC228(44.0)250(43.3)0.799131(45.2)136(43.3)0.646101(42.4)114(42.9)0.924
T290(56.0)328(56.7)159(54.8)178(56.7)137(57.6)152(57.1)
Rs4919687 (SNP3)
GenotypingAA9(3.4)15(5.2)0.5905(3.5)8(5.1)0.7244(3.4)7(5.3)0.641
AG90(34.4)96(33.4)49(34.3)56(35.9)41(34.5)40(30.5)
GG163(62.2)176(61.3)89(62.2)92(59.0)74(62.2)84(64.1)
Recessive modelAA9(3.4)15(5.2)0.3055(3.5)8(5.1)0.4894(3.4)7(5.3)0.445
AG+GG253(96.6)272(94.8)138(96.5)148(94.9)115(96.6)124(94.7)
Dominant modelGG163(62.2)176(61.3)0.83089(62.2)92(59.0)0.56474(62.2)84(64.1)0.751
AA+AG99(37.8)111(38.7)54(37.8)64(41.0)45(37.8)47(35.9)
Additive modelAG90(34.4)96(33.4)0.82449(34.3)56(35.9)0.76841(34.5)40(30.5)0.508
AA+GG172(65.6)191(66.6)94(65.7)100(64.1)78(65.5)91(69.5)
AlleleA108(20.6)126(22.0)0.58859(20.6)72(23.1)0.47049(20.6)54(20.6)0.995
G416(79.4)448(78.0)227(79.4)240(76.9)189(79.4)208(79.4)
Rs10786712 (SNP4)
GenotypingCC50(20.2)56(21.6)0.91529(21.8)30(21.1)0.98521(18.3)26(22.2)0.754
CT126(50.8)128(49.4)62(46.6)66(46.5)64(55.7)62(53.0)
TT72(29.0)75(29.0)42(31.6)46(32.4)30(26.1)29(24.8)
Recessive modelTT72(29.0)75(29.0)0.98542(31.6)46(32.4)0.88530(26.1)29(24.8)0.820
CC+CT176(71.0)184(71.0)91(68.4)96(67.6)85(73.9)88(75.2)
Dominant modelCC50(20.2)56(21.6)0.68629(21.8)30(21.1)0.89121(18.3)26(22.2)0.453
CT+TT198(79.8)203(78.4)104(78.2)112(78.9)94(81.7)91(77.8)
Additive modelCT126(50.8)128(49.4)0.75562(46.6)66(46.5)0.98264(55.7)62(53.0)0.684
CC+TT122(49.2)131(50.6071(53.4)76(53.5)51(44.3)55(47.0)
AlleleC226(45.6)240(46.3)0.806120(45.1)126(44.4)0.860106(46.1)114(48.7)0.570
T270(54.4)278(53.7)146(54.9)158(55.6)124(53.9)120(51.3)
Rs2486758 (SNP5)
GenotypingCC14(5.2)6(2.1)0.07611(7.7)2(1.3)0.0233(2.4)4(3.1)0.423
CT82(30.7)103(36.4)46(32.2)57(36.5)36(29.0)46(36.2)
TT171(64.0)174(61.5)86(60.1)97(62.2)85(68.5)77(60.6)
Recessive modelCC14(5.2)6(2.1)0.05111(7.7)2(1.3)0.0073(2.4)4(3.1)0.725
CT+TT253(94.8)277(97.9)132(92.3)154(98.7)121(97.6)123(96.9)
Dominant modelTT171(64.0)174(61.5)0.53586(60.1)97(62.2)0.71885(68.5)77(60.6)0.190
CC+CT96(36.0)109(38.5)57(39.9)59(37.8)39(31.5)50(39.4)
Additive modelCT82(30.7)103(36.4)0.15846(32.2)57(36.5)0.42736(29.0)46(36.2)0.225
CC+TT185(69.3)180(63.6)97(67.8)99(63.5)88(71.0)81(63.8)
AlleleC110(20.6)115(20.3)0.90868(23.8)61(19.6)0.21042(16.9)54(21.3)0.218
T424(79.4)451(79.7)218(76.2)251(80.4)206(83.1)200(78.7)
Table 2  Genotype and Allele distributions in Han patients with EH and control participants
VariantsTotalMenWomen
EH
n(%)
Control n(%)PEH
n(%)
Control n(%)PEH
n(%)
Control n(%)P
Rs4919686 (SNP1)
GenotypingAA125(73.5)176(63.3)0.02078(78.8)122(61.3)0.00447(66.2)54(68.4)0.626
AC37 (21.8)94 (33.8)17(17.2)71(35.7)20(28.2)23(29.1)
CC8 (4.7)8 (2.9)4(4.0)6(3.0)4(5.6)2(2.5)
Recessive modelCC8 (4.7)8 (2.9)0.3124(4.0)6(3.0)0.6434(5.6)2(2.5)0.333
AA+AC162(95.3)270(97.1)95(96.0)193(97.0)67(94.4)77(97.5)
Dominant modelAA125(73.5)176(63.3)0.02578(78.8)122(61.3)0.00247(66.2)54(68.4)0.779
AC+CC45(26.5)102(36.7)21(21.2)77(38.7)24(33.8)25(31.6)
Additive modelAC37 (21.8)94 (33.8)0.00717(17.2)71(35.7)0.00120(28.2)23(29.1)0.898
AA+CC133(78.2)184(66.2)82(82.8)128(64.3)51(71.8)56(70.9)
AlleleA287(84.4)446(80.2)0.114173(87.4)315(79.1)0.014114(80.3)131(82.9)0.557
C53(15.6)110(19.8)25(12.6)83(20.9)28(19.7027(17.1)
Rs1004467 (SNP2)
GenotypingCC42(24.6)72(25.2)0.81216(16.2)37(17.9)0.82126(36.1)35(43.8)0.425
CT85(49.7)148(51.7)53(53.5)114(55.1)32(44.4)35(43.8)
TT44(25.7)66(23.1)30(30.3)56(27.1)14(19.4)10(12.5)
Recessive modelCC42(24.6)72(25.2)0.88316(16.2)37(17.9)0.71126(36.1)35(43.8)0.337
CT+TT129(75.4)214(74.8)83(83.8)170(82.1)46(63.9)45(56.3)
Dominant modelTT44(25.7)66(23.1)0.52130(30.3)56(27.1)0.55414(19.4)10(12.5)0.241
CC+CT127(74.3)220(76.9)69(69.7)151(72.9)58(80.6)70(87.5)
Additive modelCT85(49.7)148(51.7)0.67353(53.5)114(55.1)0.80132(44.4)35(43.8)0.931
CC+TT86(50.3)138(48.3)46(46.5)93(44.9)40(55.6)45(56.3)
AlleleC169(49.4)292(51.0)0.63385(42.9)188(45.4)0.56384(58.3)105(65.6)0.191
T173(50.6)280(49.0)113(57.1)226(54.6)60(41.7)55(34.4)
Rs4919687 (SNP3)
GenotypingAA32(18.6)34(11.8)0.00225(25.0)30(14.6)<0.0017(9.7)4(4.9)0.518
AG46(26.7)121(42.2)22(22.0)92(44.7)24(33.3)29(35.8)
GG94(54.7)132(46.0)53(53.0)84(40.8)41(56.9)48(59.3)
Recessive modelAA32(18.6)34(11.8)0.04625(25.0)30(14.6)0.0267(9.7)4(4.9)0.253
AG+GG140(81.4)253(88.2)75(75.0)176(85.4)65(90.3)77(95.1)
Dominant modelGG94(54.7)132(46.0)0.07253(53.0)84(40.8)0.04441(56.9)48(59.3)0.772
AA+AG78(45.3)155(54.0)47(47.0)122(59.2)31(43.1)33(40.7)
Additive modelAG46(26.7)121(42.2)0.00122(22.0)92(44.7)<0.00124(33.3)29(35.8)0.749
AA+GG126(73.3)166(57.8)78(78.0)114(55.3)48(66.7)52(64.2)
AlleleA110(32.0)189(32.9)0.76672(36.0)152(36.9)0.83038(26.4)37(22.8)0.471
G234(68.0)385(67.1)128(64.0)260(63.1)106(73.6)125(77.2)
Rs10786712 (SNP4)
GenotypingCC70(40.5)73(26.0)0.00444(44.0)52(25.9)0.00226(35.6)21(26.3)0.310
CT77(44.5)145(51.6)43(43.0)98(48.8)34(46.6)47(58.8)
TT26(15.0)63(22.4)13(13.0)51(25.4)13(17.8)12(15.0)
Recessive modelTT26(15.0)63(22.4)0.05413(13.0)51(25.4)0.01313(17.8)12(15.0)0.639
CC+CT147(85.0)218(77.6)87(87.0)150(74.6)60(82.2)68(85.0)
Dominant modelCC70(40.5)73(26.0)0.00144(44.0)52(25.9)0.00126(35.6)21(26.3)0.210
CT+TT103(59.5)208(74.0)56(56.0)149(74.1)47(64.4)59(73.8)
Additive modelCT77(44.5)145(51.6)0.14243(43.0)98(48.8)0.34634(46.6)47(58.8)0.132
CC+TT96(55.5)136(48.4)57(57.0)103(51.2)39(53.4)33(41.3)
AlleleC217(62.7)291(51.8)0.001131(65.5)202(50.2)<0.00186(58.9)89(55.6)0.563
T129(37.3)271(42.2)69(34.5)200(49.8)60(41.1)71(44.4)
Rs2486758 (SNP5)
GenotypingCC11(6.6)9(3.3)0.1515(4.9)9(4.5)0.2896(9.5)00.025
CT67(40.4)100(36.6)44(42.7)68(33.8)23(36.5)32(45.1)
TT88(53.0)164(60.1)54(52.4)124(61.7)34(54.0)39(54.9)
Recessive modelCC11(6.6)9(3.3)0.1055(4.9)9(4.5)0.8826(9.5)00.008
CT+TT155(93.4)264(96.7)98(95.1)192(95.5)57(90.5)71(100)
Dominant modelTT88(53.0)164(60.1)0.14754(52.4)124(61.7)0.12134(54.0)39(54.9)0.911
CC+CT78(47.0)109(39.9)49(47.6)77(38.3)29(46.0)32(45.1)
Additive modelCT67(40.4)100(36.6)0.43544(42.7)68(33.8)0.12823(36.5)32(45.1)0.315
CC+TT99(59.6)173(63.4)59(57.3)133(66.2)40(63.5)39(54.9)
AlleleC89(26.8)118(21.6)0.07954(26.2)86(21.4)0.18135(27.8)32(22.5)0.323
T243(73.2)428(78.4)152(73.8)316(78.6)91(72.2)110(77.5)
Table 3  Genotype and Allele distributions in Uighur patients with EH and control participants
TotalMenWomen
OR95% CIPOR95% CIPOR95% CIP
rs4919686
Additive model (CC+CT vs TT)0.5590.356-0.8790.0120.3860.211-0.7060.0020.9980.487-2.0440.995
Diabetes1.5380.808-2.9290.1901.6060.691-3.7370.2711.4300.527-3.8770.482
Smoking3.1431.272-7.7630.0131.1670.445-3.0590.754___
Drinking0.9790.313-3.0630.9710.8560.263-2.7920.797___
BMI1.0130.694-1.0650.6151.0160.951-1.0860.6301.0210.946-1.1020.592
rs4919687
Additive
model (CC+CT vs TT)
0.5200.341-0.7920.0020.3710.213-0.644<0.0010.9390.478-1.8440.854
Diabetes1.4570.769-2.7610.2491.5910.703-3.5990.2651.2680.460-3.4990.646
Smoking3.7801.396-10.240.0091.2040.439-3.3040.718___
Drinking0.6880.202-2.3460.5500.7390.209-2.6050.638-_-
BMI1.0200.970-1.0730.4371.0290.963-1.0990.3961.0240.948-1.1060.551
rs10786712
Dominant model (CC+CT vs TT)1.9681.294-2.9930.0022.1891.306-3.6670.0031.4540.717-2.9490.299
Diabetes1.3660.709-2.6300.3511.4380.613-3.3700.4041.2840.470-3.5090.626
Smoking3.4791.335-9.0660.0111.2250470-3.1950.678___
Drinking0.8860.277-2.8330.8390.8860.273-2.8730.841-_-
BMI1.0120.962-1.0640.5641.0210.956-1.0900.5321.0180.943-1.0990.654
Table 4  Multiple logistic regression analysis for EH patients and control subjects
HaplotypesHaplotype FrequenciesX2POR95%CI
SNP1SNP2SNP3SNP4SNP5EHControl
AA0.0770.1284.1560.0410.5620.321-0.984
ACA0.0090.0354.6160.0320.2440.061-0.980
AAT0.0710.1183.8760.0490.5630.316-1.103
AAT0.0670.1204.6860.0300.5250.290-0.948
ATTT0.0710.1214.0420.0440.5550.311-0.991
AATT0.0700.1193.9910.0460.5540.309-0.995
Table 5  Haplotype analysis in Han men patients with EH and in control subjects
1234Overall P valueFrequency in totalFrequency in manFrequency in woman
TotalManWomanEHControlP valueEHControlP valueEHControlP value
SNP1SNP30.013<
0.001
0.268
H1AA0.2070.1500.0320.2770.1860.0120.1080.0690.127
H2CA0.1170.1790.0140.0810.187<0.0010.1690.2590.833
SNP1SNP40.0080.0010.570
H1AC0.6250.5180.0020.6600.505<0.0010.5700.5570.814
H3CT0.1550.1980.1030.1240.2160.0140.2040.1710.459
SNP3SNP40.008<0.0010.154
H1AC0.1250.0830.0440.1990.1050.0020.0170.026_
H2AT0.1990.2460.1050.1650.2680.0060.2510.1950.262
H4GT0.1770.2410.0240.1840.2320.1800.1690.2540.067
SNP1SNP3SNP40.002<0.0010.053
H2CAT0.1180.1790.0150.0810.187<0.0010.1690.1590.860
H3AAC0.1220.0830.0650.1940.1060.0030.0170.027_
SNP1SNP3SNP50.0320.0100.378
H1AAT0.1650.1170.0390.2050.1370.0330.1010.0660.265
H2CAT0.1070.1760.0090.0810.1840.0010.1510.1510.880
SNP1SNP4SNP50.0100.0020.771
H1ACT0.3720.3070.0390.4120.3040.0090.2960.319
H2CTT0.1340.1980.0210.1090.2070.0030.1870.167
SNP1SNP3SNP4SNP50.0030.0030.093
H1AGTT0.1380.2200.0050.1380.2070.0460.1350.251
H2CATT0.1030.1750.0050.0820.1830.0010.1490.151
H3AACT0.0840.0550.0990.1330.0660.0070.0090.028
Table 6  Haplotype analysis in patients with EH and in control subjects (Uygur)
[1] Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005). Global burden of hypertension: analysis of worldwide data. Lancet, 365:217-223.
[2] Stokes J 3rd, Kannel WB, Wolf PA, D'Agostino RB, Cupples LA (1989). Blood pressure as a risk factor for cardiovascular disease: the Framingham Study: 30 years of follow-up. Hypertension, 13(5 Suppl): I13-8.
[3] Mosterd A, D'Agostino RB, Silbershatz H, Sytkowski PA, Kannel WB, Grobbee DE,et al. (1999). Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N Engl J Med, 340:1221-1227.
[4] Barri YM (2006). Hypertension and kidney disease: a deadly connection. Curr Cardiol Rep, 8:411-417.
[5] Suzuki H, Kanno Y (2005). Efficacy of Candesartan on Outcome in Saitama Trial (E-COST) Group: Effects of candesartan on cardiovascular outcomes in Japanese hypertensive patients. Hypertens Res, 28: 307-314.
[6] Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA,et al. (2002). Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA, 288:1882-1888.
[7] Sugimoto K, Katsuya T, Ohkubo T, Hozawa A, Yamamoto K, Matsuo A,et al. (2004). Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study. Hypertens Res, 27:551-556.
[8] Ruppert V, Maisch B (2003). Genetics of human hypertension. Herz, 28:655-662.
[9] Peter A (2002). Doris: Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension, 39:323-331.
[10] Luft FC (2001). Twins in cardiovascular genetic research. Hypertension, 37:350-356.
[11] Zordoky BN, El-Kadi AO (2010). Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther, 125:446-463.
[12] Elbekai RH, El-Kadi AO (2006). Cytochrome P450 enzymes: central players in cardiovascular health and disease. Pharmacol Ther, 112:564-587.
[13] Lin Y, Lai X, Chen B, Xu Y, Huang B, Chen Z,et al. (2011). Genetic variations in CYP17A1, CACNB2 and PLEKHA7 are associated with blood pressure and/or hypertension in She ethnic minority of China. Atherosclerosis, 219:709-714.
[14] Miyaki K, Htun NC, Song Y, Ikeda S, Muramatsu M, Shimbo T (2012). The combined impact of 12 common variants on hypertension in Japanese men, considering GWAS results. J Hum Hypertens, 26:430-436.
[15] Ho JE, Levy D, Rose L, Johnson AD, Ridker PM, Chasman DI (2011). Discovery and replication of novel blood pressure genetic loci in the Women's Genome Health Study. J Hypertens, 29:62-69.
[16] Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK,et al. (2011). Association of genetic variation with systolic and diastolic blood pressure among African Americans: The candidate gene association resource study. Hum Mol Genet, 20:2273-2284.
[17] Manolio TA (2010). Genome-wide association studies and assessment of the risk of disease. N Engl J Med, 363:166-176.
[18] Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, Ohkubo T,et al. (2010). Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: The Japanese Millennium Genome Project. Hypertension, 56:973-980.
[19] Liu C, Li H, Qi Q, Lu L, Gan W, Loos RJ,et al. (2011). Common variants in or near FGF5, CYP17A1 and MTHFR genes are associated with blood pressure and hypertension in Chinese Hans. J Hypertens, 29:70-75.
[20] Fan Y, Laaksonen R, Janatuinen T, Vesalainen R, Nuutila P, Koivula T,et al. (2001). Hepatic lipase gene variation is related to coronary reactivity in healthy young men. Eur J Clin Invest, 31:574-80.
[21] Haschke-Becher E, Kirchheiner J, Trummer O, Grünbacher G, Kainz A, Boehm BO,et al. (2010). Impact of CYP2C8 and 2C9 polymorphisms on coronary artery disease and myocardial infarction in the LURIC cohort. Pharmacogenomics, 11:1359-1365.
[22] Kondo T, Hirose M, Kageyama K (2009). Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb, 16:532-538.
[23] Kaur-Knudsen D, Bojesen SE, Nordestgaard BG. (2009) Common polymorphisms in CYP2C9, sub-clinical atherosclerosis and risk of ischemic vascular disease in 52000 individuals. Pharmacogenomics J, 9:327-332.
[24] Guidelines Subcommittee (1999). World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Hypertension, 17:151-183.
[25] Nakayama T, Soma M, Rahmutula D, Ozawa Y, Kanmatsuse K (2001). Isolation of the 5ˊ-flanking region of genes by thermal asymmetric interlaced polymerase chain reaction. Med Sci Monit, 7:345-349.
[26] Xiang Xie, Ma YT, Fu ZY, Yang YN, Xiang Ma, Chen BD,et al. (2009). Haplotype Analysis of the CYP8A1 gene associated with myocardial infarction. Clin Appl Thromb-Hem, 15:574-580.
[27] Xie X, Ma YT, Fu ZY, Yang YN, Ma X, Chen BDet al. (2009). Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clin Chem Lab Med, 47:347-352.
[28] Yang YN, Wang XL, Ma YT, Xie X, Fu ZY, Li XM,et al. (2010). Association of interaction between smoking and CYP 2C19*3 polymorphism with coronary artery disease in a Uighur population. Clin Appl Thromb Hemost, 16:579-583.
[29] Dempster AP, Laird NM, Rubin DB (1977). Maximum likelihood from in complete data via the EM algorithm. J R Stat Soc, 39:1-22.
[30] King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ,et al. (2005). Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharmacogenet Genomics, 15:7-13.
[31] Kivistö KT, Niemi M, Schaeffeler E, Pitkälä K, Tilvis R, Fromm MFet al. (2005). CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study. Am J Pharmacogenomics, 5:191-195.
[32] Iwai N, Katsuya T, Ishikawa K, Mannami T, Ogata J, Higaki J,et al. (1999). Human prostacyclin synthase gene and hypertension: the Suita Study. Circulation, 100:2231-2236.
[33] Sookoian S, Gianotti TF, González CD, Pirola CJ (2007). Association of the C-344T aldosterone synthase gene variant with essential hypertension: a meta-analysis. J Hypertens, 25:5-13.
[34] Nilsson SE, Fransson E, Brismar K (2009). Relationship between serum progesterone concentrations and cardiovascular disease, diabetes, and mortality in elderly Swedish men and women: an 8-year prospective study. Gend Med, 6:433-443.
[35] Sá EQ, Sá FC, Guedes AD, Verreschi IT (2009). Serum testosterone and cardiovascular disease in men. Arq Bras Endocrinol Metabol, 53:915-922.
[36] Reckelhoff JF, Maric C (2010). Sex and gender differences in cardiovascular-renal physiology and pathophysiology. Steroids, 75: 745-746.
[1] Yan Aijuan, Cai Gaoyu, Fu Ningzhen, Feng Yulan, Sun Jialan, Maimaiti Yiming, Zhou Weijun, Fu Yi. Relevance Study on Cerebral Infarction and Resistin Gene Polymorphism in Chinese Han Population[J]. Aging and disease, 2016, 7(5): 593-603.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd