Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2015, Vol. 6 Issue (5) : 342-348     DOI: 10.14336/AD.2015.0521
Review Article |
Does Infection-Induced Immune Activation Contribute to Dementia?
Tatiana Barichello1,2,*(), Jaqueline S. Generoso2, Jessica A. Goularte2, Allan Collodel2, Meagan R. Pitcher1, Lutiana R. Simões2, João Quevedo1,3, Felipe Dal-Pizzol4
1 Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
2 Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
3 Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
4 Laboratorio de Fisiopatologia Experimental, Programa de Pos-Graduacao em Ciencias da Saude, Unidade Academica de Ciencias da Saude, Universidade do Extremo Sul Catarinense, 88806-000 Criciuma, SC, Brazil.
Download: PDF(1010 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders.

Keywords infection      virus      meningitis      sepsis      RAGE      αβ-amyloid      dementia     
Corresponding Authors: Tatiana Barichello     E-mail:
About author:

present address: Kunming Biomed International, Kunming, Yunnan, 650500, China

Issue Date: 01 October 2015
E-mail this article
E-mail Alert
Articles by authors
Tatiana Barichello
Jaqueline S. Generoso
Jessica A. Goularte
Allan Collodel
Meagan R. Pitcher
Lutiana R. Simões
João Quevedo
Felipe Dal-Pizzol
Cite this article:   
Tatiana Barichello,Jaqueline S. Generoso,Jessica A. Goularte, et al. Does Infection-Induced Immune Activation Contribute to Dementia?[J]. Aging and disease, 2015, 6(5): 342-348.
URL:     OR
Figure 1.  Recognition of pathogens by the innate immune system. Toll-like receptors (TLR) recognize molecular motifs that are expressed by pathogens or endogenous ligands released from damaged cells. AGE, advanced glycation end products; AP-1, activator protein-1; ASC, apoptosis-associated speck-like protein containing a caspase-recruitment domain; Cdc42, cell division control protein 42 homolog; Csp3, caspase-3; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal regulated; IL, interleukin; IKK, NEMO/IKKα/IKKß complex; IRAK-4, interleukin-1 receptor-associated kinase 4; IκB, inhibitor of NF-κB; IKK, IκB kinase; INF, interferon; IRF3, interferon regulatory factor 3; JNK, c-jun N-terminal kinase; MAPK, mitogen-activated protein kinases; MyD88, myeloid differentiation factor 88; MEK, mitogen-activated protein kinase; MKK, MAPK kinase; NADPH, Nicotinamide adenine dinucleotide phosphate; NEMO, NF-κB essential modulator, IKKγ; NF-κB, nuclear transcription factor kappa B; NLRP3, nucleotide-binding domain and leucine-rich repeat protein 3; NO, nitric oxide; NODs, nucleotide binding oligomerisation domains; PI3K, phosphatidylinositide 3-kinase; PKB, protein kinase A; RAGE; receptor for advanced glycation endproducts; PKR, protein kinase RNA-activated; ROS, reactive oxygen species; TAB, TGF-β-activated kinase 1-binding protein 1; TAK1, TGFß activated kinase 1; TIRAP, TIR-containing protein; TLRs, toll-like receptors; TRAF, receptor-associated factor; TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain-containing adapter-inducing interferon-β
[1] Swanson PA, 2nd, McGavern DB (2015). Viral diseases of the central nervous system. Curr Opin Virol, 11c:44-54.
[2] Kim KS (2008). Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol, 6(8):625-34.
[3] Kim KS (2006). Microbial translocation of the blood-brain barrier. Int J Parasitol, 36(5):607-14.
[4] Moses AV, Bloom FE, Pauza CD, Nelson JA (1993). Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc Natl Acad Sci U S A, 90(22):10474-8.
[5] Coyne CB, Shen L, Turner JR, Bergelson JM (2007). Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe, 2(3):181-92.
[6] Coyne CB, Kim KS, Bergelson JM (2007). Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. Embo J, 26(17):4016-28.
[7] Sellner J, Täuber MG, Leib SL, (2010). Chapter 1 - Pathogenesis and pathophysiology of bacterial CNS infections, in: Karen LR and RT Allan, Editors. Handbook of Clinical Neurology. Elsevier, 1-16.
[8] Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011). Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev, 24(3):557-91.
[9] Savva A, Roger T (2013). Targeting Toll-Like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious Diseases. Front Immunol, 4:387.
[10] Iwasaki A, Medzhitov R (2010). Regulation of adaptive immunity by the innate immune system. Science, 327(5963):291-5.
[11] Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T (2014). Host innate immune responses to sepsis. Virulence, 5(1):36-44.
[12] Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJet al. (2014). Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol, 10(6):713-27.
[13] Barichello T, Generoso JS, Milioli G, Elias SG, Teixeira AL (2013). Pathophysiology of bacterial infection of the central nervous system and its putative role in the pathogenesis of behavioral changes. Rev Bras Psiquiatr, 35(1):81-7.
[14] Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga Jet al. (2014). Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol, 119-120:60-84.
[15] Heiman A, Pallottie A, Heary RF, Elkabes S (2014). Toll-like receptors in central nervous system injury and disease: A focus on the spinal cord. Brain Behav Immun, 42:232-45.
[16] Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014). Pattern recognition receptors and central nervous system repair. Exp Neurol, 258:5-16.
[17] Kumar S, Ingle H, Prasad DV, Kumar H (2013). Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol, 39(3):229-46.
[18] Akira S (2009). Innate immunity to pathogens: diversity in receptors for microbial recognition. Immunol Rev, 227(1):5-8.
[19] Wang H, Zhang J, Wu H, Jiang C, Zheng Q, Li Z (2006). Inhibition of RAW264.7 macrophage inflammatory cytokines release by small haparin RNAi targeting TLR4. J Huazhong Univ Sci Technolog Med Sci, 26(5):500-3.
[20] Koedel U, Bayerlein I, Paul R, Sporer B, Pfister HW (2000). Pharmacologic interference with NF-kappaB activation attenuates central nervous system complications in experimental Pneumococcal meningitis. J Infect Dis, 182(5):1437-45.
[21] Kastenbauer S, Koedel U, Weih F, Ziegler-Heitbrock L, Pfister HW (2004). Protective role of NF-kappaB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol, 498(1-3):315-8.
[22] Clarke TB, Weiser JN (2011). Intracellular sensors of extracellular bacteria. Immunol Rev, 243(1):9-25.
[23] Barbe F, Douglas T, Saleh M (2014). Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev, 25(6):681-97.
[24] Damgaard RB, Gyrd-Hansen M (2011). Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity. Discov Med, 11(58):221-31.
[25] Koppe U, Suttorp N, Opitz B (2012). Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol, 14(4):460-6.
[26] Schroder K, Zhou R, Tschopp J (2010). The NLRP3 inflammasome: a sensor for metabolic danger? Science, 327(5963):296-300.
[27] Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker Aet al. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434):674-8.
[28] Dempsey A, Bowie AG (2015). Innate immune recognition of DNA: A recent history. Virology, 479-480c:146-52.
[29] Cai X, Chiu YH, Chen ZJ (2014). The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell, 54(2):289-96.
[30] Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY (2012). The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm, 2012:979105.
[31] Fritz G (2011). RAGE: a single receptor fits multiple ligands. Trends Biochem Sci, 36(12):625-32.
[32] Harris HE, Andersson U, Pisetsky DS (2012). HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol, 8(4):195-202.
[33] Kierdorf K, Fritz G (2013). RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol, 94(1):55-68.
[34] Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJet al. (2010). Structural basis for ligand recognition and activation of RAGE. Structure, 18(10):1342-52.
[35] Tobon-Velasco JC, Cuevas E, Torres-Ramos MA, Santamaria A (2014). Receptor for AGEs (RAGE) as Mediator of NF-kB Pathway Activation in Neuroinflammation and Oxidative Stress. CNS Neurol Disord Drug Targets, 13(9):1615-26.
[36] Kubis AM, Janusz M (2008). [Alzheimer's disease: new prospects in therapy and applied experimental models]. Postepy Hig Med Dosw (Online), 62:372-92.
[37] Cunningham C, Hennessy E (2015). Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res Ther, 7(1):33.
[38] Piva S, McCreadie VA, Latronico N (2015). Neuroinflammation in sepsis: sepsis associated delirium. Cardiovasc Hematol Disord Drug Targets, 15(1):10-8.
[39] Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BTet al. (2013). Long-term cognitive impairment after critical illness. N Engl J Med, 369(14):1306-16.
[40] Zhang QH, Sheng ZY, Yao YM (2014). Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Mil Med Res, 1:20.
[41] Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AKet al. (2010). Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med, 38(7):1513-20.
[42] van Griensven M (2014). [Cytokines as biomarkers in polytraumatized patients]. Unfallchirurg, 117(8):699-702.
[43] Singh A, Feng Y, Mahato N, Li J, Wu C, Gong J (2015). Role of high-mobility group box 1 in patients with acute obstructive suppurative cholangitis-induced sepsis. J Inflamm Res, 8:71-7.
[44] Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva Set al. (2013). High-mobility group box-1 protein and beta-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-kappaB axis: relevance for Alzheimer's disease. J Neurosci, 33(14):6047-59.
[45] Comim CM, Constantino LC, Barichello T, Streck EL, Quevedo J, Dal-Pizzol F (2009). Cognitive impairment in the septic brain. Curr Neurovasc Res, 6(3):194-203.
[46] Mina F, Comim CM, Dominguini D, Cassol-Jr OJ, Dall Igna DM, Ferreira GKet al. (2014). Il1-beta involvement in cognitive impairment after sepsis. Mol Neurobiol, 49(2):1069-76.
[47] Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003). Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis, 14(1):133-45.
[48] Schwalm MT, Pasquali M, Miguel SP, Dos Santos JP, Vuolo F, Comim CMet al. (2014). Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol, 49(1):380-5.
[49] Khandaker GM, Stochl J, Zammit S, Lewis G, Jones PB (2015). A population-based prospective birth cohort study of childhood neurocognitive and psychological functioning in healthy survivors of early life meningitis. Ann Epidemiol, 25(4):236-42.
[50] Naito M, Johkura K, Momoo T, Nomiya T, Kudo Y, Kuroiwa Y (2010). Dementia and capsular genu ischemia in patients with severe bacterial meningitis. Neurol Sci, 31(2):133-6.
[51] Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao Wet al. (2008). A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med, 36(1):291-5.
[52] Hohne C, Wenzel M, Angele B, Hammerschmidt S, Hacker H, Klein Met al. (2013). High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain, 136(Pt 6):1746-59.
[53] Saijo K, Glass CK (2011). Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol, 11(11):775-87.
[54] Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CMet al. (2010). TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol, 221(1-2):42-5.
[55] Barichello T, Dos Santos I, Savi GD, Simoes LR, Generoso JS, Comim CMet al. (2010). Depressive-like-behavior and proinflamatory interleukine levels in the brain of rats submitted to pneumococcal meningitis. Brain Res Bull, 82(5-6):243-6.
[56] Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DMet al. (2011). Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res, 36(10):1922-30.
[57] Panato AP, Tomasi LT, Simon CS, Madeira K, Simoes LR, Medeiros LRet al. (2014). Meta-analysis identifies Tumor Necrosis Factor-alpha and Interleukin-1 beta as Diagnostic Biomarkers for Bacterial and Aseptic Meningitis. Curr Neurovasc Res, 11(4):340-8.
[58] Barichello T, Santos AL, Savi GD, Generoso JS, Otaran P, Michelon CMet al. (2012). Antioxidant treatment prevents cognitive impairment and oxidative damage in pneumococcal meningitis survivor rats. Metab Brain Dis, 27(4):587-93.
[59] Barichello T, Ceretta RA, Generoso JS, Moreira AP, Simoes LR, Comim CMet al. (2012). Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis. Eur J Pharmacol, 697(1-3):158-64.
[60] Barichello T, Simoes LR, Generoso JS, Sangiogo G, Danielski LG, Florentino Det al. (2013). Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Transl Res, 163(5):503-13.
[61] Kanoh Y, Ohara T, Akahoshi T (2011). Acute inflammatory biomarkers in cerebrospinal fluid as indicators of blood cerebrospinal fluid barrier damage in Japanese subjects with infectious meningitis. Clin Lab, 57(1-2):37-46.
[1] Tseng Chin-Hsiao. Metformin and the Risk of Dementia in Type 2 Diabetes Patients[J]. Aging and disease, 2019, 10(1): 37-48.
[2] Jong Bin Bae,Ji Won Han,Kyung Phil Kwak,Bong Jo Kim,Shin Gyeom Kim,Jeong Lan Kim,Tae Hui Kim,Seung-Ho Ryu,Seok Woo Moon,Joon Hyuk Park,Jong Chul Youn,Dong Young Lee,Dong Woo Lee,Seok Bum Lee,Jung Jae Lee,Jin Hyeong Jhoo,Ki Woong Kim. Is Dementia More Fatal Than Previously Estimated? A Population-based Prospective Cohort Study[J]. Aging and disease, 2019, 10(1): 1-11.
[3] Poyin Huang,Cheng-Sheng Chen,Yuan-Han Yang,Mei-Chuan Chou,Ya-Hsuan Chang,Chiou-Lian Lai,Hsuan-Yu Chen,Ching-Kuan Liu. REST rs3796529 Genotype and Rate of Functional Deterioration in Alzheimer’s Disease[J]. Aging and disease, 2019, 10(1): 94-101.
[4] Calvin Pak-Wing Cheng, Sheung-Tak Cheng, Cindy Woon-Chi Tam, Wai-Chi Chan, Winnie Chiu-Wing Chu, Linda Chiu-Wa Lam. Relationship between Cortical Thickness and Neuropsychological Performance in Normal Older Adults and Those with Mild Cognitive Impairment[J]. Aging and disease, 2018, 9(6): 1020-1030.
[5] Xu Yangqi, Liu Xiaoli, Shen Junyi, Tian Wotu, Fang Rong, Li Binyin, Ma Jianfang, Cao Li, Chen Shengdi, Li Guanjun, Tang Huidong. The Whole Exome Sequencing Clarifies the Genotype- Phenotype Correlations in Patients with Early-Onset Dementia[J]. Aging and disease, 2018, 9(4): 696-705.
[6] Lu Jiao, Duan Xuefeng, Zhao Wenming, Wang Jing, Wang Haoyu, Zhou Kai, Fang Min. Aged Mice are More Resistant to Influenza Virus Infection due to Reduced Inflammation and Lung Pathology[J]. Aging and disease, 2018, 9(3): 358-373.
[7] Perez-Roca Laia, Adame-Castillo Cristina, Campdelacreu Jaume, Ispierto Lourdes, Vilas Dolores, Rene Ramon, Alvarez Ramiro, Gascon-Bayarri Jordi, Serrano-Munoz Maria A., Ariza Aurelio, Beyer Katrin. Glucocerebrosidase mRNA is Diminished in Brain of Lewy Body Diseases and Changes with Disease Progression in Blood[J]. Aging and disease, 2018, 9(2): 208-219.
[8] Zou Jing, Chen Zhigang, Liang Caiqian, Fu Yongmei, Wei Xiaobo, Lu Jianjun, Pan Mengqiu, Guo Yue, Liao Xinxue, Xie Huifang, Wu Duobin, Li Min, Liang Lihui, Wang Penghua, Wang Qing. Trefoil Factor 3, Cholinesterase and Homocysteine: Potential Predictors for Parkinson’s Disease Dementia and Vascular Parkinsonism Dementia in Advanced Stage[J]. Aging and disease, 2018, 9(1): 51-65.
[9] Li Xiaohua, Ren Changhong, Li Sijie, Han Rongrong, Gao Jinhuan, Huang Qingjian, Jin Kunlin, Luo Yinghao, Ji Xunming. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion[J]. Aging and disease, 2017, 8(4): 392-401.
[10] Xu Xianglai, Wang Brian, Ren Changhong, Hu Jiangnan, Greenberg David A., Chen Tianxiang, Xie Liping, Jin Kunlin. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases[J]. Aging and disease, 2017, 8(4): 486-505.
[11] Marlene E Starr,Hiroshi Saito. Sepsis in Old Age: Review of Human and Animal Studies[J]. Aging and Disease, 2014, 5(2): 126-136.
[12] Qun S. Zang,Steven E. Wolf,Joseph P. Minei. Sepsis-induced Cardiac Mitochondrial Damage and Potential Therapeutic Interventions in the Elderly[J]. Aging and Disease, 2014, 5(2): 137-149.
[13] Yury G. Kaminsky,V. Prakash Reddy,Ghulam Md Ashraf,Ausaf Ahmad,Valery V. Benberin,Elena A. Kosenko,Gjumrakch Aliev. Age-Related Defects in Erythrocyte 2,3-Diphosphoglycerate Metabolism in Dementia[J]. Aging and Disease, 2013, 4(5): 244-255.
[14] Lopamudra Ray,Vineet Kumar Khemka,Prajna Behera,Kausik Bandyopadhyay,Sandip Pal,Keya Pal,Debasis Basu,Sasanka Chakrabarti. Serum Homocysteine, Dehydroepiandrosterone Sulphate and Lipoprotein (a) in Alzheimer’s Disease and Vascular Dementia[J]. Aging and Disease, 2013, 4(2): 57-64.
[15] Jacques L. De Reuck. The Significance of Small Cerebral Bleeds in Neurodegenerative Dementia Syndromes[J]. Aging and Disease, 2012, 3(4): 307-312.
Full text



Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail:
Powered by Beijing Magtech Co. Ltd