Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2019, Vol. 10 Issue (2) : 278-292     DOI: 10.14336/AD.2018.0917
Original Article |
Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis
Ana C. Calvo1,*, Gabriela Atencia Cibreiro2, Paz Torre Merino2, Juan F. Roy3, Adrián Galiana4, Alexandra Juárez Rufián2, Juan M. Cano5, Miguel A. Martín6, Laura Moreno1, Pilar Larrodé1, Pilar Cordero Vázquez2, Lucía Galán7, Jesús Mora8, José L. Muñoz-Blanco9, María J. Muñoz1, Pilar Zaragoza1, Elena Pegoraro10, Gianni Sorarù10, Marina Mora11, Christian Lunetta12, Silvana Penco13, Claudia Tarlarini13, Jesús Esteban2, Rosario Osta1, Alberto García Redondo2
1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain.
2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital “IIS I+12”, Madrid, Spain.
3Ferkauf Graduate School of Psychology, Yeshiva University, NY 10461, USA.
4Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
5Orthopaedic Surgery Department, October 12th Hospital, Madrid, Spain.
6Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), U723-CIBERER, Madrid, España.
7Neurology Department, ALS Unit, Clínico Universitario San Carlos Hospital, Madrid, Spain.
8Neurology Department, ALS Unit, Carlos III Hospital, Madrid, Spain.
9Neurology Department, ALS Unit, Health Research Institute, Gregorio Marañón Hospital “IISGM”, Madrid, Spain.
10Neurological Clinic, Department of Neurosciences, University of Padova, Padova, Italy.
11Muscle Cell Biology Laboratory, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.
12NEMO (NEuroMuscular Omnicentre) Clinical Center, Fondazione Serena Onlus, Milan, Italy.
13Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca’ Granda Hospital, Milan, Italy.
Download: PDF(893 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.

Keywords Collagen XIX type A1      ALS      prognostic biomarker      neurodegeneration      disease progression     
Corresponding Authors: Calvo Ana C.   
About author:

These authors contributed equally to this work.

Just Accepted Date: 11 December 2018   Issue Date: 05 April 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ana C. Calvo
Gabriela Atencia Cibreiro
Paz Torre Merino
Juan F. Roy
Adrián Galiana
Alexandra Juárez Rufián
Juan M. Cano
Miguel A. Martín
Laura Moreno
Pilar Larrodé
Pilar Cordero Vázquez
Lucía Galán
Jesús Mora
José L. Muñoz-Blanco
María J. Muñoz
Pilar Zaragoza
Elena Pegoraro
Gianni Sorarù
Marina Mora
Christian Lunetta
Silvana Penco
Claudia Tarlarini
Jesús Esteban
Rosario Osta
Alberto García Redondo
Cite this article:   
Ana C. Calvo,Gabriela Atencia Cibreiro,Paz Torre Merino, et al. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis[J]. Aging and disease, 2019, 10(2): 278-292.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2018.0917     OR     http://www.aginganddisease.org/EN/Y2019/V10/I2/278
Type of cohort (N)Muscle biopsy cohort* (N = 87)
ALS patientsONP patientsHealthy controls
Patients' characteristics(n =49)(n = 14)(n = 24)
Gender (n)Female15819
Male3465
Age at illness onset (mean ± SD)57.02 ± 12.4243.79 ± 16.02
Age at biopsy (mean ± SD)58.65 ± 12.5242.34 ± 25.8955.07 ± 26.07
Disease duration, months (mean ± SD)19.54 ± 25.15
Clinical Phenotype (n)ALS, spinal42
ALS, bulbar6
ALS + FTD1
OMD5
SMA5
CIDP1
KD1
NMD1
AD (Early)1
ALSFRS-r at biopsy (mean ± SD)40.24 ± 6.20
El Escorial criteria at onset (n)Unavailable33
Defined1
Probable6
Possible5
Suspected4
Genetic Diagnosis (n)SALS26
FALS6
SALS + FTD2
MND-FTD1
PLS-SALS1
PMA-SALS1
Unavailable12
Table 1  General and clinical characteristics of the study subjects in the muscle biopsy study cohort.
Type of cohort (N)Blood cohort* (N = 141)
ALS patientsONP patientsHealthy controls
Patients’ characteristics(n = 59)(n= 24)(n = 58)
Gender (n)Female251031
Male341427
Age at illness onset (mean ± SD)60.98 ± 14.0743.79 ± 16.02
Age at biopsy (mean ± SD)62.10 ± 14.0055.74 ± 12.3255.74 ± 12.31
Disease duration, months (mean ± SD)14.53 ± 14.66
Clinical Phenotype (n)ALS59
CIDP1
KD1
NMD1
AD (Early)1
BMD2
ES1
FMD4
HPP (Type-1)1
LMD1
MM1
MD (Type-1)9
MD (Type-2)1
Site at onset (n)Lower limb27
Upper limb17
Bulbar10
Generalized4
Respiratory1
None
ALSFRS-r at onset (mean ± SD)42.71 ± 6.86
ALSFRS-r at biopsy (mean ± SD)34.47 ± 7.82
El Escorial criteria at onset (n)Unavailable18
Defined17
Probable18
Possible3
Suspected2
Genetic Diagnosis (n)SALS33
FALS (4m**)18
FALS (SOD1)6
FALS (SETX)1
Unavailable1
Table 2  General and clinical characteristics of the study subjects in the blood study cohort.
Figure 1.  Flow diagram of the three study cohorts and overview of the study design. A total of 148 ALS patients were enrolled in two cross-sectional studies and one longitudinal study to detect associations among molecular markers and clinical variables in skeletal muscle biopsy (ALS muscle biopsy cohort) and blood samples (ALS blood cohort) and to identify prognostic biomarkers along the disease progression, especially in serial blood samples.
Type of cohort (N)Serial blood cohort * (N = 40)
ALS patients (n =40)
Patients' characteristicsOnset6 months12 months18 months24 months
Gender (n)Female15
Male25
Age at illness onset (mean ± SD)57.02 ± 12.42
Disease duration, months (mean ± SD)57.53 ± 23.48
Clinical Phenotype (n)SALS, UMN and LMN spinal25
SALS, UMN spinal1
SALS, LMN spinal14
ALSFRS-r (mean ± SD)27.8 ± 5.4723.8 ± 5.9419.6 ± 6.2718.5 ± 6.7617.6 ± 6.76
El Escorial criteria at onset (n)Defined25
Possible4
Probable11
Forced vital capacity (FVC) (%)10.4 ± 6.1114.6 ± 6.9915.0 ± 10.4417.8 ± 11.1220.6 ± 15.74
Body mass index (BMI) (Kg/m2)26.5 ± 3.8126.3 ± 3.8225.9 ± 4.1126.0 ± 3.7125.3 ± 3.55
Genetic Diagnosis (n)SALS40
Table 3  General and clinical characteristics of sporadic ALS patients in the serial blood study cohort.
Gene nameGene SymbolAssay ID
Ankyrin repeat domain 1 (cardiac muscle)ANKRD1Hs00173317_m1
Collagen, type XIX, alpha 1COL19A1Hs00156940_m1
F-box protein 32FBXO32Hs01041408_m1
Glycogen synthase kinase 3GSK3Hs01047719_m1
Glutathione reductaseGSRHs00167317_m1
Inositol(myo)-1(or 4)-monophosphatase 1IMPA1Hs04188597_m1
Myocyte enhancer factor 2CMEF2CHs00231149_m1
Myogenin (myogenic factor 4)MYOGHs01072232_m1
Reticulon 4RTN4 (NOGO A)Hs00199671_m1
Ras-related associated with diabetesRRADHs00188163_m1
SenataxinSETXHs00209294_m1
SarcolipinSLNHs01888464_s1
Sorting nexin 10SNX10Hs00203362_m1
Superoxide dismutase 1, solubleSOD1Hs00533490_m1
Vacuolar protein sorting 54 homolog (S. cerevisiae )VPS54Hs00212957_m1
Table 4  Taqman® probe and primer mixtures used in gene expression assays.
Protein nameProtein SymbolReference number, primary antibodies
Anti-Apoptosis-inducing factor, mitochondrion-associated, 1AIFM1SAB2100079, anti-rabbit, Sigma-Aldrich
Ankyrin repeat domain 1 (cardiac muscle)ANKRD1SAB1101413, anti-rabbit antibody, Sigma-Aldrich
Aspartate transcarbamylaseCADSAB2100334, anti-rabbit, Sigma-Aldrich
Collagen, type XIX, alpha 1COL19A1H00001310-A01, anti-mouse, Novus Biologicals
Coenzyme Q3 homologCoQ3WH0051805M1, anti-mouse, Sigma-Aldrich
F-box protein 32FBXO32ab67866, anti-mouse, ABCAM
Glutathione reductaseGSRWH0002936M1, anti-mouse, Sigma-Aldrich
Inositol(myo)-1(or 4)-monophosphatase 1IMPA1SAB2103588, anti-rabbit, Sigma-Aldrich
Myogenin (myogenic factor 4)MYOGWH0004656M1, anti-mouse, Sigma-Aldrich
Anti-CoQ1PDSS1AV46195, anti-rabbit, Sigma-Aldrich
Reticulon 4RTN4 (NOGO A)R3282, anti-rabbit, Sigma-Aldrich
SarcolipinSLNab25860, anti-rabbit, ABCAMK
Sorting nexin 10SNX10WH0029887M1, anti-mouse, Sigma-Aldrich
Vacuolar protein sorting 54 homolog (S. cerevisiae)VPS54SAB1401701, anti-mouse, Sigma-Aldrich
Table 5  Primary antibodies used in protein expression assays.
Figure 2.  Relative gene and protein expression levels of COL19A1 in the muscle biopsy study cohort. Gene and protein expression levels of COL19A1 in healthy subjects, ALS patients and other neuropathies patients (A). Kruskal Wallis tests showed significant differences among ALS patients and the other two groups under study, when gene and protein expression levels were tested (P < 0.001, **). (B) Areas under ROC curves (AUC) of gene and protein expression of COL19A1 were calculated to test its support for diagnosis criterion in ALS patients (P <0.001, **). A total of 49 ALS (FALS and SALS) participants were included in this study and matched with 24 control individuals, and 14 ONP; SE: standard error.
Figure 3.  Relative gene expression analysis in the blood study cohort. Transcriptional expression levels of MEF2C , NOGO A , SOD1 , COL19A1 and SNX10 in healthy subjects, ALS patients and other neuropathies patients. (A) Kruskal Wallis tests showed significant differences among ALS patients and healthy participants in all the cases except for SNX10 . Significant differences among other neuropathies patient group and ALS patient group were found in all the cases except for NOGO A and SOD1 . (B) Area under ROC curves of COL19A1 and the ratios COL19A1 /NOGO A and SOD1 /NOGO A were calculated in the sporadic ALS patient group. Significant differences were found between COL19A1 and the ratio COL19A1 /NOGO A , and between COL19A1 and the ratio SOD1 /NOGO A . A total of 141 participants were included in this study: 58 control individuals, 24 other neuropathology’s individuals and 59 ALS patients (FALS and SALS patients); (*P < 0.05; ** P < 0.001), SE: standard error.
Figure 4.  Linear mixed model analysis in the serial blood study cohort. (A) Linear mixed model analysis showed a significant relationship among a faster disease progression and high COL19A1 levels from symptom onset, each dashed line corresponds to the COL19A1 levels from each patient. (B) Mean change from baseline in the ALSFRS-r score in patients that were monitored at 6-monthly intervals during a follow-up period of 24 months from the symptom onset that show COL19A1 levels above (green dot and line) and below (blue dot and line) average at first evaluation. Student's-t test was performed to analyze statistical differences between groups (P < 0.001). A total of 40 SALS patients from the serial blood study cohort were included.
Group of ALS patientsNCOL19A1 levelsALSFRS-r slopeEstimateHR (95% CI)P value
Muscle cohort*49above the mean average (1.06)≥ 1 points/month0.2031.225 (1.058 - 1.418)0.007
Blood cohort59above the mean average (0.819)≥ 1 points/month0.7482.114 (1.134 - 3.941)0.019
Serial blood cohort40above the mean average (0.819)≥ 1 points/month0.1641.179 (1.046 - 1.327)0.007
Table 6  Prognostic nature of COL19A1 levels in the three cohorts under study.
[1] Andersen PM, Al-Chalabi A (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know?. Nat Rev Neurol, 7(11):603-615.
[2] Genetics Home Reference. US National Library of Medicine. 29 May 2018. Available from: https://ghr.nlm.nih.gov/condition/amyotrophic-lateral-sclerosis.
[3] Jones AR, Woollacott I, Shatunov A, Cooper-Knock J, Buchman V, Sproviero W, et al (2013). Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiol Aging, 34(9):2234.e1-7.
[4] Migliore L, Fontana I, Colognato R, Coppede F, Siciliano G, Murri L (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol Aging, 26(5):587-595.
[5] Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C, et al (2015). Identification of candidate genes for Parkinson’s disease through blood transcriptome analysis in LRRK2-G2019S carriers, idiopathic cases, and controls. Neurobiol Aging, 36(2):1105-1109.
[6] Rusina R, Ridzoň P, Kulišt'ák P, Keller O, Bartos A, Buncová M, et al (2010). Relationship between ALS and the degree of cognitive impairment markers of neurodegeneration and predictors for poor outcome. A prospective study. Eur J Neurol, 17(1):23-30.
[7] Seltman RE, Matthews BR (2012). Frontotemporal lobar degeneration. CNS Drugs, 26(10):841-870.
[8] Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al (2011). Amyotrophic Lateral Sclerosis. Lancet, 377(9769):942-55.
[9] Calvo AC, Manzano R, Atencia-Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, et al (2012). Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS One, 7(3):e32632.
[10] Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264(5166):1772-1775.
[11] Raices M, Bukata L, Sakuma S, Borlido J, Hernandez LS, Hart DO, et al (2017). Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell, 41(5):540-554.e7.
[12] Habener A, Chowdhury A, Echtermeyer F, Lichtinghagen R, Theilmeier G, Herzog C (2016). MitoNEET Protects HL-1 Cardiomyocytes from Oxidative Stress Mediated Apoptosis in an In Vitro Model of Hypoxia and Reoxygenation. PLoS One, 11(5):e0156054.
[13] Kobayashi H, Saragai S, Naito A, Ichio K, Kawauchi D, Murakami F (2015). Calm1 signaling pathway is essential for the migration of mouse precerebellar neurons. Development, 142:375-384.
[14] Sumiyoshi H, Mor N, Lee SY, Doty S, Henderson S, Tanaka S, et al (2004). Esophageal muscle physiology and morphogenesis require assembly of a collagen XIX-rich basement membrane zone. J Cell Biol, 166:591-600.
[15] Stattin EL, Henning P, Klar J, McDermott E, Stecksen-Blicks C, Sandström PE, et al (2017). SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep, 7(1):3012.
[16] Finsterer J, Stöllberger C (2013). Apply Awaji-shima consensus conference criteria before diagnosing Amyotrophic Lateral Sclerosis. Open Neurol J, 7:4-6.
[17] Elamin M, Bede P, Montuschi A, Pender N, Chio A, Hardiman O (2015). Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. J Neurol, 262(6):1447-1454.
[18] Calvo AC, Moreno-Igoa M, Manzano R, Ordovás L, Yagüe G, Oliván S, et al (2008). Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration. Proteomics, 8(20):4338-4343.
[19] Florkowski CM (2008). Sensitivity, specificity, Receiver-Operating Characteristic (ROC) Curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev, 29(Suppl 1):S83-S87.
[20] Rutkove SB (2015) Clinical Measures of Disease Progression in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 12(2): 384-393.
[21] Su J, Gorse K, Ramirez F, Fox MA (2010). Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol, 518(2):229-253.
[22] Oudart JB, Monboisse JC, Maquart FX, Brassart B, Brassart-Pasco S, Ramont L (2017). Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment. Matrix Biol, 57-58: 169-177.
[23] Burden SJ, Sargent PB, McMahan UJ (1979). Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol, 82(2):412-425.
[24] S htilbans A, Choi SG, Fowkes ME, Khitrov G, Shahbazi M, Ting J, et al (2011). Differential gene expression in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 12(4):250-256.
[25] Ferraiuolo L, De Bono JP, Heath PR, Holden H, Kasher P, Channon KM, et al. (2009). Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. J Neurochem, 109(6):1714-24.
[26] Zhou L, Hinerman JM, Blaszczyk M, Miller JL, Conrady DG, Barrow AD, et al (2016). Structural basis for collagen recognition by the immune receptor OSCAR. Blood, 127(5):529-537.
[27] You Y, Zhou C, Li D, Cao ZL, Shen W, Li WZ, et al (2016). Sorting nexin 10 acting as a novel regulator of macrophage polarization mediates inflammatory response in experimental mouse colitis. Sci Reports, 6:20630.
[28] Dupuis L, González de Aguilar JL, di Scala F, Rene F, de Tapia M, Pradat PF, et al (2002). Nogo Provides a Molecular Marker for Diagnosis of Amyotrophic Lateral Sclerosis. Neurobiol Dis, 10(3):358-365.
[29] Pradat PF, Bruneteau G, González de Aguilar JL, Dupuis L, Jokic N, Salachas F, et al (2007). Nogo-A expression is a prognostic marker in lower motor neuron syndromes. Ann Neurol, 62(1):15-20.
[30] Harel NY, Cudkowicz ME, Brown RH, Strittmatter SM (2009). Serum Nogo-A levels are not elevated in amyotrophic lateral sclerosis patients. Biomarkers, 14(6):414-417.
[31] Yin F, Ye F, Tan L, Liu K, Xuan Z, Zhang J, et al (2012). Alterations of signaling pathways in muscle tissues of patients with amyotrophic lateral sclerosis. Muscle Nerve, 46(6):861-870.
[32] Jokic N, González de Aguilar JL, Pradat PF, Dupuis L, Echaniz-Laguna A, Muller A, et al (2005). Nogo expression in muscle correlates with Amyotrophic Lateral Sclerosis severity. Ann Neurol, 57(4);553-556.
[33] Lu CH, Allen K, Oei F, Leoni E, Kuhle J, Tree T, et al (2016). Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm, 3(4):e244.
[34] Lunetta C, Lizio A, Maestri E, Sansone VA, Mora G, Miller RG, et al (2017). Serum C-Reactive Protein as a Prognostic Biomarker in Amyotrophic Lateral Sclerosis. JAMA Neurol, 74(6):660-667.
[35] Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, et al (2017). A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathol Comm, 5:23.
[1] Han Fei, Li Xiaochen, Yang Juhong, Liu Haiyi, Zhang Yi, Yang Xiaoyun, Yang Shaohua, Chang Bai, Chen Liming, Chang Baocheng. Salsalate Prevents β-Cell Dedifferentiation in OLETF Rats with Type 2 Diabetes through Notch1 Pathway[J]. Aging and disease, 2019, 10(4): 719-730.
[2] Korner Sonja, Kammeyer Johanna, Zapf Antonia, Kuzma-Kozakiewicz Magdalena, Piotrkiewicz Maria, Kuraszkiewicz Bożenna, Goszczynska Hanna, Gromicho Marta, Grosskreutz Julian, Andersen Peter M., Carvalho Mamede de, Petri Susanne. Influence of Environment and Lifestyle on Incidence and Progress of Amyotrophic Lateral Sclerosis in A German ALS Population[J]. Aging and disease, 2019, 10(2): 205-216.
[3] Sarkar Saumyendra N., Russell Ashley E., Engler-Chiurazzi Elizabeth B., Porter Keyana N., Simpkins James W.. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma[J]. Aging and disease, 2019, 10(2): 329-352.
[4] Antonina Luca, Carmela Calandra, Maria Luca. Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia[J]. Aging and disease, 2018, 9(6): 1134-1152.
[5] Wang Jue, Cao Bin, Zhao Haiping, Feng Juan. Emerging Roles of Ganoderma Lucidum in Anti-Aging[J]. Aging and disease, 2017, 8(6): 691-707.
[6] Banerjee Anindita, Khemka Vineet Kumar, Roy Debashree, Dhar Aparajita, Sinha Roy Tapan Kumar, Biswas Atanu, Mukhopadhyay Barun, Chakrabarti Sasanka. Role of Pro-Inflammatory Cytokines and Vitamin D in Probable Alzheimer's Disease with Depression[J]. Aging and disease, 2017, 8(3): 267-276.
[7] Hussain Mohammed, Datta Neil, Cheng Zhe, Dornbos David, Bashir Asif, Sultan Ibrahim, Mehta Tapan, Shweikeh Faris, Mazaris Paul, Lee Nora, Nouh Amre, Geng Xiaokun, Ding Yuchuan. Spanning from the West to East: An Updated Review on Endovascular Treatment of Intracranial Atherosclerotic Disease[J]. Aging and disease, 2017, 8(2): 196-202.
[8] Guzzardi Maria Angela, Iozzo Patricia, Salonen Minna K., Kajantie Eero, Airaksinen Riikka, Kiviranta Hannu, Rantakokko Panu, Eriksson Johan Gunnar. Exposure to Persistent Organic Pollutants Predicts Telomere Length in Older Age: Results from the Helsinki Birth Cohort Study[J]. Aging and disease, 2016, 7(5): 540-552.
[9] Gurses Murat Serdar, Ural Mustafa Numan, Gulec Mehmet Akif, Akyol Omer, Akyol Sumeyya. Pathophysiological Function of ADAMTS Enzymes on Molecular Mechanism of Alzheimer’s Disease[J]. Aging and disease, 2016, 7(4): 479-490.
[10] Claassen Daniel O., Dobolyi David G., Isaacs David A., Roman Olivia C., Herb Joshua, Wylie Scott A., Neimat Joseph S., Donahue Manus J., Hedera Peter, Zald David H., Landman Bennett A., Bowman Aaron B., Dawant Benoit M., Rane Swati. Linear and Curvilinear Trajectories of Cortical Loss with Advancing Age and Disease Duration in Parkinson’s Disease[J]. Aging and disease, 2016, 7(3): 220-229.
[11] Chen Zhiguo. Cell Therapy for Parkinson’s Disease: New Hope from Reprogramming Technologies[J]. Aging and disease, 2015, 6(6): 499-503.
[12] João M. N. Duarte. Metabolic Alterations Associated to Brain Dysfunction in Diabetes[J]. Aging and disease, 2015, 6(5): 304-321.
[13] Claudia Rangel-Barajas, Israel Coronel, Benjamín Florán. Dopamine Receptors and Neurodegeneration[J]. Aging and disease, 2015, 6(5): 349-368.
[14] Vaiserman* Alexander. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge?[J]. Aging and Disease, 2014, 5(6): 419-429.
[15] Olaoluwa O Okusaga. Accelerated Aging in Schizophrenia Patients: The Potential Role of Oxidative Stress[J]. Aging and Disease, 2014, 5(4): 256-262.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd