Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited

ISSN 2152-5250
Since 2010
2017 impact factor: 5.058
  About the Journal
    » About Journal
    » Editorial Board
    » Indexed in
  Authors
    » Online Submission
    » Guidelines for Authors
    » Download Templates
    » Copyright Agreement
  Reviewers
    » Guidelines for Reviewers
    » Online Peer Review
    » Online Editor Work
  Editorial Office
30 Most Down Articles
Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Published in last 1 year
Please wait a minute...
For Selected: Toggle Thumbnails
Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia
Zikuan Leng, Rongjia Zhu, Wei Hou, Yingmei Feng, Yanlei Yang, Qin Han, Guangliang Shan, Fanyan Meng, Dongshu Du, Shihua Wang, Junfen Fan, Wenjing Wang, Luchan Deng, Hongbo Shi, Hongjun Li, Zhongjie Hu, Fengchun Zhang, Jinming Gao, Hongjian Liu, Xiaoxia Li, Yangyang Zhao, Kan Yin, Xijing He, Zhengchao Gao, Yibin Wang, Bo Yang, Ronghua Jin, Ilia Stambler, Lee Wei Lim, Huanxing Su, Alexey Moskalev, Antonio Cano, Sasanka Chakrabarti, Kyung-Jin Min, Georgina Ellison-Hughes, Calogero Caruso, Kunlin Jin, Robert Chunhua Zhao
Aging and disease    2020, 11 (2): 216-228.   DOI: 10.14336/AD.2020.0228
Accepted: 29 February 2020

Abstract18301)   HTML4)    PDF(pc) (1473KB)(4766)       Save

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway
Rongrong Han, Zeyue Liu, Nannan Sun, Shu Liu, Lanlan Li, Yan Shen, Jianbo Xiu, Qi Xu
Aging and disease    2019, 10 (3): 611-625.   DOI: 10.14336/AD.2018.0707
Abstract343)   HTML1)    PDF(pc) (1758KB)(1232)       Save

Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.

Table and Figures | Reference | Related Articles | Metrics
Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade
Navneet Kumar Dubey, Hong-Jian Wei, Sung-Hsun Yu, David F. Williams, Joseph R. Wang, Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng
Aging and disease    2019, 10 (3): 483-496.   DOI: 10.14336/AD.2018.0616
Abstract674)   HTML1)    PDF(pc) (1507KB)(1182)       Save

Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases
Huachen Huang, Shanshan Song, Suneel Banerjee, Tong Jiang, Jinwei Zhang, Kristopher T. Kahle, Dandan Sun, Zhongling Zhang
Aging and disease    2019, 10 (3): 626-636.   DOI: 10.14336/AD.2018.0928
Accepted: 02 October 2018

Abstract446)   HTML0)    PDF(pc) (848KB)(1171)       Save

In recent years, cation-chloride cotransporters (CCCs) have drawn attention in the medical neuroscience research. CCCs include the family of Na+-coupled Cl- importers (NCC, NKCC1, and NKCC2), K+-coupled Cl- exporters (KCCs), and possibly polyamine transporters (CCC9) and CCC interacting protein (CIP1). For decades, CCCs have been the targets of several commonly used diuretic drugs, including hydrochlorothiazide, furosemide, and bumetanide. Genetic mutations of NCC and NKCC2 cause congenital renal tubular disorders and lead to renal salt-losing hypotension, secondary hyperreninemia, and hypokalemic metabolic alkalosis. New studies reveal that CCCs along with their regulatory WNK (Kinase with no lysine (K)), and SPAK (Ste20-related proline-alanine-rich kinase)/OSR1(oxidative stress-responsive kinase-1) are essential for regulating cell volume and maintaining ionic homeostasis in the nervous system, especially roles of the WNK-SPAK-NKCC1 signaling pathway in ischemic brain injury and hypersecretion of cerebrospinal fluid in post-hemorrhagic hydrocephalus. In addition, disruption of Cl- exporter KCC2 has an effect on synaptic inhibition, which may be involved in developing pain, epilepsy, and possibly some neuropsychiatric disorders. Interference with KCC3 leads to peripheral nervous system neuropathy as well as axon and nerve fiber swelling and psychosis. The WNK-SPAK/OSR1-CCCs complex emerges as therapeutic targets for multiple neurological diseases. This review will highlight these new findings.

Table and Figures | Reference | Related Articles | Metrics
The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases
Wenjun Tu, Hong Wang, Song Li, Qiang Liu, Hong Sha
Aging and disease    2019, 10 (3): 637-651.   DOI: 10.14336/AD.2018.0513
Abstract894)   HTML1)    PDF(pc) (478KB)(1147)       Save

Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.

Table and Figures | Reference | Related Articles | Metrics
The Potential Markers of Circulating microRNAs and long non-coding RNAs in Alzheimer's Disease
Yanfang Zhao, Yuan Zhang, Lei Zhang, Yanhan Dong, Hongfang Ji, Liang Shen
Aging and disease    2019, 10 (6): 1293-1301.   DOI: 10.14336/AD.2018.1105
Accepted: 13 November 2018

Abstract233)   HTML0)    PDF(pc) (628KB)(1117)       Save

Alzheimer’s disease (AD) is a neurodegenerative disorder and one of the leading causes of disability and mortality in the late life with no curative treatment currently. Thus, it is urgently to establish sensitive and non-invasive biomarkers for AD diagnosis, particularly in the early stage. Recently, emerging number of microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) are considered as effective biomarkers in various diseases as they possess characteristics of stable, resistant to RNAase digestion and many extreme conditions in circulatory fluid. This review highlights recent advances in the identification of the aberrantly expressed miRNAs and lncRNAs in circulatory network for detection of AD. We summarized the abnormal expressed miRNAs in blood and cerebrospinal fluid (CSF), and detailed discussed the functions and molecular mechanism of serum or plasma miRNAs-miR-195, miR-155, miR-34a, miR-9, miR-206, miR-125b and miR-29 in the regulation of AD progression. In addition, we also elaborated the role of circulating lncRNA major including beta-site APP cleaving enzyme 1 (BACE1) and its antisense lncRNA BACE1-AS in AD pathological advancement. In brief, confirming the aberrantly expressed circulating miRNAs and lncRNAs will provide an effective testing tools for treatment of AD in the future.

Table and Figures | Reference | Related Articles | Metrics
Pyroptosis in Liver Disease: New Insights into Disease Mechanisms
Jiali Wu, Su Lin, Bo Wan, Bharat Velani, Yueyong Zhu
Aging and disease    2019, 10 (5): 1094-1108.   DOI: 10.14336/AD.2019.0116
Abstract112)   HTML1)    PDF(pc) (565KB)(1083)       Save

There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of caspase enzymes—caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.

Table and Figures | Reference | Related Articles | Metrics
Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application
Jinfan Tian, Sharif Popal Mohammad, Yingke Zhao, Yanfei Liu, Keji Chen, Yue Liu
Aging and disease    2019, 10 (6): 1302-1310.   DOI: 10.14336/AD.2018.1020
Accepted: 20 November 2018

Abstract302)   HTML0)    PDF(pc) (361KB)(1082)       Save

Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.

Table and Figures | Reference | Related Articles | Metrics
Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link?
Tatiana Rafaela Lemos Lima, Vívian Pinto Almeida, Arthur Sá Ferreira, Fernando Silva Guimarães, Agnaldo José Lopes
Aging and disease    2019, 10 (5): 1109-1129.   DOI: 10.14336/AD.2018.1226
Accepted: 31 December 2018

Abstract542)   HTML0)    PDF(pc) (1124KB)(1079)       Save

Societies in developed countries are aging at an unprecedented rate. Considering that aging is the most significant risk factor for many chronic lung diseases (CLDs), understanding this process may facilitate the development of new interventionist approaches. Skeletal muscle dysfunction is a serious problem in older adults with CLDs, reducing their quality of life and survival. In this study, we reviewed the possible links between handgrip strength (HGS)—a simple, noninvasive, low-cost measure of muscle function—and CLDs in the elderly. Different mechanisms appear to be involved in this association, including systemic inflammation, chronic hypoxemia, physical inactivity, malnutrition, and corticosteroid use. Respiratory and peripheral myopathy, associated with muscle atrophy and a shift in muscle fiber type, also seem to be major etiological contributors to CLDs. Moreover, sarcopenic obesity, which occurs in older adults with CLDs, impairs common inflammatory pathways that can potentiate each other and further accelerate the functional decline of HGS. Our findings support the concept that the systemic effects of CLDs may be determined by HGS, and HGS is a relevant measurement that should be considered in the clinical assessment of the elderly with CLDs. These reasons make HGS a useful practical tool for indirectly evaluating functional status in the elderly. At present, early muscle reconditioning and optimal nutrition appear to be the most effective approaches to reduce the impact of CLDs and low muscle strength on the quality of life of these individuals. Nonetheless, larger in-depth studies are needed to evaluate the link between HGS and CLDs.

Table and Figures | Reference | Related Articles | Metrics
The role of CD2AP in the Pathogenesis of Alzheimer's Disease
Qing-Qing Tao, Yu-Chao Chen, Zhi-Ying Wu
Aging and disease    2019, 10 (4): 901-907.   DOI: 10.14336/AD.2018.1025
Accepted: 08 December 2018

Abstract627)   HTML1)    PDF(pc) (514KB)(1078)       Save

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling
Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun
Aging and disease    2019, 10 (4): 807-817.   DOI: 10.14336/AD.2018.0728
Accepted: 04 September 2018

Abstract540)   HTML0)    PDF(pc) (828KB)(1019)       Save

Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.

Table and Figures | Reference | Related Articles | Metrics
Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration
Linsha Ma, Jingchao Hu, Yu Cao, Yilin Xie, Hua Wang, Zhipeng Fan, Chunmei Zhang, Jinsong Wang, Chu-Tse Wu, Songlin Wang
Aging and disease    2019, 10 (4): 793-806.   DOI: 10.14336/AD.2018.0729
Accepted: 12 September 2018

Abstract503)   HTML0)    PDF(pc) (1889KB)(982)       Save

Owing to excellent therapeutic potential, mesenchymal stem cells (MSCs) are gaining increasing popularity with researchers worldwide for applications in tissue engineering, and in treatment of inflammation-related and age-related disorders. However, the senescence of MSCs over passaging has limited their clinical application owing to adverse effect on physiological function maintenance of tissues as well as disease treatment. An inflammatory microenvironment is one of the key contributors to MSC senescence, resulting in low regeneration efficiency. Therefore, MSCs with high resistance to cellular senescence would be a benefit for tissue regeneration. Toward this end, we analyzed the senescence properties of different types of stem cells during culture and under inflammation, including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), bone marrow mesenchymal stem cells (BMMSCs), and adipose-derived stem cells (ADSCs). Overall, the DPSCs had higher proliferation rates, lower cellular senescence, and enhanced osteogenesis maintenance compared to those of non-dental MSCs cultured from passage three to six. The expression profiles of genes related to apoptosis, cell cycle, and cellular protein metabolic process (contributing to the cell self-renewal ability and metabolic processes) significantly differed between DPSCs and BMMSCs at passage three. Moreover, DPSCs were superior to BMMSCs with regards to resistance to lipopolysaccharide-induced apoptosis and senescence, with enhanced osteogenesis in vitro, and showed improved periodontal regeneration after injection in a miniature pig periodontitis model in vivo. Overall, the present study indicates that DPSCs show superior resistance to subculture and inflammation-induced senescence and would be suitable stem cells for tissue engineering with inflammation.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways
Georg Fuellen, Ludger Jansen, Alan A Cohen, Walter Luyten, Manfred Gogol, Andreas Simm, Nadine Saul, Francesca Cirulli, Alessandra Berry, Peter Antal, Rüdiger Köhling, Brecht Wouters, Steffen Möller
Aging and disease    2019, 10 (4): 883-900.   DOI: 10.14336/AD.2018.1030
Accepted: 19 November 2018

Abstract766)   HTML2)    PDF(pc) (522KB)(954)       Save

Despite increasing research efforts, there is a lack of consensus on defining aging or health. To understand the underlying processes, and to foster the development of targeted interventions towards increasing one’s health, there is an urgent need to find a broadly acceptable and useful definition of health, based on a list of (molecular) features; to operationalize features of health so that it can be measured; to identify predictive biomarkers and (molecular) pathways of health; and to suggest interventions, such as nutrition and exercise, targeted at putative causal pathways and processes. Based on a survey of the literature, we propose to define health as a state of an individual characterized by the core features of physiological, cognitive, physical and reproductive function, and a lack of disease. We further define aging as the aggregate of all processes in an individual that reduce its wellbeing, that is, its health or survival or both. We define biomarkers of health by their attribute of predicting future health better than chronological age. We define healthspan pathways as molecular features of health that relate to each other by belonging to the same molecular pathway. Our conceptual framework may integrate diverse operationalizations of health and guide precision prevention efforts.

Table and Figures | Reference | Related Articles | Metrics
Entorhinal Cortex Atrophy in Early, Drug-naive Parkinson’s Disease with Mild Cognitive Impairment
Xiuqin Jia, Zhijiang Wang, Tao Yang, Ying Li, Shuai Gao, Guorong Wu, Tao Jiang, Peipeng Liang
Aging and disease    2019, 10 (6): 1221-1232.   DOI: 10.14336/AD.2018.1116
Accepted: 18 November 2018
Online available: 18 November 2018

Abstract321)   HTML0)    PDF(pc) (982KB)(933)       Save

Patients with Parkinson’s disease (PD) generally have a higher proportion of suffering from mild cognitive impairment (MCI) than normal aged adults. This study aimed to identify the specific neuroanatomical alterations in early, drug-naive PD with MCI (PD-MCI) by comparing to those PD with normal cognition (PD-NC) and healthy controls (HCs), which could help to elucidate the underlying neuropathology and facilitate the development of early therapeutic strategies for treating this disease. Structural MRI data of 237 early, drug-naive non-demented PD patients (classified as 61 PD-MCI and 176 PD-NC) and 69 HCs were included from Parkinson's Progression Markers Initiative (PPMI) database after data quality control. Within these data, a subset of 61 HCs and a subset of 61 PD-NC who were matched to the 61 PD-MCI group for age, gender, and education-level were selected to further eliminate the sample size effect. The gray matter (GM) volume changes between groups were analyzed using voxel-based morphometry (VBM). Furthermore, correlations between GM volume alterations and neuropsychological performances and non-cognitive assessments (including olfactory performance) were further examined. Compared to HC, patients with PD-NC and PD-MCI commonly exhibited atrophies in the bilateral amygdala (AM) and the left primary motor cortex (M1). Patients with PD-MCI exclusively exhibited atrophy in the right entorhinal cortex (ENT) compared to PD-NC. Significantly negative correlations were found between GM loss in the bilateral AM and olfactory performance in all PD patients, and between ENT loss and memory performance in PD-MCI. The findings suggest that the right ENT atrophy may subserve as a biomarker in early, drug-naive PD-MCI, which shed light on the neural underpinnings of the disease and provide new evidence on differentiating the neuroanatomical states between PD-MCI and PD-NC.

Table and Figures | Reference | Related Articles | Metrics
Glial S100A6 Degrades β-amyloid Aggregation through Targeting Competition with Zinc Ions
Zhi-Ying Tian, Chun-Yan Wang, Tao Wang, Yan-Chun Li, Zhan-You Wang
Aging and disease    2019, 10 (4): 756-769.   DOI: 10.14336/AD.2018.0912
Accepted: 20 September 2018

Abstract531)   HTML1)    PDF(pc) (1481KB)(901)       Save

Evidence has been accumulating that zinc ions can trigger β-amyloid (Aβ) deposition and senile plaque formation in the brain, a pathological hallmark of Alzheimer’s disease (AD). Chelating zinc inhibits Aβ aggregation and may hold promise as a therapeutic strategy for AD. S100A6 is an acidic Ca2+/Zn2+-binding protein found only in a small number of astrocytes in the normal brain. However, in the AD brain, S100A6 is highly expressed in astrocytes around Aβ plaques. The role of the astrocytic S100A6 upregulation in AD is unknown. In the present study, we examined the effects of S100A6 on Aβ plaques and intracellular zinc levels in a mouse model of AD. Chronic exposure to zinc increased Aβ deposition and S100A6 expression, both reversible by the zinc chelator clioquinol, in the brains of amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice. To examine whether exogenous S100A6 could induce Aβ plaque disaggregation through competition for zinc in vitro, we incubated APP/PS1 mouse brain sections with recombinant human S100A6 protein or co-incubated them with human S100A6-expressing cells. Both treatments efficiently reduced the Aβ plaque burden in situ. In addition, treatment with exogenous S100A6 protected cultured COS-7 cells against zinc toxicity. Our results show for the first time that increased S100A6 levels correlate with both Aβ disaggregation and decrease of Aβ plaque-associated zinc contents in brain sections with AD-like pathology. Astrocytic S100A6 in AD may protect from Aβ deposition through zinc sequestration.

Table and Figures | Reference | Related Articles | Metrics
Galectin-3 Mediates Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension
Tangzhiming Li, Lihuang Zha, Hui Luo, Suqi Li, Lin Zhao, Jingni He, Xiaohui Li, Qiangqiang Qi, Yuwei Liu, Zaixin Yu
Aging and disease    2019, 10 (4): 731-745.   DOI: 10.14336/AD.2018.1001
Accepted: 27 November 2018

Abstract318)   HTML0)    PDF(pc) (2203KB)(866)       Save

Galectin-3 (Gal-3) is highly expressed in fibrotic tissue related to diverse etiologies. endothelial-to-mesenchymal transition (EndoMT), A less well studied phenomenon serves as a critical process in pulmonary vascular remodeling associated with the development of pulmonary arterial hypertension (PAH). EndoMT is hypothesized to contribute to the over-proliferation of αSMA positive cells. We aim to investigate the potential role of Gal-3 in regulating EndoMT in PAH. We observed an upregulation in both Gal-3 and αSMA expression in the monocrotaline (MCT) and Hypoxia PAH model, accompanied with intimal thickening. For more profound vascular remodeling and endothelial layer lesion in former model, we employed Gal-3 knockdown and overexpression lentivirus methodology to the MCT rats to determine the mechanisms underlying abnormal endothelial cell transition in PAH. PAH was evaluated according to right ventricular systolic pressure, right heart hypertrophy and pulmonary artery remodeling. A reduction in Gal-3 was protective against the development of PAH, while Gal-3 upregulation aggravated pulmonary vascular occlusion. In addition, Gal-3 deficiency suppressed pulmonary vascular cell proliferation and macrophage infiltration. Finally, we revealed that in endothelial cells treated with tumor necrosis factor α and hypoxia (representing an in vitro model of PAH), inhibition of Gal-3 by siRNA was able to abolish the associated upregulation of αSMA. These observations suggesting Gal-3 serves as a critical mediator in PAH by regulating EndoMT. Inhibition of Gal-3 may represent a novel therapeutic target for PAH treatment.

Table and Figures | Reference | Related Articles | Metrics
Calcitriol Analogues Decrease Lung Metastasis but Impair Bone Metabolism in Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Tumours
Artur Anisiewicz, Beata Filip-Psurska, Agata Pawlik, Anna Nasulewicz-Goldeman, Tomasz Piasecki, Konrad Kowalski, Magdalena Maciejewska, Joanna Jarosz, Joanna Banach, Diana Papiernik, Andrzej Mazur, Andrzej Kutner, Jeanette A Maier, Joanna Wietrzyk
Aging and disease    2019, 10 (5): 977-991.   DOI: 10.14336/AD.2018.0921
Accepted: 28 September 2018

Abstract276)   HTML0)    PDF(pc) (1691KB)(856)       Save

Calcitriol and its analogues are considered drugs supporting the anticancer treatment of breast cancer and preventing the osteoporosis that results from the development of cancer or from chemotherapy or hormone therapy. Following the orthotopic implantation of 4T1 mammary carcinoma cells into aged ovariectomized (OVX) mice, we evaluated the effects of calcitriol and its two analogues, PRI-2191 and PRI-2205, on metastatic spread and bone homeostasis. Calcitriol and its analogues temporarily inhibited the formation of metastases in the lungs. Unexpectedly, only mice treated with calcitriol analogues showed a deterioration of bone-related parameters, such as bone column density, marrow column density and the CaPO4 coefficient. These findings correlated with an increased number of active osteoclasts differentiated from bone marrow-derived macrophages in mice treated with the analogues. Interestingly, in the tumours from mice treated with PRI-2191 and PRI-2205, the expression of Tnfsf11 (RANKL) was increased. On the other hand, osteopontin (OPN) levels in plasma and tumour tissue, as well as TRAC5b levels in tumours, were diminished by calcitriol and its analogues. Despite a similar action of both analogues towards bone metabolism, their impact on vitamin D metabolism differed. In particular, PRI-2191 and calcitriol, not PRI-2205 treatment significantly diminished the levels of both 25(OH)D3 and 24,25(OH)2D3. In conclusion, though there is evident antimetastatic activity in old OVX mice, signs of increased bone metabolism and deterioration of bone mineralization during therapy with calcitriol analogues were observed.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
The Peptide-Directed Lysosomal Degradation of CDK5 Exerts Therapeutic Effects against Stroke
Ya-Fan Zhou, Jing Wang, Man-Fei Deng, Bin Chi, Na Wei, Jian-Guo Chen, Dan Liu, Xiaoping Yin, Youming Lu, Ling-Qiang Zhu
Aging and disease    2019, 10 (5): 1140-1145.   DOI: 10.14336/AD.2018.1225
Accepted: 31 December 2018

Abstract276)   HTML0)    PDF(pc) (954KB)(821)       Save

The aberrant activation of CDK5 has been implicated in neuronal death in stroke. The goal of this study is to determine whether knocking down CDK5 by a peptide-directed lysosomal degradation approach is therapeutically effective against stroke. We synthesized a membrane-permeable peptide that specifically binds to CDK5 with a chaperone-mediated autophagy targeting motif (Tat-CDK5-CTM) and tested its therapeutic effects on a mouse model of ischemic stroke. Our results showed that Tat-CDK5-CTM blocked the CDK5-NR2B interaction, resulting in the degradation of CDK5, which in turn prevented calcium overload and neuronal death in cultured neurons. Tat-CDK5-CTM also reduced the infarction area and neuronal loss and improved the neurological functions in MCAO (Middle cerebral artery occlusion) mice. The peptide-directed lysosomal degradation of CDK5 is a promising therapeutic intervention for stroke.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging
Min-jun Wang, Jiajia Chen, Fei Chen, Qinggui Liu, Yu Sun, Chen Yan, Tao Yang, Yiwen Bao, Yi-Ping Hu
Aging and disease    2019, 10 (4): 871-882.   DOI: 10.14336/AD.2018.1119
Accepted: 26 November 2018

Abstract616)   HTML0)    PDF(pc) (394KB)(815)       Save

Although aging is a physiological process, it has raised interest in the science of aging and rejuvenation because of the increasing burden on the rapidly aging global population. With advanced age, there is a decline in homeostatic maintenance and regenerative responsiveness to the injury of various tissues, thereby contributing to the incidence of age-related diseases. The primary cause of the functional declines that occur along with aging is considered to be the exhaustion of stem cell functions in their corresponding tissues. Age-related changes in the systemic environment, the niche, and stem cells contribute to this loss. Thus, the reversal of stem cell aging at the cellular level might lead to the rejuvenation of the animal at an organismic level and the prevention of aging, which would be critical for developing new therapies for age-related dysfunction and diseases. Here, we will explore the effects of aging on stem cells in different tissues. The focus of this discussion is on pro-youth interventions that target intrinsic stem cell properties, environmental niche component, systemic factors, and senescent cellular clearance, which are promising for developing strategies related to the reversal of aged stem cell function and optimizing tissue repair processes.

Table and Figures | Reference | Related Articles | Metrics
Physical Activity and Alzheimer’s Disease: A Narrative Review
Piotr Gronek, Stefan Balko, Joanna Gronek, Adam Zajac, Adam Maszczyk, Roman Celka, Agnieszka Doberska, Wojciech Czarny, Robert Podstawski, Cain C. T Clark, Fang Yu
Aging and disease    2019, 10 (6): 1282-1292.   DOI: 10.14336/AD.2019.0226
Accepted: 12 March 2019

Abstract419)   HTML0)    PDF(pc) (394KB)(811)       Save

Although age is a dominant risk factor for Alzheimer’s disease (AD), epidemiological studies have shown that physical activity may significantly decrease age-related risks for AD, and indeed mitigate the impact in existing diagnosis. The aim of this study was to perform a narrative review on the preventative, and mitigating, effects of physical activity on AD onset, including genetic factors, mechanism of action and physical activity typology. In this article, we conducted a narrative review of the influence physical activity and exercise have on AD, utilising key terms related to AD, physical activity, mechanism and prevention, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action. On the basis of this review, it is evident that physical activity and exercise may be incorporated in AD, notwithstanding, a greater number of high-quality randomised controlled trials are needed, moreover, physical activity typology must be acutely considered, primarily due to a dearth of research on the efficacy of physical activity types other than aerobic.

Reference | Related Articles | Metrics
Intravenous Administration of Standard Dose Tirofiban after Mechanical Arterial Recanalization is Safe and Relatively Effective in Acute Ischemic Stroke
Zhe Cheng, Xiaokun Geng, Jie Gao, Mohammed Hussain, Seong-Jin Moon, Huishan Du, Yuchuan Ding
Aging and disease    2019, 10 (5): 1049-1057.   DOI: 10.14336/AD.2018.0922
Accepted: 26 September 2018

Abstract313)   HTML0)    PDF(pc) (688KB)(800)       Save

To investigate the safety and efficacy of intravenous administration of a standard dose of glycoprotein-IIb/IIIa inhibitor tirofiban after vessel recanalization by mechanical thrombectomy in acute ischemic stroke. A consecutive series of patients (n=112) undergoing endovascular ischemic stroke intervention therapy were enrolled. 81 patients were eligible for intravenous (IV) tirofiban treatment for 24 hours after mechanical thrombectomy. The incidence of symptomatic intracranial hemorrhage (sICH), death, National Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS) were assessed. In the 81 patients receiving tirofiban, 52 patients (64.2%) were treated with IV rt-PA before mechanical thrombectomy. sICH was found in 2 (2.5%) patients with no fatal ICH. Four patients died during 3 months after stroke onset. Successful recanalization with thrombolysis in cerebral infarction (TICI) score ≥2b was achieved in 75 of 81 patients (92.6%) after mechanical thrombectomy. The average number of passes with Solitaire stent retriever was 1.3. At 3 months, 55 of 81 patients (67.9%) had favorable outcomes (mRS<=2). The intravenous application of a standard dose of tirofiban post-Solitaire stent retriever thrombectomy and intravenous thrombolysis appears to be safe and relatively effective in acute ischemic stroke.

Table and Figures | Reference | Related Articles | Metrics
Reactive Astrocytes in Neurodegenerative Diseases
Kunyu Li, Jiatong Li, Jialin Zheng, Song Qin
Aging and disease    2019, 10 (3): 664-675.   DOI: 10.14336/AD.2018.0720
Abstract584)   HTML0)    PDF(pc) (730KB)(797)       Save

Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.

Table and Figures | Reference | Related Articles | Metrics
Two Novel Mutations and a de novo Mutation in PSEN1 in Early-onset Alzheimer’s Disease
Yu-Sheng Li, Zhi-Hua Yang, Yao Zhang, Jing Yang, Dan-Dan Shang, Shu-Yu Zhang, Jun Wu, Yan Ji, Lu Zhao, Chang-He Shi, Yu-Ming Xu
Aging and disease    2019, 10 (4): 908-914.   DOI: 10.14336/AD.2018.1109
Accepted: 23 November 2018

Abstract301)   HTML1)    PDF(pc) (686KB)(790)       Save

Presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) mutations are responsible for autosomal dominant early-onset Alzheimer’s disease (AD-EOAD). To analyze the phenotypes and genotypes of EOAD patients, we performed comprehensive clinical assessments as well as mutation screening of PSEN1, PSEN2, and exons 16 and 17 of APP by Sanger sequencing in the three Chinese EOAD families. We identified two novel mutations of PSEN1 (Y256N and H214R) in samples from these families, and a de novo mutation of PSEN1 (G206V) in a patient with very early-onset sporadic Alzheimer’s disease. A combination of bioinformatics tools based on evolutionary, structural and computational methods predicted that the mutations were all deleterious. These findings suggest that PSEN1 Y256N, H214R, and G206V need to be considered as potential causative mutations in EOAD patients. Further functional studies are needed to evaluate the roles of these mutations in the pathogenesis of AD.

Table and Figures | Reference | Related Articles | Metrics
Salsalate Prevents β-Cell Dedifferentiation in OLETF Rats with Type 2 Diabetes through Notch1 Pathway
Fei Han, Xiaochen Li, Juhong Yang, Haiyi Liu, Yi Zhang, Xiaoyun Yang, Shaohua Yang, Bai Chang, Liming Chen, Baocheng Chang
Aging and disease    2019, 10 (4): 719-730.   DOI: 10.14336/AD.2018.1221
Accepted: 30 December 2018

Abstract234)   HTML0)    PDF(pc) (1492KB)(787)       Save

A strategic approach is urgently needed to curb the growing global epidemic of diabetes. In this study, we investigated the effects and mechanisms of salsalate (SAL), an anti-inflammatory drug with anti-diabetic properties, assessing its potential to prevent diabetes in Otsuka Long-Evans Tokushima Fatty rats (OLETF). All animals in our placebo group developed diabetes, whereas none in the SAL test group did so, and only 25% of SAL-treated rats displayed impaired glucose tolerance (IGT). SAL lowered levels of glucagon and raised levels of insulin in plasma, while improving both insulin sensitivity and β-cell function. The protective effect of SAL is likely due to diminished β-cell dedifferentiation, manifested as relative declines in Neurogenin 3+/insulin- cells and synaptophysin+/islet hormone- cells and increased expression of β-cell-specific transcription factor Foxo1. Both Notch1-siRNA and N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT; an indirect inhibitor of the Notch1 pathway) were shown to prevent β-cell dedifferentiation. Similar to DAPT, SAL effectively reduced β-cell dedifferentiation, significantly suppressing Notch1 pathway activation in INS-1 cells. The inhibitory role of SAL in β-cell dedifferentiation may thus be attributable to Notch1 pathway suppression.

Table and Figures | Reference | Related Articles | Metrics
Total Burden of Cerebral Small Vessel Disease in Recurrent ICH versus First-ever ICH
Mangmang Xu, Yajun Cheng, Quhong Song, Ruozhen Yuan, Shuting Zhang, Zilong Hao, Ming Liu
Aging and disease    2019, 10 (3): 570-577.   DOI: 10.14336/AD.2018.0804
Abstract380)   HTML0)    PDF(pc) (445KB)(770)       Save

The relationship between recurrent intracerebral hemorrhage (ICH) and total burden of cerebral small vessel disease (CSVD) is not completely investigated. We aimed to study whether recurrent intracerebral hemorrhage (ICH) had higher CSVD score than first-ever ICH. Lacunes, white matter hyperintensities (WMH), cerebral microbleeds (CMBs), enlarged perivascular spaces (EPVS), cortical superficial siderosis (cSS) and CSVD score were rated on brain magnetic resonance imaging (MRI) in primary ICH patients. Recurrent ICHs were confirmed by reviewing the medical records and MRI scans. Mixed hematomas were defined as follows: deep + lobar, deep + cerebellar, or deep + lobar + cerebellar. Of the 184 patients with primary ICH enrolled (mean age, 61.0 years; 75.5% men), recurrent ICH was present in 45 (24.5%) patients; 26.1% (48/184) had ≥2 hematomas, 93.8% (45/48) of which exhibited recurrent ICH. Mixed hematomas were identified in 8.7% (16/184) of patients and bilateral hematomas in 17.9% (33/184). All mixed hematomas and bilateral hematomas were from cases of recurrent ICH. Patients with mixed etiology-ICH were more likely to have recurrent ICH than patients with cerebral amyloid angiopathy (CAA) or hypertensive angiopathy (HA)-related ICH (36.8% vs17.8%, p=0.008). Multivariate ordinal regression analysis showed that the presence of recurrent ICH (p=0.001), ≥2 hematomas (p=0.002), mixed hematomas (p<0.00001), and bilateral hematomas (p=0.002) were separately significantly associated with a high CSVD score. Recurrent ICH occurs mostly among patients with mixed etiology-ICH and is associated with a higher CSVD burden than first-ever ICH, which needs to be verified by future larger studies.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia
Ashok K Shetty
Aging and disease    2020, 11 (2): 462-464.   DOI: 10.14336/AD.2020.0301
Accepted: 01 March 2020

Abstract1994)   HTML0)    PDF(pc) (212KB)(770)       Save

A new study published by the journal Aging & Disease reported that intravenous administration of clinical-grade human mesenchymal stem cells (MSCs) into patients with coronavirus disease 2019 (COVID-19) resulted in improved functional outcomes (Leng et al., Aging Dis, 11:216-228, 2020). This study demonstrated that intravenous infusion of MSCs is a safe and effective approach for treating patients with COVID-19 pneumonia, including elderly patients displaying severe pneumonia. COVID-19 is a severe acute respiratory illness caused by a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, treating COVID-19 patients, particularly those afflicted with severe pneumonia, is challenging as no specific drugs or vaccines against SARS-CoV-2 are available. Therefore, MSC therapy inhibiting the overactivation of the immune system and promoting endogenous repair by improving the lung microenvironment after the SARS-CoV-2 infection found in this study is striking. Additional studies in a larger cohort of patients are needed to validate this therapeutic intervention further, however.

Reference | Related Articles | Metrics
Hydroxyurea Facilitates Manifestation of Disease Relevant Phenotypes in Patients-Derived IPSCs-Based Modeling of Late-Onset Parkinson’s Disease
Yuan Tan, Minjing Ke, Zhijian Huang, Cheong-Meng Chong, Xiaotong Cen, Jia-Hong Lu, Xiaoli Yao, Dajiang Qin, Huanxing Su
Aging and disease    2019, 10 (5): 1037-1048.   DOI: 10.14336/AD.2018.1216
Accepted: 08 January 2019

Abstract370)   HTML0)    PDF(pc) (1828KB)(755)       Save

Induced pluripotent stem cells (iPSCs)-derived dopaminergic neurons might be reset back to the fetal state due to reprogramming. Thus, it is a compelling challenge to reliably and efficiently induce disease phenotypes of iPSCs-derived dopaminergic neurons to model late-onset Parkinson’s disease (PD). Here, we applied a small molecule, hydroxyurea (HU), to promote the manifestation of disease relevant phenotypes in iPSCs-based modeling of PD. We established two iPS cell lines derived from two sporadic PD patients. Both patients-iPSCs-derived dopaminergic neurons did not display PD relevant phenotypes after 6 weeks culture. HU treatment remarkably induced ER stress on patients-iPSCs-derived dopaminergic neurons. Moreover, HU treatment significantly reduced neurite outgrowth, decreased the expression of p-AKT and its downstream targets (p-4EBP1 and p-ULK1), and increased the expression level of cleaved-Caspase 3 in patients-iPSCs-derived dopaminergic neurons. The findings of the present study suggest that HU administration could be a convenient and reliable approach to induce disease relevant phenotypes in PD-iPSCs-based models, facilitating to study disease mechanisms and test drug effects.

Table and Figures | Reference | Related Articles | Metrics
Aging Influences Hepatic Microvascular Biology and Liver Fibrosis in Advanced Chronic Liver Disease
Raquel Maeso-Díaz, Martí Ortega-Ribera, Erica Lafoz, Juan José Lozano, Anna Baiges, Rubén Francés, Agustín Albillos, Carmen Peralta, Juan Carlos García-Pagán, Jaime Bosch, Victoria C Cogger, Jordi Gracia-Sancho
Aging and disease    2019, 10 (4): 684-698.   DOI: 10.14336/AD.2019.0127
Accepted: 18 February 2019

Abstract471)   HTML0)    PDF(pc) (1724KB)(740)       Save

Advanced chronic liver disease (aCLD) represents a major public health concern. aCLD is more prevalent and severe in the elderly, carrying a higher risk of decompensation. We aimed at understanding how aging may impact on the pathophysiology of aCLD in aged rats and humans and secondly, at evaluating simvastatin as a therapeutic option in aged animals. aCLD was induced in young (1 month) and old (16 months) rats. A subgroup of aCLD-old animals received simvastatin (5 mg/kg) or vehicle (PBS) for 15 days. Hepatic and systemic hemodynamic, liver cells phenotype and hepatic fibrosis were evaluated. Additionally, the gene expression signature of cirrhosis was evaluated in a cohort of young and aged cirrhotic patients. Aged animals developed a more severe form of aCLD. Portal hypertension and liver fibrosis were exacerbated as a consequence of profound deregulations in the phenotype of the main hepatic cells: hepatocytes presented more extensive cell-death and poorer function, LSEC were further capillarized, HSC over-activated and macrophage infiltration was significantly increased. The gene expression signature of cirrhosis significantly differed comparing young and aged patients, indicating alterations in sinusoidal-protective pathways and confirming the pre-clinical observations. Simvastatin administration for 15-day to aged cirrhotic rats improved the hepatic sinusoidal milieu, leading to significant amelioration in portal hypertension. This study provides evidence that aCLD pathobiology is different in aged individuals. As the median age of patients with aCLD is increasing, we propose a real-life pre-clinical model to develop more reliable therapeutic strategies. Simvastatin effects in this model further demonstrate its translational potential.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice
Peng Yu, Poornima Venkat, Michael Chopp, Alex Zacharek, Yi Shen, Linlin Liang, Julie Landschoot-Ward, Zhongwu Liu, Rongcai Jiang, Jieli Chen
Aging and disease    2019, 10 (4): 770-783.   DOI: 10.14336/AD.2018.0816
Accepted: 27 August 2018
Online available: 26 August 2018

Abstract356)   HTML0)    PDF(pc) (1991KB)(733)       Save

Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.

Table and Figures | Reference | Related Articles | Metrics
The Metabolic Activity of Caudate and Prefrontal Cortex Negatively Correlates with the Severity of Idiopathic Parkinson’s Disease
Jun-Sheng Chu, Ting-Hong Liu, Kai-Liang Wang, Chun-Lei Han, Yun-Peng Liu, Shimabukuro Michitomo, Jian-Guo Zhang, Tie Fang, Fan-Gang Meng
Aging and disease    2019, 10 (4): 847-853.   DOI: 10.14336/AD.2018.0814
Accepted: 20 September 2018

Abstract423)   HTML0)    PDF(pc) (600KB)(730)       Save

Positron emission tomography (PET) scan with tracer [18F]-fluorodeoxy-glucose (18F-FDG) is widely used to measure the glucose metabolism in neurodegenerative disease such as Idiopathic Parkinson’s disease (IPD). Previous studies using 18F-FDG PET mainly focused on the motor or non-motor symptoms but not the severity of IPD. In this study, we aimed to determine the metabolic patterns of 18F-FDG in different stages of IPD defined by Hoehn and Yahr rating scale (H-Y rating scale) and to identify regions in the brain that play critical roles in disease progression. Fifty IPD patients were included in this study. They were 29 men and 21 women (mean±SD, age 57.7±11.1 years, disease duration 4.0±3.8 years, H-Y 2.2±1.1). Twenty healthy individuals were included as normal controls. Following 18F-FDG PET scan, image analysis was performed using Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST). The metabolic feature of IPD and regions-of-interests (ROIs) were determined. Correlation analysis between ROIs and H-Y stage was performed. SPM analysis demonstrated a significant hypometabolic activity in bilateral putamen, caudate and anterior cingulate as well as left parietal lobe, prefrontal cortex in IPD patients. In contrast, hypermetabolism was observed in the cerebellum and vermis. There was a negative correlation (p=0.007, r=-0.412) between H-Y stage and caudate metabolic activity. Moreover, the prefrontal area also showed a negative correlation with H-Y (P=0.033, r=-0.334). Thus, the uptake of FDG in caudate and prefrontal cortex can potentially be used as a surrogate marker to evaluate the severity of IPD.

Table and Figures | Reference | Related Articles | Metrics
Mitochondrial Creatine Kinase is Decreased in the Serum of Idiopathic Parkinson’s Disease Patients
Jinghui Xu, Xiaodi Fu, Mengqiu Pan, Xiao Zhou, Zhaoyu Chen, Dongmei Wang, Xiaomei Zhang, Qiong Chen, Yanhui Li, Xiaoxian Huang, Guanghui Liu, Jianjun Lu, Yan Liu, Yafang Hu, Suyue Pan, Qing Wang, Qun Wang, Yunqi Xu
Aging and disease    2019, 10 (3): 601-610.   DOI: 10.14336/AD.2018.0615
Abstract572)   HTML0)    PDF(pc) (740KB)(722)       Save

Mitochondrial creatine kinase (MtCK) is vital in the process of mitochondrial energy metabolism, and mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson’s disease (PD). Therefore, we speculated that MtCK activity could be altered in the serum of PD patients. However, no studies to date have investigated this specific topic, so we sought to investigate the serum MtCK activities among a cohort of PD patients. 50 patients with PD and 30 age-matched controls were recruited for this study. Serum ubiquitous MtCK (uMtCK) and sarcomeric MtCK (sMtCK) activities were assayed using an immunoinhibition method. Correlations between serum uMtCK/sMtCK activities and clinical features/parameters were explored in the PD group. Our study revealed a significant decrease in the uMtCK activity in the PD group when compared with the control group. No significant difference was found in the serum sMtCK activity between the PD and control groups. There was a significant correlation between serum uMtCK activities and the disease progression rate, duration, and age at onset in PD patients. While no significant relationship was found between the serum uMtCK activities and the Hoehn & Yahr stage or main non-motor symptoms scale. There was a significant decrease in the uMtCK activity in the serum of PD patients, which was associated with the rate of disease progression, duration, and age at onset of disease. Therefore, uMtCK activity in serum offers a useful clue for identification of PD biomarkers.

Table and Figures | Reference | Related Articles | Metrics
Combined Antioxidant, Anti-inflammaging and Mesenchymal Stem Cell Treatment: A Possible Therapeutic Direction in Elderly Patients with Chronic Obstructive Pulmonary Disease
Shijin Xia, Changxi Zhou, Bill Kalionis, Xiaoping Shuang, Haiyan Ge, Wen Gao
Aging and disease    2020, 11 (1): 129-140.   DOI: 10.14336/AD.2019.0508
Accepted: 11 May 2019

Abstract357)   HTML0)    PDF(pc) (569KB)(710)       Save

Chronic Obstructive Pulmonary Disease (COPD) is a worldwide health problem associated with high morbidity and mortality, especially in elderly patients. Aging functions include mitochondrial dysfunction, cell-to-cell information exchange, protein homeostasis and extracellular matrix dysregulation, which are closely related to chronic inflammatory response and oxidation-antioxidant imbalance in the pathogenesis of COPD. COPD displays distinct inflammaging features, including increased cellular senescence and oxidative stress, stem cell exhaustion, alterations in the extracellular matrix, reduced levels of endogenous anti-inflammaging molecules, and reduced autophagy. Given that COPD and inflammaging share similar general features, it is very important to identify the specific mechanisms of inflammaging, which involve oxidative stress, inflammation and lung mesenchymal stem cell function in the development of COPD, especially in elderly COPD patients. In this review, we highlight the studies relevant to COPD progression, and focus on mechanisms associated with inflammaging.

Table and Figures | Reference | Related Articles | Metrics
Emerging Roles of Complement Protein C1q in Neurodegeneration
Kyoungjoo Cho
Aging and disease    2019, 10 (3): 652-663.   DOI: 10.14336/AD.2019.0118
Accepted: 27 January 2019

Abstract573)   HTML0)    PDF(pc) (667KB)(707)       Save

The innate immune system is an ancient and primary component system that rapidly reacts to defend the body against external pathogens. C1 is the initial responder of classical pathway of the innate immune system. C1 is comprised of C1q, C1r, and C1s. Among them, C1q is known to interact with diverse ligands, which can perform various functions in physiological and pathophysiological conditions. Because C1q participates in the clearance of pathogens, its interaction with novel receptors is expected to facilitate apoptosis induction, which could prevent the onset or progression of neurodegenerative diseases and could delay the aging process. Because senescence-associated secreting phenotype determinants are generally inflammatory cytokines or immune factors to activate immune cells. In the central nervous system, C1q has diverse neuroprotective roles against pathogens and inflammation. Most of neurodegenerative diseases show region specific pathology feature in the brain. It has been suggested the evidences that the active site and amount of C1q may be disease specific. This review considers currently the emerging and under-recognized roles of C1q in neurodegeneration and highlights the need for further research to clarify these roles. Future studies on the roles of C1q in regulating disease progression should consider these aspects, including the age-dependent onset time of each neurodegenerative disease progression.

Table and Figures | Reference | Related Articles | Metrics
Genetic Interaction of APOE and FGF1 is Associated with Memory Impairment and Hippocampal Atrophy in Alzheimer’s Disease
Ya-Ting Chang, Hiroaki Kazui, Manabu Ikeda, Chi-Wei Huang, Shu-Hua Huang, Shih-Wei Hsu, Wen-Neng Chang, Chiung-Chih Chang
Aging and disease    2019, 10 (3): 510-519.   DOI: 10.14336/AD.2018.0606
Abstract357)   HTML1)    PDF(pc) (734KB)(690)       Save

The APOE and fibroblast growth factor 1 (FGF1) have both been associated with amyloid β accumulation and neurodegeneration. Investigation the effect of APOE-FGF1 interactions on episodic memory (EM) deficits and hippocampus atrophy (HA) might elucidate the complex clinical-pathological relationship in Alzheimer’s disease (AD). EM performance and hippocampal volume (HV) were characterized in patients with mild AD based on APOE-ε4 carrier status (APOE-ε4 carriers versus non-carriers) and FGF1 single nucleotide polymorphism (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers). The clinical-pathological relationships within each genotypic group (ε4+/GG-carrier, ε4+/A-allele-carrier, ε4-/GG-carrier and ε4-/A-allele-carrier) were analyzed. There were no significant differences between the FGF1-rs34011-GG and FGF1-rs34011-A-allele carriers for the level of EM performance or HV (p> 0.05). The bilateral HV was significantly smaller and EM impairment was significantly worse in ε4+/GG-carrier than in ε4-/A-allele-carrier, and an interaction effect of APOE (APOE-ε4 carriers versus non-carriers) with FGF1 (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers) predicted EM impairment (F4,92= 3.516, p= 0.018) and structural changes in voxel-based morphometry. Our data shows that concurrent consideration of APOE and FGF1 polymorphisms might be required to understand the clinical-pathological relationship in AD.

Table and Figures | Reference | Related Articles | Metrics
Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis
Dingqiao Xu, Shanting Liao, Pei Li, Qian Zhang, Yan Lv, Xiaowei Fu, Minghua Yang, Junsong Wang, Lingyi Kong
Aging and disease    2019, 10 (4): 854-870.   DOI: 10.14336/AD.2018.1027
Accepted: 26 November 2018

Abstract334)   HTML1)    PDF(pc) (1925KB)(686)       Save

Sepsis is a severe disease frequently occurred in the Intenisive Care Unit (ICU), which has a very high morbidity and mortality, especially in patients aged over 65 years. Owing to the aging effect and the ensuing deterioration of body function, the elder patients may have atypical responses to sepsis. Diagnosis and pathogenesis of sepsis in this population are thus difficult, which hindered effective treatment and management in clinic. To investigated age effects on sepsis, 158 elderly septic patients and 71 non-septic elderly participants were enrolled, and their plasma samples were collected for transcriptomics (RNA-seq) and metabolomics (NMR and GC-MS) analyses, which are both increasingly being utilized to discover key molecular changes and potential biomarkers for various diseases. Protein-protein interaction (PPI) analysis was subsequently performed to assist cross-platform integration. Real time polymerase chain reaction (RT-PCR) was used for validation of RNA-seq results. For further understanding of the mechanisms, cecal ligation and puncture (CLP) experiment was performed both in young and middle-aged rats, which were subjected to NMR-based metabolomics study and validated for several key inflammation pathways by western blot. Comprehensive analysis of data from the two omics approaches provides a systematic perspective on dysregulated pathways that could facilitate the development of therapy and biomarkers for elderly sepsis. Additionally, the metabolites of lactate, arginine, histamine, tyrosine, glutamate and glucose were shown to be highly specific and sensitive in distinguishing septic patients from healthy controls. Significant increases of arginine, trimethylamine N-oxide and allantoin characterized elderly patient incurred sepsis. Further analytical and biological validations in different subpopulations of septic patients should be carried out, allowing accurate diagnostics and precise treatment of sepsis in clinic.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Contrast Staining may be Associated with Intracerebral Hemorrhage but Not Functional Outcome in Acute Ischemic Stroke Patients Treated with Endovascular Thrombectomy
Hong An, Wenbo Zhao, Jianguo Wang, Joshua C Wright, Omar Elmadhoun, Di Wu, Shuyi Shang, Chuanjie Wu, Chuanhui Li, Longfei Wu, Jian Chen, Jiangang Duan, Hongqi Zhang, Haiqing Song, Yuchuan Ding, Xunming Ji
Aging and disease    2019, 10 (4): 784-792.   DOI: 10.14336/AD.2018.0807
Accepted: 21 August 2018

Abstract287)   HTML0)    PDF(pc) (573KB)(643)       Save

To evaluate the incidence of post-interventional contrast staining (PICS) in acute ischemic stroke (AIS) Chinese patients who were treated with endovascular thrombectomy (ET) and investigate potential association of PICS with functional outcome and intracerebral hemorrhage (ICH). This observational study was based on a single-center prospective registry study. AIS patients who underwent ET from January 2013 to February 2017 were recruited into this study. All patients had dual-energy CT (DECT) scan of the head at 12 to 24 hours post-ET. The primary outcome was the incidence of PICS. Secondary outcomes were total ICH, symptomatic ICH (sICH), 3-month functional outcome, and long-term functional outcome. One hundred and eighty patients were enrolled in this study. PICS was detected in 50 patients (28%) based on the post-interventional CT scan. We first used basic statistical analyses, showing that the incidence of both total ICH (60% vs. 25%, p<0.001) and sICH (18% vs. 8%, p=0.044) were higher in patients with PICS than those without, and fewer patients achieved no disability (mRS≤1) in the PICS group compared to the control group at both 3-month and long-term follow-up (p<0.01 each). However, multivariate regression analysis further revealed that PICS only increased total (adjusted odds ratio, 7.38; 95% confidence interval 1.66 to 32.9; p=0.009) but not sICH risk. Furthermore, the logistic regression analyses did not show statistical difference in good clinical outcomes or mortality between the two groups. PICS is a common phenomenon in Chinese AIS patients. It is associated with total ICH after ET, but it seems to have no effect on functional outcome and sICH. Further large-scale studies are warranted to validate these results.

Table and Figures | Reference | Related Articles | Metrics
Plasma Lipoprotein-associated Phospholipase A2 and Superoxide Dismutase are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment
Shuzhen Zhu, Xiaobo Wei, Xiaohua Yang, Zifeng Huang, Zihan Chang, Fen Xie, Qin Yang, Changhai Ding, Wei Xiang, Hongjun Yang, Ying Xia, Zhong-Ping Feng, Hong-Shuo Sun, Midori A Yenari, Lin Shi, Vincent CT Mok, Qing Wang
Aging and disease    2019, 10 (4): 834-846.   DOI: 10.14336/AD.2019.0304
Accepted: 06 March 2019

Abstract342)   HTML0)    PDF(pc) (1212KB)(640)       Save

Lipoprotein-associated phospholipase A2 (Lp-PLA2) and superoxide dismutase (SOD) are linked to regulating vascular/neuro-inflammation and stroke. Using a retrospective design, we investigated whether circulating Lp-PLA2 and SOD in cerebral small vessel disease (CSVD) patients were associated with cognitive impairment. Eighty-seven CSVD patients were recruited. Plasma Lp-PLA2 and SOD were determined, and cognitive status was measured by the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The severity of white matter hypoerintensities (WMHs) in CSVD patients was rated according to Fazekas scales, and Lp-PLA2/SOD levels and MMSE/MoCA were compared. Multiple linear regressions were used to evaluate the relationship between Lp-PLA2 and SOD and the cognitive impairment. Ordinal logistic regression and generalized linear models (OLRGLMs) were applied to confirm whether Lp-PLA2 and SOD are independent risk factors for cognitive impairment in CVSD. Lp-PLA2 and SOD with mild or severe cognitive impairment were lower than those with normal congnition. Lp-PLA2 and SOD in CSVD patients with severe WMHs were significantly lower than those with mild or moderate WMH lesions. We noted positive linear associations of Lp-PLA and SOD with cognitive impairment in CSVD, independent of LDL-C. OLRGLMs confirmed that Lp-PLA2 and SOD were independent risk factors of cognitive impairment in CSVD. Lp-PLA2 and SOD are independently associated with cognitive impairment and WMH lesion, and may be useful for the rapid evaluation of cognitive impairment in CSVD. Lp-PLA2/SOD are modifiable factors that may be considered as therapeutic targets for preventing cognitive impairment in CSVD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases
Wanqing Sun, Yishi Wang, Yang Zheng, Nanhu Quan
Aging and disease    2020, 11 (1): 154-163.   DOI: 10.14336/AD.2019.0320
Accepted: 30 March 2019

Abstract218)   HTML0)    PDF(pc) (443KB)(639)       Save

Sestrins (Sesns), including Sesn1, Sesn2, and Sesn3, are cysteine sulfinyl reductases that play critical roles in the regulation of peroxide signaling and oxidant defense. Sesn2 is thought to regulate cell growth, metabolism, and survival response to various stresses, and act as a positive regulator of autophagy. The anti-oxidative and anti-aging roles of Sesn2 have been the focus of many recent studies. The role of Sesn2 in cellular metabolism and cardiovascular and age-related diseases must be analyzed and discussed. In this review, we discuss the physiological and pathophysiological roles and signaling pathways of Sesn2 in different stress-related conditions, such as oxidative stress, genotoxic stress, and hypoxia. Sesn2 is also involved in aging, cancer, diabetes, and ischemic heart disease. Understanding the actions of Sesn2 in cell metabolism and age-related diseases will provide new evidence for future experimental research and aid in the development of novel therapeutic strategies for Sesn2-related diseases.

Table and Figures | Reference | Related Articles | Metrics
Longevity Effect of Liuwei Dihuang in Both Caenorhabditis Elegans and Aged Mice
Weidong Chen, Jinzeng Wang, Jiahao Shi, Xu Yang, Ping Yang, Ning Wang, Sai Yang, Tianpei Xie, Hua Yang, Mengjie Zhang, Haiyun Wang, Jian Fei
Aging and disease    2019, 10 (3): 578-591.   DOI: 10.14336/AD.2018.0604
Accepted: 21 August 2018
Online available: 21 August 2018

Abstract415)   HTML0)    PDF(pc) (1322KB)(635)       Save

Liuwei Dihuang (LWDH), a famous traditional Chinese medicine, is widely used in the clinical treatment of aging-related diseases in China. However, its pharmacological mechanisms are not clear. In the present study, we evaluated the lifespan extension effect of LWDH in C. elegans and mice and revealed its underlying mechanisms. The results showed that LWDH significantly extended the lifespan of C. elegans in a dose-dependent manner. LWDH also conferred protection to nematodes against oxidative stress and reduced their fat storage. Genetics analysis and microarray data showed that the longevity effect of LWDH was attributed to the regulation of the innate immune response, proteolysis, lipid metabolism, and the oxidation-reduction process and was dependent on daf-16. Among the six herbs in the formula, Radix Rehmanniae Preparata and Fructus Macrocarpii contributed most to the longevity effect of this medicine, while the other four components had a synergistic effect on the longevity effect of the prescription. The lack of any single herb reduced the efficacy of the complete formula. LWDH also extended the lifespan and reduced both the weight and oxidant stress status in aged mice. Taken together, these results suggested that LWDH might function in a multi-target manner to extend the lifespan in both C. elegans and aged mice, and the best effect was achieved with the complete formula.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology
Dinesh Upadhya, Maheedhar Kodali, Daniel Gitai, Olagide W Castro, Gabriele Zanirati, Raghavendra Upadhya, Sahithi Attaluri, Eeshika Mitra, Bing Shuai, Bharathi Hattiangady, Ashok K Shetty
Aging and disease    2019, 10 (5): 915-936.   DOI: 10.14336/AD.2019.0720
Accepted: 07 August 2019

Abstract334)   HTML0)    PDF(pc) (1869KB)(627)       Save

Many animal prototypes illustrating the various attributes of human temporal lobe epilepsy (TLE) are available. These models have been invaluable for comprehending multiple epileptogenic processes, modifications in electrophysiological properties, neuronal hyperexcitability, neurodegeneration, neural plasticity, and chronic neuroinflammation in TLE. Some models have also uncovered the efficacy of new antiepileptic drugs or biologics for alleviating epileptogenesis, cognitive impairments, or spontaneous recurrent seizures (SRS). Nonetheless, the suitability of these models for testing candidate therapeutics in conditions such as chronic TLE is debatable because of a lower frequency of SRS and an inconsistent pattern of SRS activity over days, weeks or months. An ideal prototype of chronic TLE for investigating novel therapeutics would need to display a large number of SRS with a dependable frequency and severity and related co-morbidities. This study presents a new kainic acid (KA) model of chronic TLE generated through induction of status epilepticus (SE) in 6-8 weeks old male F344 rats. A rigorous characterization in the chronic epilepsy period validated that the animal prototype mimicked the most salient features of robust chronic TLE. Animals displayed a constant frequency and intensity of SRS across weeks and months in the 5th and 6th month after SE, as well as cognitive and mood impairments. Moreover, SRS frequency displayed a rhythmic pattern with 24-hour periodicity and a consistently higher number of SRS in the daylight period. Besides, the model showed many neuropathological features of chronic TLE, which include a partial loss of inhibitory interneurons, reduced neurogenesis with persistent aberrant migration of newly born neurons, chronic neuroinflammation typified by hypertrophied astrocytes and rod-shaped microglia, and a significant aberrant mossy fiber sprouting in the hippocampus. This consistent chronic seizure model is ideal for investigating the efficacy of various antiepileptic drugs and biologics as well as understanding multiple pathophysiological mechanisms underlying chronic epilepsy.

Table and Figures | Reference | Related Articles | Metrics
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd