Please wait a minute...
 Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited
Aging and disease    2020, Vol. 11 Issue (6) : 1496-1512     DOI: 10.14336/AD.2020.0626
Review Article |
Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke
Yuanjian Fang1, Reng Ren1, Hui Shi2, Lei Huang3,4, Cameron Lenahan3,4,5, Qin Lu6, Lihui Tang1, Yi Huang1, Jiping Tang3,4,7, Jianmin Zhang1,*, John H Zhang3,4,7,*
1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.
5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
Download: PDF(614 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.

Keywords stroke      pituitary adenylate cyclase activating polypeptide      cerebral ischemia      intracerebral hemorrhage      subarachnoid hemorrhage     
Corresponding Authors: Zhang Jianmin,Zhang John H   
About author:

These authors contrinuted equally to this work.

Just Accepted Date: 02 July 2020   Issue Date: 19 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fang Yuanjian
Ren Reng
Shi Hui
Huang Lei
Lenahan Cameron
Lu Qin
Tang Lihui
Huang Yi
Tang Jiping
Zhang Jianmin
Zhang John H
Cite this article:   
Fang Yuanjian,Ren Reng,Shi Hui, et al. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke[J]. Aging and disease, 2020, 11(6): 1496-1512.
URL:  
http://www.aginganddisease.org/EN/10.14336/AD.2020.0626     OR
Figure 1.  Schematic pathway of PACAP signaling cascades. PACAP exerts function via activation of three different G-protein coupled receptors: PAC1, VPAC1, and VPAC2. The PAC1 has a 100-fold selectivity for PACAP over VIP, contributing to its role as the main functional receptor of PACAP. Each PACAP receptor is coupled primarily to Gs or Gq, which stimulate AC and PLC activation. In the AC-involved signaling pathway, AC accelerates ATP conversion to cAMP, which then prompts PKA phosphorylation and activation of EPAC pathway. In contrast, activation of PLC boosts the PKC pathway, and the IP3 activation to increase the intracellular Ca2+. Both PLC and AC/cAMP signaling pathways are related to the PACAP function by mediating downstream targets, such as the MAPKs family and the PI3K/Akt pathway. These pathways further mediate cell proliferation, differentiation migration, and survival through several nuclear genes, such as CREB, NF-kB, JAK and cJun. Besides, these downstream signaling pathways also appear to be directly activated by PAC1 and are paralleled with PLC and AC/cAMP pathway in some cells.
Figure 2.  Current and proposed function of PACAP in different pathophysiology after stroke. PACAP is a promising neuroprotective peptide with great potential to mediate ionic homeostasis, cerebral edema formation, cytotoxicity, oxidative/nitrosative stress, inflammation, cell death, and BBB function after stroke.
YearAuthorAnimalModelAdministration
RoutesStarting timeDurationBest dosage
1996Uchida D. et.al.[15]RatsTransient global ischemiai.c.v.
i.v.
Post-surgery
Post-surgery and post-24h
Continuous1pmol/h
16pmol/h and 160pmol/h
1998Somogyvari-vigh A. et.al.[172]RatsTransient global ischemiai.v.Post-24hSingle with continuous5nmol/kg with 160pmol/h
1998Shioda F. et.al.[43]RatsTransient global ischemiai.c.v.Pre-48hContinuous1pmol/h
2000Reglodi D. et.al.[98]RatstMCAOi.v.Post-6hSingle with continuous20nmol/kg with 160pmol/h
2000Reglodi D. et.al.[99]RatstMCAOi.v.Post-4h, 8h, 12hSingle with continuous5nmol/rat with 160pmol/h
2002Dohi K. et.al.[44]RatstMCAOi.c.v.Pre-48hContinuous1pmol/h
2002Yan D. et.al.[114]RatsTransient global ischemiai.c.v.Pre-15minSingle10nmol/rat
2002Tamas A. et.al.[96]RatspMCAOi.c.v.Pre-surgerySingle450pmol/rat
2002&2004Reglodi D. et.al.[157, 171]RatspMCAOi.c.v.Pre-surgerySingle2μg/rat
2006Chen Y. et.al.[97]MicepMCAOi.c.v.
i.v.
Post-1hSingle40pmol/mouse
0.75nmol/mouse
2009Lenti L. et.al.[130]Newborn pigsCO2 ventilation induced transient global ischemiaDirective exposePre-CO2 ventilationContinuous10pmol/L
2010Stetler RA. et.al.[141]RatsTransient global ischemiai.c.v.Pre-24, 12, 6hSingle200pmol/rat
2012Lazarovici P. et.al,[156]RatstMCAOi.v.Post-2hSingle30ng/kg
2012Nakamachi T. et.al.[152]MiceTransient global ischemiai.c.v.Post-surgerySingle1pmol/mice
2014Hori M. et. al.[153]MicepMCAOi.c.v.Post-surgerySingle1pmol/mice
2014Lin C. et al.[93]RatsTransient global ischemiai.p.Post-4hSingle10μg/kg
2015Brifault C. et.al.[154]MicepMCAOi.c.v.Post-72hSinglePACAP-producing-stem cell
Table 1  The approaches of PACAP38 administration in stroke.
[1] Hankey GJ (2017). Stroke. Lancet, 389: 641-654
[2] Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. (2013). An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44: 2064-2089
[3] Chen S, Mei S, Luo Y, Wu H, Zhang J, Zhu J (2018). Gasdermin Family: a Promising Therapeutic Target for Stroke. Transl Stroke Res, 9: 555-563
[4] Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, et al. (2020). Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 14
[5] Lo EH, Dalkara T, Moskowitz MA (2003). Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci, 4: 399-415
[6] Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun, 164: 567-574
[7] Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun, 170: 643-648
[8] Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev, 61: 283-357
[9] Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. (2012). Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol, 166: 4-17
[10] Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D (2018). Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair. Int J Mol Sci, 19
[11] Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 470: 492-497
[12] Tan YV, Waschek JA (2011). Targeting VIP and PACAP receptor signalling: new therapeutic strategies in multiple sclerosis. ASN Neuro, 3
[13] Kaiser EA, Russo AF (2013). CGRP and migraine: could PACAP play a role too? Neuropeptides, 47: 451-461
[14] Nakamachi T, Ohtaki H, Seki T, Yofu S, Kagami N, Hashimoto H, et al. (2016). PACAP suppresses dry eye signs by stimulating tear secretion. Nat Commun, 7: 12034
[15] Uchida D, Arimura A, Somogyvari-Vigh A, Shioda S, Banks WA (1996). Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res, 736: 280-286
[16] Ma BQ, Zhang M, Ba L (2015). Plasma pituitary adenylate cyclase-activating polypeptide concentrations and mortality after acute spontaneous basal ganglia hemorrhage. Clin Chim Acta, 439: 102-106
[17] Jiang L, Wang WH, Dong XQ, Yu WH, Du Q, Yang DB, et al. (2016). The change of plasma pituitary adenylate cyclase-activating polypeptide levels after aneurysmal subarachnoid hemorrhage. Acta Neurol Scand, 134: 131-139
[18] Toth D, Tamas A, Reglodi D (2020). The Neuroprotective and Biomarker Potential of PACAP in Human Traumatic Brain Injury. Int J Mol Sci, 21
[19] Reglodi D, Vaczy A, Rubio-Beltran E, MaassenVanDenBrink A (2018). Protective effects of PACAP in ischemia. J Headache Pain, 19: 19
[20] Masuo Y, Ohtaki T, Masuda Y, Nagai Y, Suno M, Tsuda M, et al. (1991). Autoradiographic distribution of pituitary adenylate cyclase activating polypeptide (PACAP) binding sites in the rat brain. Neurosci Lett, 126: 103-106
[21] Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M, et al. (1993). Regional distribution of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res, 602: 57-63
[22] Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L (2002). Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia, 22: 112-116
[23] Arimura A (1992). Receptors for pituitary adenylate cyclase-activating polypeptide: comparison with vasoactive intestinal peptide receptors. Trends Endocrinol Metab, 3: 288-294
[24] Hirabayashi T, Nakamachi T, Shioda S (2018). Discovery of PACAP and its receptors in the brain. J Headache Pain, 19: 28
[25] Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, et al. (1996). Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol, 371: 567-577
[26] Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L (2015). Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res, 1600: 93-109
[27] Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S (1992). Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron, 8: 811-819
[28] Usdin TB, Bonner TI, Mezey E (1994). Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology, 135: 2662-2680
[29] Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, et al. (2019). Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem, 19: 1399-1417
[30] Ster J, De Bock F, Guerineau NC, Janossy A, Barrere-Lemaire S, Bos JL, et al. (2007). Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc Natl Acad Sci U S A, 104: 2519-2524
[31] May V, Buttolph TR, Girard BM, Clason TA, Parsons RL (2014). PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling. Am J Physiol Cell Physiol, 306: C1068-1079
[32] Yang K, Lei G, Jackson MF, Macdonald JF (2010). The involvement of PACAP/VIP system in the synaptic transmission in the hippocampus. J Mol Neurosci, 42: 319-326
[33] Mazzocchi G, Malendowicz LK, Neri G, Andreis PG, Ziolkowska A, Gottardo L, et al. (2002). Pituitary adenylate cyclase-activating polypeptide and PACAP receptor expression and function in the rat adrenal gland. Int J Mol Med, 9: 233-243
[34] Obara Y, Horgan AM, Stork PJ (2007). The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. J Neurochem, 101: 470-482
[35] Murthy KS, Zhang KM, Jin JG, Grider JR, Makhlouf GM (1993). VIP-mediated G protein-coupled Ca2+ influx activates a constitutive NOS in dispersed gastric muscle cells. Am J Physiol, 265: G660-671
[36] Barrie AP, Clohessy AM, Buensuceso CS, Rogers MV, Allen JM (1997). Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J Biol Chem, 272: 19666-19671
[37] Villalba M, Bockaert J, Journot L (1997). Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci, 17: 83-90
[38] Lelievre V, Pineau N, Du J, Wen CH, Nguyen T, Janet T, et al. (1998). Differential effects of peptide histidine isoleucine (PHI) and related peptides on stimulation and suppression of neuroblastoma cell proliferation. A novel VIP-independent action of PHI via MAP kinase. J Biol Chem, 273: 19685-19690
[39] Liu Y, Lu T, Zhang C, Xue Z, Xu J, Busuttil RW, et al. (2019). Pituitary Adenylate Cyclase-activating Polypeptides Prevent Hepatocyte Damage by Promoting Yes-associated Protein in Liver Ischemia-Reperfusion Injury. Transplantation, 103: 1639-1648
[40] Delgado M, Ganea D (1999). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit interleukin-12 transcription by regulating nuclear factor kappaB and Ets activation. J Biol Chem, 274: 31930-31940
[41] Delgado M (2003). Inhibition of interferon (IFN) gamma-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide: inhibitory effect on CD40, IFN-induced protein-10, and inducible nitric-oxide synthase expression. J Biol Chem, 278: 27620-27629
[42] Vlotides G, Zitzmann K, Hengge S, Engelhardt D, Stalla GK, Auernhammer CJ (2004). Expression of novel neurotrophin-1/B-cell stimulating factor-3 (NNT-1/BSF-3) in murine pituitary folliculostellate TtT/GF cells: pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-induced stimulation of NNT-1/BSF-3 is mediated by protein kinase A, protein kinase C, and extracellular-signal-regulated kinase1/2 pathways. Endocrinology, 145: 716-727
[43] Shioda S, Ozawa H, Dohi K, Mizushima H, Matsumoto K, Nakajo S, et al. (1998). PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway. Ann N Y Acad Sci, 865: 111-117
[44] Dohi K, Mizushima H, Nakajo S, Ohtaki H, Matsunaga S, Aruga T, et al. (2002). Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regul Pept, 109: 83-88
[45] Castorina A, Scuderi S, D'Amico AG, Drago F, D'Agata V (2014). PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res, 322: 108-121
[46] Waschek JA (2013). VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol, 169: 512-523
[47] Gabriel R, Postyeni E, Denes V (2019). Neuroprotective Potential of Pituitary Adenylate Cyclase Activating Polypeptide in Retinal Degenerations of Metabolic Origin. Front Neurosci, 13: 1031
[48] Rudecki AP, Gray SL (2016). PACAP in the Defense of Energy Homeostasis. Trends Endocrinol Metab, 27: 620-632
[49] Samal B, Gerdin MJ, Huddleston D, Hsu CM, Elkahloun AG, Stroth N, et al. (2007). Meta-analysis of microarray-derived data from PACAP-deficient adrenal gland in vivo and PACAP-treated chromaffin cells identifies distinct classes of PACAP-regulated genes. Peptides, 28: 1871-1882
[50] Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, et al. (2001). Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci, 21: 3849-3859
[51] Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, et al. (2005). Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci U S A, 102: 2637-2642
[52] Guirland C, Buck KB, Gibney JA, DiCicco-Bloom E, Zheng JQ (2003). Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J Neurosci, 23: 2274-2283
[53] Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE (2004). Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol, 24: 9390-9400
[54] Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 285: 1-24
[55] Vincze A, Reglodi D, Helyes Z, Hashimoto H, Shintani N, Abraham H (2011). Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: lessons from PACAP-deficient mice. Int J Dev Neurosci, 29: 923-935
[56] Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E (2002). Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci, 22: 9244-9254
[57] Vertongen P, Camby I, Darro F, Kiss R, Robberecht P (1996). VIP and pituitary adenylate cyclase activating polypeptide (PACAP) have an antiproliferative effect on the T98G human glioblastoma cell line through interaction with VIP2 receptor. Neuropeptides, 30: 491-496
[58] Hannibal J (2002). Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol, 453: 389-417
[59] Hawke Z, Ivanov TR, Bechtold DA, Dhillon H, Lowell BB, Luckman SM (2009). PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J Neurosci, 29: 14828-14835
[60] Mounien L, Do Rego JC, Bizet P, Boutelet I, Gourcerol G, Fournier A, et al. (2009). Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system. Neuropsychopharmacology, 34: 424-435
[61] Matsuda K, Azuma M, Maruyama K, Shioda S (2013). Neuroendocrine control of feeding behavior and psychomotor activity by pituitary adenylate cyclase-activating polypeptide (PACAP) in vertebrates. Obes Res Clin Pract, 7: e1-7
[62] Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006). Central nervous system control of food intake and body weight. Nature, 443: 289-295
[63] Mounien L, Bizet P, Boutelet I, Gourcerol G, Fournier A, Vaudry H, et al. (2006). Pituitary adenylate cyclase-activating polypeptide directly modulates the activity of proopiomelanocortin neurons in the rat arcuate nucleus. Neuroscience, 143: 155-163
[64] Inglott MA, Farnham MM, Pilowsky PM (2011). Intrathecal PACAP-38 causes prolonged widespread sympathoexcitation via a spinally mediated mechanism and increases in basal metabolic rate in anesthetized rat. Am J Physiol Heart Circ Physiol, 300: H2300-2307
[65] Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S (2011). Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am J Physiol Regul Integr Comp Physiol, 301: R1625-1634
[66] Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S (2013). Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab, 305: E1452-1463
[67] Ciranna L, Costa L (2019). Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. Front Cell Neurosci, 13: 524
[68] Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014). Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology, 86: 38-48
[69] Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, et al. (2017). Parabrachial Pituitary Adenylate Cyclase-Activating Polypeptide Activation of Amygdala Endosomal Extracellular Signal-Regulated Kinase Signaling Regulates the Emotional Component of Pain. Biol Psychiatry, 81: 671-682
[70] Mustafa T (2013). Pituitary adenylate cyclase-activating polypeptide (PACAP): a master regulator in central and peripheral stress responses. Adv Pharmacol, 68: 445-457
[71] Rouwette T, Vanelderen P, Roubos EW, Kozicz T, Vissers K (2012). The amygdala, a relay station for switching on and off pain. Eur J Pain, 16: 782-792
[72] Gauriau C, Bernard JF (2002). Pain pathways and parabrachial circuits in the rat. Exp Physiol, 87: 251-258
[73] Stevens JS, Almli LM, Fani N, Gutman DA, Bradley B, Norrholm SD, et al. (2014). PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc Natl Acad Sci U S A, 111: 3158-3163
[74] Atlasz T, Koszegi Z, Babai N, Tamas A, Reglodi D, Kovacs P, et al. (2006). Microiontophoretically applied PACAP blocks excitatory effects of kainic acid in vivo. Ann N Y Acad Sci, 1070: 143-148
[75] Manavalan S, Getachew B, Manaye KF, Khundmiri SJ, Csoka AB, McKinley R, et al. (2017). PACAP Protects Against Ethanol and Nicotine Toxicity in SH-SY5Y Cells: Implications for Drinking-Smoking Co-morbidity. Neurotox Res, 32: 8-13
[76] Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A, Vaudry H, et al. (2002). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci, 15: 1451-1460
[77] Amato R, Biagioni M, Cammalleri M, Dal Monte M, Casini G (2016). VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci, 57: 3066-3076
[78] Gui LR, Zhou Y, Zhang BL, Li WB (2003). [Pituitary adenylate cyclase activating polypeptide protects neuro-2a cells from beta amyloid protein cytotoxicity by modulating intracellular calcium]. Sheng Li Xue Bao, 55: 42-46
[79] Sanchez A, Rao HV, Grammas P (2009). PACAP38 protects rat cortical neurons against the neurotoxicity evoked by sodium nitroprusside and thrombin. Regul Pept, 152: 33-40
[80] Kovesdi E, Tamas A, Reglodi D, Farkas O, Pal J, Toth G, et al. (2008). Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats. Neurotox Res, 13: 71-78
[81] Ohtaki H, Nakamachi T, Dohi K, Aizawa Y, Takaki A, Hodoyama K, et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A, 103: 7488-7493
[82] Szabadfi K, Atlasz T, Kiss P, Danyadi B, Tamas A, Helyes Z, et al. (2012). Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) are more susceptible to retinal ischemic injury in vivo. Neurotox Res, 21: 41-48
[83] Tsuchida M, Nakamachi T, Sugiyama K, Tsuchikawa D, Watanabe J, Hori M, et al. (2014). PACAP stimulates functional recovery after spinal cord injury through axonal regeneration. J Mol Neurosci, 54: 380-387
[84] Reglodi D, Lubics A, Tamas A, Szalontay L, Lengvari I (2004). Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease. Behav Brain Res, 151: 303-312
[85] Cabezas-Llobet N, Vidal-Sancho L, Masana M, Fournier A, Alberch J, Vaudry D, et al. (2018). Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington's Disease. Mol Neurobiol, 55: 8263-8277
[86] Polanco MJ, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, et al. (2016). Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med, 8: 370ra181
[87] Shin CM, Chung YH, Kim MJ, Cha CI (2001). Spatial and temporal distribution of pituitary adenylate cyclase activating polypeptide in gerbil global cerebral ischemia. Neurosci Lett, 309: 53-56
[88] Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. (2016). Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci, 59: 270-279
[89] Riek-Burchardt M, Kolodziej A, Henrich-Noack P, Reymann KG, Hollt V, Stumm R (2010). Differential regulation of CXCL12 and PACAP mRNA expression after focal and global ischemia. Neuropharmacology, 58: 199-207
[90] Nakamachi T, Farkas J, Kagami N, Wada Y, Hori M, Tsuchikawa D, et al. (2013). Expression and distribution of pituitary adenylate cyclase-activating polypeptide receptor in reactive astrocytes induced by global brain ischemia in mice. Acta Neurochir Suppl, 118: 55-59
[91] Nakamachi T, Tsuchida M, Kagami N, Yofu S, Wada Y, Hori M, et al. (2012). IL-6 and PACAP receptor expression and localization after global brain ischemia in mice. J Mol Neurosci, 48: 518-525
[92] Miura A, Kambe Y, Inoue K, Tatsukawa H, Kurihara T, Griffin M, et al. (2013). Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC1) gene is suppressed by transglutaminase 2 activation. J Biol Chem, 288: 32720-32730
[93] Lin CH, Chiu L, Lee HT, Chiang CW, Liu SP, Hsu YH, et al. (2015). PACAP38/PAC1 signaling induces bone marrow-derived cells homing to ischemic brain. Stem Cells, 33: 1153-1172
[94] Gillardon F, Hata R, Hossmann KA (1998). Delayed up-regulation of Zac1 and PACAP type I receptor after transient focal cerebral ischemia in mice. Brain Res Mol Brain Res, 61: 207-210
[95] Stumm R, Kolodziej A, Prinz V, Endres M, Wu DF, Hollt V (2007). Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. J Neurochem, 103: 1666-1681
[96] Tamas A, Reglodi D, Szanto Z, Borsiczky B, Nemeth J, Lengvari I (2002). Comparative neuroprotective effects of preischemic PACAP and VIP administration in permanent occlusion of the middle cerebral artery in rats. Neuro Endocrinol Lett, 23: 249-254
[97] Chen Y, Samal B, Hamelink CR, Xiang CC, Chen Y, Chen M, et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regul Pept, 137: 4-19
[98] Reglodi D, Somogyvari-Vigh A, Vigh S, Maderdrut JL, Arimura A (2000). Neuroprotective effects of PACAP38 in a rat model of transient focal ischemia under various experimental conditions. Ann N Y Acad Sci, 921: 119-128
[99] Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A (2000). Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke, 31: 1411-1417
[100] Hajji K, Mteyrek A, Sun J, Cassar M, Mezghani S, Leprince J, et al. (2019). Neuroprotective effects of PACAP against paraquat-induced oxidative stress in the Drosophila central nervous system. Hum Mol Genet, 28: 1905-1918
[101] Delgado M, Ganea D (2000). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit T cell-mediated cytotoxicity by inhibiting Fas ligand expression. J Immunol, 165: 114-123
[102] Johnson GC, May V, Parsons RL, Hammack SE (2019). Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. Ann N Y Acad Sci, 1455: 105-112
[103] Kiss T, Balasubramanian P, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Csipo T, et al. (2019). Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience, 41: 619-630
[104] Stokum JA, Gerzanich V, Simard JM (2016). Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab, 36: 513-538
[105] Lai TW, Zhang S, Wang YT (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol, 115: 157-188
[106] MacAulay N, Zeuthen T (2010). Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience, 168: 941-956
[107] Randall RD, Thayer SA (1992). Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci, 12: 1882-1895
[108] Gupte RP, Kadunganattil S, Shepherd AJ, Merrill R, Planer W, Bruchas MR, et al. (2016). Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology, 101: 291-308
[109] Tompkins JD, Merriam LA, Girard BM, May V, Parsons RL (2015). Nickel suppresses the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol, 308: C857-866
[110] Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL (2013). Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J Neurosci, 33: 4614-4622
[111] Chen S, Wang J, Siegelbaum SA (2001). Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol, 117: 491-504
[112] Tompkins JD, Clason TA, Hardwick JC, Girard BM, Merriam LA, May V, et al. (2016). Activation of MEK/ERK signaling contributes to the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol, 311: C643-C651
[113] Seo H, Lee K (2016). Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells. BMB Rep, 49: 128-133
[114] Dong Y, He C, Han X, Wang CH, Lu CL (2002). [Experimental study of pituitary adenylate cyclase activating polypeptide on relieving brain edema induced by ischemia in rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 18: 121-123
[115] Hafez S, Khan MB, Awad ME, Wagner JD, Hess DC (2019). Short-Term Acute Exercise Preconditioning Reduces Neurovascular Injury After Stroke Through Induced eNOS Activation. Transl Stroke Res
[116] Nakamachi T, Ohtaki H, Yofu S, Dohi K, Watanabe J, Mori H, et al. (2010). Endogenous pituitary adenylate cyclase activating polypeptide is involved in suppression of edema in the ischemic brain. Acta Neurochir Suppl, 106: 43-46
[117] Warren JB, Larkin SW, Coughlan M, Kajekar R, Williams TJ (1992). Pituitary adenylate cyclase activating polypeptide is a potent vasodilator and oedema potentiator in rabbit skin in vivo. Br J Pharmacol, 106: 331-334
[118] Banki E, Hajna Z, Kemeny A, Botz B, Nagy P, Bolcskei K, et al. (2014). The selective PAC1 receptor agonist maxadilan inhibits neurogenic vasodilation and edema formation in the mouse skin. Neuropharmacology, 85: 538-547
[119] Ohtaki H, Dohi K, Yofu S, Nakamachi T, Kudo Y, Endo S, et al. (2004). Effect of pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) on tissue oxygen content--treatment in central nervous system of mice. Regul Pept, 123: 61-67
[120] Bothwell SW, Janigro D, Patabendige A (2019). Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS, 16: 9
[121] Ironside N, Chen CJ, Ding D, Mayer SA, Connolly ES Jr, (2019). Perihematomal Edema After Spontaneous Intracerebral Hemorrhage. Stroke, 50: 1626-1633
[122] Kis B, Mezei Z, Dancso G, Pataricza J, Gecse A, Papp JG, et al. (1999). Effects of pituitary adenylate cyclase-activating polypeptide on the cyclooxygenase pathway of rat platelets and on platelet aggregation. Prostaglandins Other Lipid Mediat, 58: 103-112
[123] Chamorro A, Dirnagl U, Urra X, Planas AM (2016). Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol, 15: 869-881
[124] Morio H, Tatsuno I, Hirai A, Tamura Y, Saito Y (1996). Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res, 741: 82-88
[125] Said SI, Dickman K, Dey RD, Bandyopadhyay A, De Stefanis P, Raza S, et al. (1998). Glutamate toxicity in the lung and neuronal cells: prevention or attenuation by VIP and PACAP. Ann N Y Acad Sci, 865: 226-237
[126] Tomimatsu N, Arakawa Y (2008). Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. J Neurochem, 107: 628-635
[127] Shintani N, Suetake S, Hashimoto H, Koga K, Kasai A, Kawaguchi C, et al. (2005). Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul Pept, 126: 123-128
[128] Onoue S, Endo K, Yajima T, Kashimoto K (2002). Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide attenuate glutamate-induced nNOS activation and cytotoxicity. Regul Pept, 107: 43-47
[129] Kaneko Y, Tuazon JP, Ji X, Borlongan CV (2018). Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors. Cell Physiol Biochem, 51: 1982-1995
[130] Lenti L, Zimmermann A, Kis D, Olah O, Toth GK, Hegyi O, et al. (2009). PACAP and VIP differentially preserve neurovascular reactivity after global cerebral ischemia in newborn pigs. Brain Res, 1283: 50-57
[131] Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, et al. (2008). Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem, 283: 13116-13123
[132] Figiel M, Engele J (2000). Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci, 20: 3596-3605
[133] Ding WT, Yu P, Liu W, Zhou LQ, Guan L, Lin RS (2015). Buyang Huanwu decoction increases the expression of glutamate transporter-1 and glutamate synthetase in association with PACAP-38 following focal ischemia. Biomedical Reports, 3: 651-656
[134] Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H (2019). The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl Stroke Res, 10: 684-694
[135] Tabuchi A, Funaji K, Nakatsubo J, Fukuchi M, Tsuchiya T, Tsuda M (2003). Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization. J Neurosci Res, 71: 504-515
[136] Grumolato L, Elkahloun AG, Ghzili H, Alexandre D, Coulouarn C, Yon L, et al. (2003). Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology, 144: 2368-2379
[137] Ferencz A, Racz B, Tamas A, Reglodi D, Lubics A, Nemeth J, et al. (2009). Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation. J Mol Neurosci, 37: 168-176
[138] Yang S, Yang J, Yang Z, Chen P, Fraser A, Zhang W, et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther, 319: 595-603
[139] Kong LY, Maderdrut JL, Jeohn GH, Hong JS (1999). Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience, 91: 493-500
[140] Parsons JL, DianovaII, DianovGL (2004). APE1 is the major 3'-phosphoglycolate activity in human cell extracts. Nucleic Acids Res, 32: 3531-3536
[141] Stetler RA, Gao Y, Zukin RS, Vosler PS, Zhang L, Zhang F, et al. (2010). Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci U S A, 107: 3204-3209
[142] Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al. (2009). Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 40: 1849-1857
[143] Chen GY, Nunez G (2010). Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 10: 826-837
[144] Anrather J, Iadecola C (2016). Inflammation and Stroke: An Overview. Neurotherapeutics, 13: 661-670
[145] Denes V, Geck P, Mester A, Gabriel R (2019). Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med, 8
[146] Delgado M, Jonakait GM, Ganea D (2002). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia, 39: 148-161
[147] Alhadidi Q, Shah ZA (2018). Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-kappaB and JAK-STAT Pathway. Mol Neurobiol, 55: 1676-1691
[148] Delgado M, Leceta J, Ganea D (2003). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol, 73: 155-164
[149] Delgado M (2002). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem Biophys Res Commun, 293: 771-776
[150] Suk K, Park JH, Lee WH (2004). Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res, 1026: 151-156
[151] Gottschall PE, Tatsuno I, Arimura A (1994). Regulation of interleukin-6 (IL-6) secretion in primary cultured rat astrocytes: synergism of interleukin-1 (IL-1) and pituitary adenylate cyclase activating polypeptide (PACAP). Brain Res, 637: 197-203
[152] Hori M, Nakamachi T, Rakwal R, Shibato J, Ogawa T, Aiuchi T, et al. (2012). Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflammation, 9: 256
[153] Hori M, Nakamachi T, Shibato J, Rakwal R, Tsuchida M, Shioda S, et al. (2014). PACAP38 differentially effects genes and CRMP2 protein expression in ischemic core and penumbra regions of permanent middle cerebral artery occlusion model mice brain. Int J Mol Sci, 15: 17014-17034
[154] Brifault C, Gras M, Liot D, May V, Vaudry D, Wurtz O (2015). Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke, 46: 520-528
[155] Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, et al. (2020). Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci, 14: 68
[156] Lazarovici P, Cohen G, Arien-Zakay H, Chen J, Zhang C, Chopp M, et al. (2012). Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models. J Mol Neurosci, 48: 526-540
[157] Reglodi D, Fabian Z, Tamas A, Lubics A, Szeberenyi J, Alexy T, et al. (2004). Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regul Pept, 123: 51-59
[158] Jozwiak-Bebenista M, Kowalczyk E, Nowak JZ (2015). The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep, 67: 332-338
[159] Rasbach E, Splitthoff P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, et al. (2019). PACAP deficiency aggravates atherosclerosis in ApoE deficient mice. Immunobiology, 224: 124-132
[160] Fang Y, Chen S, Reis C, Zhang J (2018). The Role of Autophagy in Subarachnoid Hemorrhage: An Update. Curr Neuropharmacol, 16: 1255-1266
[161] D'Amico AG, Maugeri G, Saccone S, Federico C, Cavallaro S, Reglodi D, et al. (2020). PACAP Modulates the Autophagy Process in an In Vitro Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci, 21
[162] Chen XY, Du YF, Chen L (2018). Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci, 11: 493
[163] Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, et al. (2020). PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Theranostics, 10: 4453-4465
[164] Zhang C, Jiang M, Wang WQ, Zhao SJ, Yin YX, Mi QJ, et al. (2019). Selective mGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage. Transl Stroke Res
[165] Steliga A, Kowianski P, Czuba E, Waskow M, Morys J, Lietzau G (2019). Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res
[166] Wilhelm I, Fazakas C, Tamas A, Toth G, Reglodi D, Krizbai IA (2014). PACAP enhances barrier properties of cerebral microvessels. J Mol Neurosci, 54: 469-476
[167] Knutsson M, Edvinsson L (2002). Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia. Neuroreport, 13: 507-509
[168] Banki E, Sosnowska D, Tucsek Z, Gautam T, Toth P, Tarantini S, et al. (2015). Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci, 70: 665-674
[169] Reglodi D, Atlasz T, Jungling A, Szabo E, Kovari P, Manavalan S, et al. (2018). Alternative Routes of Administration of the Neuroprotective Pituitary Adenylate Cyclase Activating Polypeptide. Curr Pharm Des, 24: 3892-3904
[170] Amin FM, Schytz HW (2018). Transport of the pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier: implications for migraine. J Headache Pain, 19: 35
[171] Reglodi D, Tamas A, Somogyvari-Vigh A, Szanto Z, Kertes E, Lenard L, et al. (2002). Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides, 23: 2227-2234
[172] Somogyvari-Vigh A, Svoboda-Teet J, Vigh S, Arimura A (1998). Is an intravenous bolus injection required prior to initiating slow intravenous infusion of PACAP38 for prevention of neuronal death induced by global ischemia? The possible presence of a binding protein for PACAP38 in blood. Ann N Y Acad Sci, 865: 595-600
[173] Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, et al. (2011). Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J, 25: 3208-3218
[1] Weili Li,Zhifeng Qi,Huining Kang,Xuzhen Qin,Haiqing Song,Xueqin Sui,Yi Ren,Xunming Ji,Qingfeng Ma,Ke Jian Liu. Serum Occludin as a Biomarker to Predict the Severity of Acute Ischemic Stroke, Hemorrhagic Transformation, and Patient Prognosis[J]. Aging and disease, 2020, 11(6): 1395-1406.
[2] Anwen Shao,Danfeng Lin,Lingling Wang,Sheng Tu,Cameron Lenahan,Jianmin Zhang. Oxidative Stress at the Crossroads of Aging, Stroke and Depression[J]. Aging and disease, 2020, 11(6): 1537-1566.
[3] Longfei Wu,Mitchell Huber,Di Wu,Jian Chen,Ming Li,Yuchuan Ding,Xunming Ji. Intra-arterial Cold Saline Infusion in Stroke: Historical Evolution and Future Prospects[J]. Aging and disease, 2020, 11(6): 1527-1536.
[4] Jiacheng Huang,Guoqiang Yang,Xiaoyi Xiong,Maolin Wang,Junjie Yuan,Qin Zhang,Changxiong Gong,Zhongming Qiu,Zhaoyou Meng,Rui Xu,Qiong Chen,Ru Chen,Lexing Xie,Qi Xie,Wenjie Zi,Guohui Jiang,Yu Zhou,Qingwu Yang. Age-related CCL12 Aggravates Intracerebral Hemorrhage-induced Brain Injury via Recruitment of Macrophages and T Lymphocytes[J]. Aging and disease, 2020, 11(5): 1103-1115.
[5] Wei-Xing Ma,Jing Tang,Zhi-Wen Lei,Chun-Yan Li,Li-Qing Zhao,Chao Lin,Tao Sun,Zheng-Yi Li,Ying-Hui Jiang,Jun-Tao Jia,Cheng-Zhu Liang,Jun-Hong Liu,Liang-Jun Yan. Potential Biochemical Mechanisms of Brain Injury in Diabetes Mellitus[J]. Aging and disease, 2020, 11(4): 978-987.
[6] Weiwei Zhong, Yan Yuan, Xiaohuan Gu, Samuel In-young Kim, Ryan Chin, Modupe Loye, Thomas A Dix, Ling Wei, Shan Ping Yu. Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse[J]. Aging and disease, 2020, 11(1): 1-16.
[7] Zhe Cheng, Xiaokun Geng, Jie Gao, Mohammed Hussain, Seong-Jin Moon, Huishan Du, Yuchuan Ding. Intravenous Administration of Standard Dose Tirofiban after Mechanical Arterial Recanalization is Safe and Relatively Effective in Acute Ischemic Stroke[J]. Aging and disease, 2019, 10(5): 1049-1057.
[8] Ya-Fan Zhou, Jing Wang, Man-Fei Deng, Bin Chi, Na Wei, Jian-Guo Chen, Dan Liu, Xiaoping Yin, Youming Lu, Ling-Qiang Zhu. The Peptide-Directed Lysosomal Degradation of CDK5 Exerts Therapeutic Effects against Stroke[J]. Aging and disease, 2019, 10(5): 1140-1145.
[9] Chun-Sheng Yang, Ai Guo, Yulin Li, Kaibin Shi, Fu-Dong Shi, Minshu Li. Dl-3-n-butylphthalide Reduces Neurovascular Inflammation and Ischemic Brain Injury in Mice[J]. Aging and disease, 2019, 10(5): 964-976.
[10] Hong An, Wenbo Zhao, Jianguo Wang, Joshua C Wright, Omar Elmadhoun, Di Wu, Shuyi Shang, Chuanjie Wu, Chuanhui Li, Longfei Wu, Jian Chen, Jiangang Duan, Hongqi Zhang, Haiqing Song, Yuchuan Ding, Xunming Ji. Contrast Staining may be Associated with Intracerebral Hemorrhage but Not Functional Outcome in Acute Ischemic Stroke Patients Treated with Endovascular Thrombectomy[J]. Aging and disease, 2019, 10(4): 784-792.
[11] Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling[J]. Aging and disease, 2019, 10(4): 807-817.
[12] Mangmang Xu, Yajun Cheng, Quhong Song, Ruozhen Yuan, Shuting Zhang, Zilong Hao, Ming Liu. Total Burden of Cerebral Small Vessel Disease in Recurrent ICH versus First-ever ICH[J]. Aging and disease, 2019, 10(3): 570-577.
[13] Xianmei Li, Siyang Lin, Xiaoli Chen, Wensi Huang, Qian Li, Hongxia Zhang, Xudong Chen, Shaohua Yang, Kunlin Jin, Bei Shao. The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke[J]. Aging and disease, 2019, 10(3): 544-556.
[14] Huachen Huang, Shanshan Song, Suneel Banerjee, Tong Jiang, Jinwei Zhang, Kristopher T. Kahle, Dandan Sun, Zhongling Zhang. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases[J]. Aging and disease, 2019, 10(3): 626-636.
[15] Yuanyuan Ma, Yanqun Liu, Zhijun Zhang, Guo-Yuan Yang. Significance of Complement System in Ischemic Stroke: A Comprehensive Review[J]. Aging and disease, 2019, 10(2): 429-462.
Viewed
Full text


Abstract

Cited

  Shared   
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd