Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited

ISSN 2152-5250
Since 2010
2019 impact factor: 5.402
  About the Journal
    » About Journal
    » Editorial Board
    » Indexed in
    » Online Submission
    » Guidelines for Authors
    » Download Templates
    » Copyright Agreement
    » Guidelines for Reviewers
    » Online Peer Review
    » Online Editor Work
  Editorial Office
Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia
Zikuan Leng, Rongjia Zhu, Wei Hou, Yingmei Feng, Yanlei Yang, Qin Han, Guangliang Shan, Fanyan Meng, Dongshu Du, Shihua Wang, Junfen Fan, Wenjing Wang, Luchan Deng, Hongbo Shi, Hongjun Li, Zhongjie Hu, Fengchun Zhang, Jinming Gao, Hongjian Liu, Xiaoxia Li, Yangyang Zhao, Kan Yin, Xijing He, Zhengchao Gao, Yibin Wang, Bo Yang, Ronghua Jin, Ilia Stambler, Lee Wei Lim, Huanxing Su, Alexey Moskalev, Antonio Cano, Sasanka Chakrabarti, Kyung-Jin Min, Georgina Ellison-Hughes, Calogero Caruso, Kunlin Jin, Robert Chunhua Zhao
Aging and disease    2020, 11 (2): 216-228.   DOI: 10.14336/AD.2020.0228
Accepted: 29 February 2020

Abstract39823)   HTML9)    PDF(pc) (1473KB)(15867)       Save

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile
Sadanand Fulzele, Bikash Sahay, Ibrahim Yusufu, Tae Jin Lee, Ashok Sharma, Ravindra Kolhe, Carlos M Isales
Aging and disease    2020, 11 (3): 509-522.   DOI: 10.14336/AD.2020.0428
Accepted: 29 April 2020

Abstract3716)   HTML4)    PDF(pc) (793KB)(1542)       Save

The World health organization (WHO) declared Coronavirus disease 2019 (COVID-19) a global pandemic and a severe public health crisis. Drastic measures to combat COVID-19 are warranted due to its contagiousness and higher mortality rates, specifically in the aged patient population. At the current stage, due to the lack of effective treatment strategies for COVID-19 innovative approaches need to be considered. It is well known that host cellular miRNAs can directly target both viral 3'UTR and coding region of the viral genome to induce the antiviral effect. In this study, we did in silico analysis of human miRNAs targeting SARS (4 isolates) and COVID-19 (29 recent isolates from different regions) genome and correlated our findings with aging and underlying conditions. We found 848 common miRNAs targeting the SARS genome and 873 common microRNAs targeting the COVID-19 genome. Out of a total of 848 miRNAs from SARS, only 558 commonly present in all COVID-19 isolates. Interestingly, 315 miRNAs are unique for COVID-19 isolates and 290 miRNAs unique to SARS. We also noted that out of 29 COVID-19 isolates, 19 isolates have identical miRNA targets. The COVID-19 isolates, Netherland (EPI_ISL_422601), Australia (EPI_ISL_413214), and Wuhan (EPI_ISL_403931) showed six, four, and four unique miRNAs targets, respectively. Furthermore, GO, and KEGG pathway analysis showed that COVID-19 targeting human miRNAs involved in various age-related signaling and diseases. Recent studies also suggested that some of the human miRNAs targeting COVID-19 decreased with aging and underlying conditions. GO and KEGG identified impaired signaling pathway may be due to low abundance miRNA which might be one of the contributing factors for the increasing severity and mortality in aged individuals and with other underlying conditions. Further, in vitro and in vivo studies are needed to validate some of these targets and identify potential therapeutic targets.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia
Ashok K Shetty
Aging and disease    2020, 11 (2): 462-464.   DOI: 10.14336/AD.2020.0301
Accepted: 01 March 2020

Abstract3599)   HTML1)    PDF(pc) (212KB)(3066)       Save

A new study published by the journal Aging & Disease reported that intravenous administration of clinical-grade human mesenchymal stem cells (MSCs) into patients with coronavirus disease 2019 (COVID-19) resulted in improved functional outcomes (Leng et al., Aging Dis, 11:216-228, 2020). This study demonstrated that intravenous infusion of MSCs is a safe and effective approach for treating patients with COVID-19 pneumonia, including elderly patients displaying severe pneumonia. COVID-19 is a severe acute respiratory illness caused by a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, treating COVID-19 patients, particularly those afflicted with severe pneumonia, is challenging as no specific drugs or vaccines against SARS-CoV-2 are available. Therefore, MSC therapy inhibiting the overactivation of the immune system and promoting endogenous repair by improving the lung microenvironment after the SARS-CoV-2 infection found in this study is striking. Additional studies in a larger cohort of patients are needed to validate this therapeutic intervention further, however.

Reference | Related Articles | Metrics
Metformin Alters Locomotor and Cognitive Function and Brain Metabolism in Normoglycemic Mice
Wenjun Li, Kiran Chaudhari, Ritu Shetty, Ali Winters, Xiaofei Gao, Zeping Hu, Woo-Ping Ge, Nathalie Sumien, Michael Forster, Ran Liu, Shao-Hua Yang
Aging and disease    2019, 10 (5): 949-963.   DOI: 10.14336/AD.2019.0120
Accepted: 25 January 2019

Abstract1161)   HTML7)    PDF(pc) (1429KB)(861)       Save

Metformin is currently the most effective treatment for type-2 diabetes. The beneficial actions of metformin have been found even beyond diabetes management and it has been considered as one of the most promising drugs that could potentially slow down aging. Surprisingly, the effect of metformin on brain function and metabolism has been less explored given that brain almost exclusively uses glucose as substrate for energy metabolism. We determined the effect of metformin on locomotor and cognitive function in normoglycemic mice. Metformin enhanced locomotor and balance performance, while induced anxiolytic effect and impaired cognitive function upon chronic treatment. We conducted in vitro assays and metabolomics analysis in mice to evaluate metformin’s action on the brain metabolism. Metformin decreased ATP level and activated AMPK pathway in mouse hippocampus. Metformin inhibited oxidative phosphorylation and elevated glycolysis by inhibiting mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in vitro at therapeutic doses. In summary, our study demonstrated that chronic metformin treatment affects brain bioenergetics with compound effects on locomotor and cognitive brain function in non-diabetic mice.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
COVID-19 in India: Are Biological and Environmental Factors Helping to Stem the Incidence and Severity?
Sankha Shubhra Chakrabarti, Upinder Kaur, Anindita Banerjee, Upasana Ganguly, Tuhina Banerjee, Sarama Saha, Gaurav Parashar, Suvarna Prasad, Suddhachitta Chakrabarti, Amit Mittal, Bimal Kumar Agrawal, Ravindra Kumar Rawal, Robert Chunhua Zhao, Indrajeet Singh Gambhir, Rahul Khanna, Ashok K Shetty, Kunlin Jin, Sasanka Chakrabarti
Aging and disease    2020, 11 (3): 480-488.   DOI: 10.14336/AD.2020.0402
Accepted: 03 April 2020

Abstract1036)   HTML0)    PDF(pc) (726KB)(897)       Save

The ongoing Corona virus (COVID-19) pandemic has witnessed global political responses of unimaginable proportions. Many nations have implemented lockdowns that involve mandating citizens not to leave their residences for non-essential work. The Indian government has taken appropriate and commendable steps to curtail the community spread of COVID-19. While this may be extremely beneficial, this perspective discusses the other reasons why COVID-19 may have a lesser impact on India. We analyze the current pattern of SARS-CoV-2 transmission, testing, and mortality in India with an emphasis on the importance of mortality as a marker of the clinical relevance of COVID-19 disease. We also analyze the environmental and biological factors which may lessen the impact of COVID-19 in India. The importance of cross-immunity, innate immune responses, ACE polymorphism, and viral genetic mutations are discussed.

Table and Figures | Reference | Related Articles | Metrics
Mesenchymal Stem Cells for Coronavirus (COVID-19)-Induced Pneumonia: Revisiting the Paracrine Hypothesis with New Hopes?
Selçuk Öztürk, Ayşe Eser Elçin, Yaşar Murat Elçin
Aging and disease    2020, 11 (3): 477-479.   DOI: 10.14336/AD.2020.0403
Accepted: 03 April 2020

Abstract996)   HTML0)    PDF(pc) (299KB)(748)       Save

Mesenchymal stem cells (MSCs) bear a promising potential for regenerative medicine therapies and they repair damaged tissue through secretion of immune modulatory and anti-inflammatory molecules acting in a paracrine fashion. Coronavirus disease 2019 (COVID-19) has spread all over the world with high morbidity and mortality rates and there is no specific treatment for this infection. A recent study published in the journal reports that MSC infusion is safe and effective in patients suffering from COVID-19 induced pneumonia. In the light of this study and previous reports, we make additional comments about possible therapeutic effects of MSCs in COVID-19 infection.

Table and Figures | Reference | Related Articles | Metrics
Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways
Georg Fuellen, Ludger Jansen, Alan A Cohen, Walter Luyten, Manfred Gogol, Andreas Simm, Nadine Saul, Francesca Cirulli, Alessandra Berry, Peter Antal, Rüdiger Köhling, Brecht Wouters, Steffen Möller
Aging and disease    2019, 10 (4): 883-900.   DOI: 10.14336/AD.2018.1030
Accepted: 19 November 2018

Abstract872)   HTML2)    PDF(pc) (522KB)(1176)       Save

Despite increasing research efforts, there is a lack of consensus on defining aging or health. To understand the underlying processes, and to foster the development of targeted interventions towards increasing one’s health, there is an urgent need to find a broadly acceptable and useful definition of health, based on a list of (molecular) features; to operationalize features of health so that it can be measured; to identify predictive biomarkers and (molecular) pathways of health; and to suggest interventions, such as nutrition and exercise, targeted at putative causal pathways and processes. Based on a survey of the literature, we propose to define health as a state of an individual characterized by the core features of physiological, cognitive, physical and reproductive function, and a lack of disease. We further define aging as the aggregate of all processes in an individual that reduce its wellbeing, that is, its health or survival or both. We define biomarkers of health by their attribute of predicting future health better than chronological age. We define healthspan pathways as molecular features of health that relate to each other by belonging to the same molecular pathway. Our conceptual framework may integrate diverse operationalizations of health and guide precision prevention efforts.

Table and Figures | Reference | Related Articles | Metrics
Enhancement of Mesenchymal Stem Cell-Driven Bone Regeneration by Resveratrol-Mediated SOX2 Regulation
Yoorim Choi, Dong Suk Yoon, Kyoung-Mi Lee, Seong Mi Choi, Myon-Hee Lee, Kwang Hwan Park, Seung Hwan Han, Jin Woo Lee
Aging and disease    2019, 10 (4): 818-833.   DOI: 10.14336/AD.2018.0802
Accepted: 18 September 2018

Abstract867)   HTML0)    PDF(pc) (1517KB)(721)       Save

Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine. However, MSCs age rapidly during long-term ex vivo culture and lose their therapeutic potential before they reach effective cell doses (ECD) for cell therapy. Thus, a prerequisite for effective MSC therapy is the development of cell culture methods to preserve the therapeutic potential during long-term ex vivo cultivation. Resveratrol (RSV) has been highlighted as a therapeutic candidate for bone disease. Although RSV treatment has beneficial effects on bone-forming cells, in vivo studies are lacking. The current study showed that long-term (6 weeks from primary culture date)-cultured MSCs with RSV induction retained their proliferative and differentiation potential despite reaching ECD. The mechanism of RSV action depends entirely on the SIRT1-SOX2 axis in MSC culture. In a rat calvarial defect model, RSV induction significantly improved bone regeneration after MSC transplantation. This study demonstrated an example of efficient MSC therapy for treating bone defects by providing a new strategy using the plant polyphenol RSV.

Table and Figures | Reference | Related Articles | Metrics
Ketogenic Diet Ameliorates Cardiac Dysfunction via Balancing Mitochondrial Dynamics and Inhibiting Apoptosis in Type 2 Diabetic Mice
Yongzheng Guo, Cheng Zhang, Fei-Fei Shang, Minghao Luo, Yuehua You, Qiming Zhai, Yong Xia, Luo Suxin
Aging and disease    2020, 11 (2): 229-240.   DOI: 10.14336/AD.2019.0510
Accepted: 01 June 2019
Online available: 01 June 2019

Abstract803)   HTML0)    PDF(pc) (1340KB)(676)       Save

The ketogenic diet (KD) has been widely used in clinical studies and shown to hace an anti-diabetic effect, but the underlying mechanisms have not been fully elaborated. Our aim was to investigate the effects and the underling mechanisms of the KD on cardiac function in db/db mice. In the present study, db/db mice were subjected to a normal diet (ND) or KD. Fasting blood glucose, cardiac function and morphology, mitochondrial dynamics, oxidative stress, and apoptosis were measured 8 weeks post KD treatment. Compared with the ND, the KD improved glycemic control and protected against diabetic cardiomyopathy in db/db mice, and improved mitochondrial function, as well as reduced oxidative stress were observed in hearts. In addition, KD treatment exerted an anti-apoptotic effect in the heart of db/db mice. Further data showed that the PI3K/Akt pathway was involved in this protective effect. Our data demonstrated that KD treatment ameliorates cardiac dysfunction by inhibiting apoptosis via activating the PI3K-Akt pathway in type 2 diabetic mice, suggesting that the KD is a promising lifestyle intervention to protect against diabetic cardiomyopathy.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
A Review of Exercise as Medicine in Cardiovascular Disease: Pathology and Mechanism
Piotr Gronek, Dariusz Wielinski, Piotr Cyganski, Andrzej Rynkiewicz, Adam Zając, Adam Maszczyk, Joanna Gronek, Robert Podstawski, Wojciech Czarny, Stefan Balko, Cain CT. Clark, Roman Celka
Aging and disease    2020, 11 (2): 327-340.   DOI: 10.14336/AD.2019.0516
Accepted: 02 July 2019

Abstract771)   HTML0)    PDF(pc) (491KB)(1187)       Save

Physical inactivity and resultant lower energy expenditure contribute unequivocally to cardiovascular diseases, such as coronary artery disease and stroke, which are considered major causes of disability and mortality worldwide.


The aim of the study was to investigate the influence of physical activity (PA) and exercise on different aspects of health - genetics, endothelium function, blood pressure, lipid concentrations, glucose intolerance, thrombosis, and self - satisfaction. Materials and


In this article, we conducted a narrative review of the influence PA and exercise have on the cardiovascular system, risk factors of cardiovascular diseases, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action.

Results and Discussion

Based on our narrative review of literature, discussed the effects of PA on telomere length, nitric oxide synthesis, thrombosis risk, blood pressure, serum glucose, cholesterol and triglycerides levels, and indicated possible mechanisms by which physical training may lead to improvement in chronic cardiovascular diseases.


PA is effective for the improvement of exercise tolerance, lipid concentrations, blood pressure, it may also reduce the serum glucose level and risk of thrombosis, thus should be advocated concomitant to, or in some cases instead of, traditional drug-therapy.

Table and Figures | Reference | Related Articles | Metrics
Gut Microbiome and Osteoporosis
Kai Ding, Fei Hua, Wenge Ding
Aging and disease    2020, 11 (2): 438-447.   DOI: 10.14336/AD.2019.0523
Accepted: 14 June 2019

Abstract713)   HTML0)    PDF(pc) (350KB)(1196)       Save

Gut microbiome refers to the microbes that live in human digestive tract and are symbiotic with the human body. They participate in the regulation of various physiological and pathological processes of the human body and are associated with various diseases. The pathological process of osteoporosis is affected by gut microbes. The molecular mechanisms of osteoporosis mainly include: 1) Intestinal barrier and nutrient absorption (involving SCFAs). 2) Immunoregulation (Th-17 and T-reg cells balance). 3) Regulation of intestinal-brain axis (involving 5-HT). Gut microbes can increase bone mass and improve osteoporosis by inhibiting osteoclast proliferation and differentiation, inducing apoptosis, reducing bone resorption, or promoting osteoblast proliferation and maturation. However, the therapeutic effect of gut microbes on osteoporosis remains to be further proven. At present, some of the findings on the impact of gut microbes on osteoporosis has been applied in clinical, including early diagnosis and intervention of osteoporosis and adjuvant therapy. In this article, we reviewed the molecular mechanisms underlying the regulatory effect of gut microbes on osteoporosis and the clinical practice of using gut microbes to improve bone health.

Table and Figures | Reference | Related Articles | Metrics
The role of CD2AP in the Pathogenesis of Alzheimer's Disease
Qing-Qing Tao, Yu-Chao Chen, Zhi-Ying Wu
Aging and disease    2019, 10 (4): 901-907.   DOI: 10.14336/AD.2018.1025
Accepted: 08 December 2018

Abstract693)   HTML1)    PDF(pc) (514KB)(1202)       Save

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging
Min-jun Wang, Jiajia Chen, Fei Chen, Qinggui Liu, Yu Sun, Chen Yan, Tao Yang, Yiwen Bao, Yi-Ping Hu
Aging and disease    2019, 10 (4): 871-882.   DOI: 10.14336/AD.2018.1119
Accepted: 26 November 2018

Abstract682)   HTML0)    PDF(pc) (394KB)(951)       Save

Although aging is a physiological process, it has raised interest in the science of aging and rejuvenation because of the increasing burden on the rapidly aging global population. With advanced age, there is a decline in homeostatic maintenance and regenerative responsiveness to the injury of various tissues, thereby contributing to the incidence of age-related diseases. The primary cause of the functional declines that occur along with aging is considered to be the exhaustion of stem cell functions in their corresponding tissues. Age-related changes in the systemic environment, the niche, and stem cells contribute to this loss. Thus, the reversal of stem cell aging at the cellular level might lead to the rejuvenation of the animal at an organismic level and the prevention of aging, which would be critical for developing new therapies for age-related dysfunction and diseases. Here, we will explore the effects of aging on stem cells in different tissues. The focus of this discussion is on pro-youth interventions that target intrinsic stem cell properties, environmental niche component, systemic factors, and senescent cellular clearance, which are promising for developing strategies related to the reversal of aged stem cell function and optimizing tissue repair processes.

Table and Figures | Reference | Related Articles | Metrics
Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link?
Tatiana Rafaela Lemos Lima, Vívian Pinto Almeida, Arthur Sá Ferreira, Fernando Silva Guimarães, Agnaldo José Lopes
Aging and disease    2019, 10 (5): 1109-1129.   DOI: 10.14336/AD.2018.1226
Accepted: 31 December 2018

Abstract668)   HTML0)    PDF(pc) (1124KB)(1394)       Save

Societies in developed countries are aging at an unprecedented rate. Considering that aging is the most significant risk factor for many chronic lung diseases (CLDs), understanding this process may facilitate the development of new interventionist approaches. Skeletal muscle dysfunction is a serious problem in older adults with CLDs, reducing their quality of life and survival. In this study, we reviewed the possible links between handgrip strength (HGS)—a simple, noninvasive, low-cost measure of muscle function—and CLDs in the elderly. Different mechanisms appear to be involved in this association, including systemic inflammation, chronic hypoxemia, physical inactivity, malnutrition, and corticosteroid use. Respiratory and peripheral myopathy, associated with muscle atrophy and a shift in muscle fiber type, also seem to be major etiological contributors to CLDs. Moreover, sarcopenic obesity, which occurs in older adults with CLDs, impairs common inflammatory pathways that can potentiate each other and further accelerate the functional decline of HGS. Our findings support the concept that the systemic effects of CLDs may be determined by HGS, and HGS is a relevant measurement that should be considered in the clinical assessment of the elderly with CLDs. These reasons make HGS a useful practical tool for indirectly evaluating functional status in the elderly. At present, early muscle reconditioning and optimal nutrition appear to be the most effective approaches to reduce the impact of CLDs and low muscle strength on the quality of life of these individuals. Nonetheless, larger in-depth studies are needed to evaluate the link between HGS and CLDs.

Table and Figures | Reference | Related Articles | Metrics
The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer’s Disease-related Pathogenesis
Seong Gak Jeon, Anji Yoo, Dong Wook Chun, Sang Bum Hong, Hyunju Chung, Jin-il Kim, Minho Moon
Aging and disease    2020, 11 (3): 705-724.   DOI: 10.14336/AD.2019.0718
Accepted: 01 August 2019
Online available: 02 August 2019

Abstract630)   HTML0)    PDF(pc) (790KB)(979)       Save

Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson’s disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer’s disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.

Table and Figures | Reference | Related Articles | Metrics
AMPK Signaling Regulates the Age-Related Decline of Hippocampal Neurogenesis
Brian Z Wang, Jane J Yang, Hongxia Zhang, Charity A Smith, Kunlin Jin
Aging and disease    2019, 10 (5): 1058-1074.   DOI: 10.14336/AD.2019.0102
Accepted: 26 January 2019

Abstract621)   HTML0)    PDF(pc) (1870KB)(501)       Save

The global incidence of age-associated neurological diseases is expected to rise with increasingly greying societies. In the aged brain, there is a dramatic decrease in the number of stem cells, which is a main cause for the decrease in brain function. Intrinsic factors, such as cell metabolism, have been studied but its role in neurogenesis is still unknown. Therefore, this study sought to establish whether AMP-activated protein kinase (AMPK) signaling does indeed regulate hippocampal neurogenesis in the aged brain. We found that i) AMPKα2 was the predominant catalytic subunit in the subgranular and subventricular zones; ii) AMPK activation was at a significantly higher level in the aged vs. young hippocampus; iii) short term (7 days) treatment with selective AMPK signaling inhibitor Compound C (10 mg/kg/day, i.p.) significantly increased the numbers of newborn (BrdU+), Type 2 (MCM2+), and Type 3 (DCX+) neural stem cells, but not Type 1 (GFAP+/Sox2+) cells, in the aged hippocampus. Taken together, our results demonstrate that AMPK signaling plays a critical role in the age-related decline of hippocampal neurogenesis.

Table and Figures | Reference | Related Articles | Metrics
Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling
Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun
Aging and disease    2019, 10 (4): 807-817.   DOI: 10.14336/AD.2018.0728
Accepted: 04 September 2018

Abstract602)   HTML0)    PDF(pc) (828KB)(1265)       Save

Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.

Table and Figures | Reference | Related Articles | Metrics
Glial S100A6 Degrades β-amyloid Aggregation through Targeting Competition with Zinc Ions
Zhi-Ying Tian, Chun-Yan Wang, Tao Wang, Yan-Chun Li, Zhan-You Wang
Aging and disease    2019, 10 (4): 756-769.   DOI: 10.14336/AD.2018.0912
Accepted: 20 September 2018

Abstract579)   HTML1)    PDF(pc) (1481KB)(1133)       Save

Evidence has been accumulating that zinc ions can trigger β-amyloid (Aβ) deposition and senile plaque formation in the brain, a pathological hallmark of Alzheimer’s disease (AD). Chelating zinc inhibits Aβ aggregation and may hold promise as a therapeutic strategy for AD. S100A6 is an acidic Ca2+/Zn2+-binding protein found only in a small number of astrocytes in the normal brain. However, in the AD brain, S100A6 is highly expressed in astrocytes around Aβ plaques. The role of the astrocytic S100A6 upregulation in AD is unknown. In the present study, we examined the effects of S100A6 on Aβ plaques and intracellular zinc levels in a mouse model of AD. Chronic exposure to zinc increased Aβ deposition and S100A6 expression, both reversible by the zinc chelator clioquinol, in the brains of amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice. To examine whether exogenous S100A6 could induce Aβ plaque disaggregation through competition for zinc in vitro, we incubated APP/PS1 mouse brain sections with recombinant human S100A6 protein or co-incubated them with human S100A6-expressing cells. Both treatments efficiently reduced the Aβ plaque burden in situ. In addition, treatment with exogenous S100A6 protected cultured COS-7 cells against zinc toxicity. Our results show for the first time that increased S100A6 levels correlate with both Aβ disaggregation and decrease of Aβ plaque-associated zinc contents in brain sections with AD-like pathology. Astrocytic S100A6 in AD may protect from Aβ deposition through zinc sequestration.

Table and Figures | Reference | Related Articles | Metrics
Aging Influences Hepatic Microvascular Biology and Liver Fibrosis in Advanced Chronic Liver Disease
Raquel Maeso-Díaz, Martí Ortega-Ribera, Erica Lafoz, Juan José Lozano, Anna Baiges, Rubén Francés, Agustín Albillos, Carmen Peralta, Juan Carlos García-Pagán, Jaime Bosch, Victoria C Cogger, Jordi Gracia-Sancho
Aging and disease    2019, 10 (4): 684-698.   DOI: 10.14336/AD.2019.0127
Accepted: 18 February 2019

Abstract557)   HTML0)    PDF(pc) (1724KB)(875)       Save

Advanced chronic liver disease (aCLD) represents a major public health concern. aCLD is more prevalent and severe in the elderly, carrying a higher risk of decompensation. We aimed at understanding how aging may impact on the pathophysiology of aCLD in aged rats and humans and secondly, at evaluating simvastatin as a therapeutic option in aged animals. aCLD was induced in young (1 month) and old (16 months) rats. A subgroup of aCLD-old animals received simvastatin (5 mg/kg) or vehicle (PBS) for 15 days. Hepatic and systemic hemodynamic, liver cells phenotype and hepatic fibrosis were evaluated. Additionally, the gene expression signature of cirrhosis was evaluated in a cohort of young and aged cirrhotic patients. Aged animals developed a more severe form of aCLD. Portal hypertension and liver fibrosis were exacerbated as a consequence of profound deregulations in the phenotype of the main hepatic cells: hepatocytes presented more extensive cell-death and poorer function, LSEC were further capillarized, HSC over-activated and macrophage infiltration was significantly increased. The gene expression signature of cirrhosis significantly differed comparing young and aged patients, indicating alterations in sinusoidal-protective pathways and confirming the pre-clinical observations. Simvastatin administration for 15-day to aged cirrhotic rats improved the hepatic sinusoidal milieu, leading to significant amelioration in portal hypertension. This study provides evidence that aCLD pathobiology is different in aged individuals. As the median age of patients with aCLD is increasing, we propose a real-life pre-clinical model to develop more reliable therapeutic strategies. Simvastatin effects in this model further demonstrate its translational potential.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Adipose Stem Cells (ASCs) and Stromal Vascular Fraction (SVF) as a Potential Therapy in Combating (COVID-19)-Disease
Pietro Gentile, Aris Sterodimas
Aging and disease    2020, 11 (3): 465-469.   DOI: 10.14336/AD.2020.0422
Accepted: 22 April 2020

Abstract554)   HTML0)    PDF(pc) (235KB)(782)       Save

A recent and interesting study reported improved respiratory activity after intravenous administration of mesenchymal stem cells (MSCs) into patients affected by coronavirus disease 2019 (COVID-19). These outcomes displayed that intravenous infiltration of MSCs is a safe and efficacy treatment for COVID-19 pneumonia, a severe acute respiratory illness caused by the coronavirus 2 (SARS-CoV-2). Only 7 patients were treated, but with extraordinary results, opening a new strategy in COVID-19 therapy. Currently, no specific therapies against SARS-CoV-2 are available. The MSCs therapy outcomes reported, are striking, as these cells inhibit the over-activation of the immune system, promoting endogenous repair, by improving the lung microenvironment after the SARS-CoV-2 infection. The MSCs could represent an effective, autologous and safe therapy, and therefore, sharing these published results, here is reported the potential use possibilities in COVID-19 of the most common MSCs represented by Adipose Stem Cells (ASCs).

Reference | Related Articles | Metrics
Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration
Linsha Ma, Jingchao Hu, Yu Cao, Yilin Xie, Hua Wang, Zhipeng Fan, Chunmei Zhang, Jinsong Wang, Chu-Tse Wu, Songlin Wang
Aging and disease    2019, 10 (4): 793-806.   DOI: 10.14336/AD.2018.0729
Accepted: 12 September 2018

Abstract543)   HTML0)    PDF(pc) (1889KB)(1237)       Save

Owing to excellent therapeutic potential, mesenchymal stem cells (MSCs) are gaining increasing popularity with researchers worldwide for applications in tissue engineering, and in treatment of inflammation-related and age-related disorders. However, the senescence of MSCs over passaging has limited their clinical application owing to adverse effect on physiological function maintenance of tissues as well as disease treatment. An inflammatory microenvironment is one of the key contributors to MSC senescence, resulting in low regeneration efficiency. Therefore, MSCs with high resistance to cellular senescence would be a benefit for tissue regeneration. Toward this end, we analyzed the senescence properties of different types of stem cells during culture and under inflammation, including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), bone marrow mesenchymal stem cells (BMMSCs), and adipose-derived stem cells (ADSCs). Overall, the DPSCs had higher proliferation rates, lower cellular senescence, and enhanced osteogenesis maintenance compared to those of non-dental MSCs cultured from passage three to six. The expression profiles of genes related to apoptosis, cell cycle, and cellular protein metabolic process (contributing to the cell self-renewal ability and metabolic processes) significantly differed between DPSCs and BMMSCs at passage three. Moreover, DPSCs were superior to BMMSCs with regards to resistance to lipopolysaccharide-induced apoptosis and senescence, with enhanced osteogenesis in vitro, and showed improved periodontal regeneration after injection in a miniature pig periodontitis model in vivo. Overall, the present study indicates that DPSCs show superior resistance to subculture and inflammation-induced senescence and would be suitable stem cells for tissue engineering with inflammation.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis
Hong Liu, Shiyan Chen, Min Liu, Hao Nie, Hongyun Lu
Aging and disease    2020, 11 (3): 668-678.   DOI: 10.14336/AD.2020.0502
Accepted: 07 May 2020

Abstract542)   HTML0)    PDF(pc) (983KB)(1071)       Save

Coronavirus disease 2019 (COVID-19) has resulted in considerable morbidity and mortality worldwide since December 2019. In order to explore the effects of comorbid chronic diseases on clinical outcomes of COVID-19, a search was conducted in PubMed, Ovid MEDLINE, EMBASE, CDC, and NIH databases to April 25, 2020. A total of 24 peer-reviewed articles, including 10948 COVID-19 cases were selected. We found diabetes was present in 10.0%, coronary artery disease/cardiovascular disease (CAD/CVD) was in 8.0%, and hypertension was in 20.0%, which were much higher than that of chronic pulmonary disease (3.0%). Specifically, preexisting chronic conditions are strongly correlated with disease severity [Odds ratio (OR) 3.50, 95% CI 1.78 to 6.90], and being admitted to intensive care unit (ICU) (OR 3.36, 95% CI 1.67 to 6.76); in addition, compared to COVID-19 patients with no preexisting chronic diseases, COVID-19 patients who present with either diabetes, hypertension, CAD/CVD, or chronic pulmonary disease have a higher risk of developing severe disease, with an OR of 2.61 (95% CI 1.93 to 3.52), 2.84 (95% CI 2.22 to 3.63), 4.18 (95% CI 2.87 to 6.09) and 3.83 (95% CI 2.15 to 6.80), respectively. Surprisingly, we found no correlation between chronic conditions and increased risk of mortality (OR 2.09, 95% CI 0.26 to16.67). Taken together, cardio-metabolic diseases, such as diabetes, hypertension and CAD/CVD were more common than chronic pulmonary disease in COVID-19 patients, however, each comorbid disease was correlated with increased disease severity. After active treatment, increased risk of mortality in patients with preexisting chronic diseases may reduce.

Table and Figures | Reference | Related Articles | Metrics
Combined Antioxidant, Anti-inflammaging and Mesenchymal Stem Cell Treatment: A Possible Therapeutic Direction in Elderly Patients with Chronic Obstructive Pulmonary Disease
Shijin Xia, Changxi Zhou, Bill Kalionis, Xiaoping Shuang, Haiyan Ge, Wen Gao
Aging and disease    2020, 11 (1): 129-140.   DOI: 10.14336/AD.2019.0508
Accepted: 11 May 2019

Abstract522)   HTML0)    PDF(pc) (569KB)(991)       Save

Chronic Obstructive Pulmonary Disease (COPD) is a worldwide health problem associated with high morbidity and mortality, especially in elderly patients. Aging functions include mitochondrial dysfunction, cell-to-cell information exchange, protein homeostasis and extracellular matrix dysregulation, which are closely related to chronic inflammatory response and oxidation-antioxidant imbalance in the pathogenesis of COPD. COPD displays distinct inflammaging features, including increased cellular senescence and oxidative stress, stem cell exhaustion, alterations in the extracellular matrix, reduced levels of endogenous anti-inflammaging molecules, and reduced autophagy. Given that COPD and inflammaging share similar general features, it is very important to identify the specific mechanisms of inflammaging, which involve oxidative stress, inflammation and lung mesenchymal stem cell function in the development of COPD, especially in elderly COPD patients. In this review, we highlight the studies relevant to COPD progression, and focus on mechanisms associated with inflammaging.

Table and Figures | Reference | Related Articles | Metrics
Physical Activity and Alzheimer’s Disease: A Narrative Review
Piotr Gronek, Stefan Balko, Joanna Gronek, Adam Zajac, Adam Maszczyk, Roman Celka, Agnieszka Doberska, Wojciech Czarny, Robert Podstawski, Cain C. T Clark, Fang Yu
Aging and disease    2019, 10 (6): 1282-1292.   DOI: 10.14336/AD.2019.0226
Accepted: 12 March 2019

Abstract521)   HTML0)    PDF(pc) (394KB)(1032)       Save

Although age is a dominant risk factor for Alzheimer’s disease (AD), epidemiological studies have shown that physical activity may significantly decrease age-related risks for AD, and indeed mitigate the impact in existing diagnosis. The aim of this study was to perform a narrative review on the preventative, and mitigating, effects of physical activity on AD onset, including genetic factors, mechanism of action and physical activity typology. In this article, we conducted a narrative review of the influence physical activity and exercise have on AD, utilising key terms related to AD, physical activity, mechanism and prevention, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action. On the basis of this review, it is evident that physical activity and exercise may be incorporated in AD, notwithstanding, a greater number of high-quality randomised controlled trials are needed, moreover, physical activity typology must be acutely considered, primarily due to a dearth of research on the efficacy of physical activity types other than aerobic.

Reference | Related Articles | Metrics
Statins Induce a DAF-16/Foxo-dependent Longevity Phenotype via JNK-1 through Mevalonate Depletion in C. elegans
Andreas Jahn, Bo Scherer, Gerhard Fritz, Sebastian Honnen
Aging and disease    2020, 11 (1): 60-72.   DOI: 10.14336/AD.2019.0416
Accepted: 19 May 2019

Abstract513)   HTML0)    PDF(pc) (467KB)(679)       Save

Statins belong to the most pre-scribed cholesterol lowering drugs in western countries. Their competitive inhibition of the HMG-CoA reductase causes a reduction in the mevalonate pool, resulting in reduced cholesterol biosynthesis, impaired protein prenylation and glycosylation. Recently, a cohort study showed a decreased mortality rate in humans between age 78-90 going along with statin therapy, which is independent of blood cholesterol levels. As C. elegans harbors the mevalonate pathway, but is cholesterol-auxotroph, it is particularly suitable to study cholesterol-independent effects of statins on aging-associated phenotypes. Here, we show that low doses of lovastatin or a mild HMG-CoA reductase knockdown via hmgr-1(RNAi) in C. elegans substantially attenuate aging pigment accumulation, which is a well-established surrogate marker for biological age. Consistently, for two statins we found dosages, which prolonged the lifespan of C. elegans. Together with an observed reduced fertility, slower developmental timing and thermal stress resistance this complex of outcomes point to the involvement of DAF-16/hFOXO3a, the master regulator of stress resistance and longevity. Accordingly, prolonged low-dose statin exposure leads to an increased expression of jnk-1, a known activator of DAF-16. Moreover, the beneficial effects of statins on aging pigments and lifespan depend on DAF-16 and JNK-1, as shown in epistasis analyses. These effects can be reverted by mevalonate supplementation. In conclusion, we describe a lifespan extension in C. elegans, which is conferred via two well-conserved stress-related factors (JNK-1, DAF-16) and results from mevalonate depletion.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Clinical and Genetic Profiles in Chinese Patients with Huntington’s Disease: A Ten-year Multicenter Study in China
Hong-Lei Li, Xiao-Yan Li, Yi Dong, Yan-Bin Zhang, Hong-Rong Cheng, Shi-Rui Gan, Zhi-Jun Liu, Wang Ni, Jean-Marc Burgunder, X. William Yang, Zhi-Ying Wu
Aging and disease    2019, 10 (5): 1003-1011.   DOI: 10.14336/AD.2018.0911
Accepted: 22 September 2018

Abstract470)   HTML0)    PDF(pc) (681KB)(809)       Save

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder caused by CAG triplet repeats expansion in exon 1 of the Huntingtin gene (HTT). In China, HD is considered to have a low prevalence. The goal of this study was to describe the clinical characteristic and genetic profiles of HD in a Chinese cohort. A total of 322 individuals with expanded CAG repeats were consecutively recruited from the neurologic clinics of three medical centers in Southeastern China between 2008 and 2018. Among them, 80 were pre-symptomatic mutation carriers and 242 were symptomatic patients. The mean age at onset (AAO), defined here as the age at motor symptom onset, of the 242 manifest HD individuals was 40.3 ± 11.9 years and the mean CAG repeat length was 46.1 ± 7.5 in the group of symptomatic patients. Initial symptoms were abnormal movements in 88.8% of the patients with psychiatric symptoms in 6.2%, cognitive impairment in 3.3% and others in 1.7%. The AAO of motor was negatively correlated with the CAG repeat length in an exponential regression analysis (R 2 = 0.74, P<0.001). Analysis of 46 parent-child pairs showed that the CAG repeat length was longer in the offspring group (45.8 ±7.6) than in the parent group (43.8 ±3.0) (p=0.005). Overall, this study provides clinical and genetic profiles in a cohort of Chinese patients with HD, which should contribute to a better understanding of this disorder.

Table and Figures | Reference | Related Articles | Metrics
The Metabolic Activity of Caudate and Prefrontal Cortex Negatively Correlates with the Severity of Idiopathic Parkinson’s Disease
Jun-Sheng Chu, Ting-Hong Liu, Kai-Liang Wang, Chun-Lei Han, Yun-Peng Liu, Shimabukuro Michitomo, Jian-Guo Zhang, Tie Fang, Fan-Gang Meng
Aging and disease    2019, 10 (4): 847-853.   DOI: 10.14336/AD.2018.0814
Accepted: 20 September 2018

Abstract463)   HTML0)    PDF(pc) (600KB)(914)       Save

Positron emission tomography (PET) scan with tracer [18F]-fluorodeoxy-glucose (18F-FDG) is widely used to measure the glucose metabolism in neurodegenerative disease such as Idiopathic Parkinson’s disease (IPD). Previous studies using 18F-FDG PET mainly focused on the motor or non-motor symptoms but not the severity of IPD. In this study, we aimed to determine the metabolic patterns of 18F-FDG in different stages of IPD defined by Hoehn and Yahr rating scale (H-Y rating scale) and to identify regions in the brain that play critical roles in disease progression. Fifty IPD patients were included in this study. They were 29 men and 21 women (mean±SD, age 57.7±11.1 years, disease duration 4.0±3.8 years, H-Y 2.2±1.1). Twenty healthy individuals were included as normal controls. Following 18F-FDG PET scan, image analysis was performed using Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST). The metabolic feature of IPD and regions-of-interests (ROIs) were determined. Correlation analysis between ROIs and H-Y stage was performed. SPM analysis demonstrated a significant hypometabolic activity in bilateral putamen, caudate and anterior cingulate as well as left parietal lobe, prefrontal cortex in IPD patients. In contrast, hypermetabolism was observed in the cerebellum and vermis. There was a negative correlation (p=0.007, r=-0.412) between H-Y stage and caudate metabolic activity. Moreover, the prefrontal area also showed a negative correlation with H-Y (P=0.033, r=-0.334). Thus, the uptake of FDG in caudate and prefrontal cortex can potentially be used as a surrogate marker to evaluate the severity of IPD.

Table and Figures | Reference | Related Articles | Metrics
Five-Minute Cognitive Test as A New Quick Screening of Cognitive Impairment in The Elderly
Jie Zhang, Lijun Wang, Xia Deng, Guoqiang Fei, Lirong Jin, Xiaoli Pan, Liuhan Cai, Anthony D Albano, Chunjiu Zhong
Aging and disease    2019, 10 (6): 1258-1269.   DOI: 10.14336/AD.2019.0115
Accepted: 02 March 2019

Abstract458)   HTML0)    PDF(pc) (1314KB)(646)       Save

This study aims to develop a new evaluation method for quickly and conveniently screening cognitive impairment in the elderly. The five-minute cognitive test (FCT) was designed to capture deficits in five domains of cognitive abilities, including episodic memory, language fluency, time orientation, visuospatial function, and executive function. Subsequently, FCT efficiencies in differentiating normally cognitive ability from cognitive impairment were explored and compared with that of the Mini-Mental Status Evaluation (MMSE). Equipercentile equating method was utilized to create a crosswalk between scores of the FCT and MMSE. Further, the association of scores of the FCT and MMSE with hippocampal volumes was investigated. There were 241 subjects aged 60 years or above enrolled in this study, including 107 adults with cognitive abilities in normal range, 107 patients with mild cognitive impairment (MCI), and 27 patients with mild Alzheimer disease (AD). The AUC of FCT for detection of cognitive impairment (MCI and mild AD) was 0.885 (95% CI 0.838 to 0.922). The sensitivity and specificity of FCT for the diagnosis of cognitive impairment were 80.6% and 84.11 %, respectively. FCT’s diagnostic performance was superior to that of MMSE in the same cohort. Mean completion time of FCT was 339.9 ± 67.7 seconds (5-6 min). In addition, a conversion table between scores on the FCT and MMSE was created. Further, the FCT scores were positively correlated with hippocampal volumes. The FCT is a novel, reliable, and valid cognitive screening test for the detection of dementia at early stages.

Table and Figures | Reference | Related Articles | Metrics
The Drainage of Interstitial Fluid in the Deep Brain is Controlled by the Integrity of Myelination
Aibo Wang, Rui Wang, Dehua Cui, Xinrui Huang, Lan Yuan, Huipo Liu, Yu Fu, Lei Liang, Wei Wang, Qingyuan He, Chunyan Shi, Xiangping Guan, Ze Teng, Guomei Zhao, Yuanyuan Li, Yajuan Gao, Hongbin Han
Aging and disease    2019, 10 (5): 937-948.   DOI: 10.14336/AD.2018.1206
Accepted: 08 December 2018
Online available: 08 December 2018

Abstract448)   HTML0)    PDF(pc) (1529KB)(708)       Save

In searching for the drainage route of the interstitial fluid (ISF) in the deep brain, we discovered a regionalized ISF drainage system as well as a new function of myelin in regulating the drainage. The traced ISF from the caudate nucleus drained to the ipsilateral cortex along myelin fiber tracts, while in the opposite direction, its movement to the adjacent thalamus was completely impeded by a barrier structure, which was identified as the converged, compact myelin fascicle. The regulating and the barrier effects of myelin were unchanged in AQP4-knockout rats but were impaired as the integrity of boundary structure of drainage system was destroyed in a demyelinated rat model. We thus proposed that the brain homeostasis was maintained within each ISF drainage division locally, rather than across the brain as a whole. A new brain division system and a new pathogenic mechanism of demyelination are therefore proposed.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
AmpliSeq Transcriptome of Laser Captured Neurons from Alzheimer Brain: Comparison of Single Cell Versus Neuron Pools
Wenjun Deng, Changhong Xing, Rob David , Diego Mastroeni, MingMing Ning, Eng H Lo, Paul D Coleman
Aging and disease    2019, 10 (6): 1146-1158.   DOI: 10.14336/AD.2019.0225
Accepted: 12 April 2019

Abstract448)   HTML0)    PDF(pc) (1540KB)(840)       Save

Alzheimer’s disease (AD) is the most common cause of dementia in older adults. However, the pathogenesis of AD remains to be fully understood and clinically effective treatments are lacking. Recent advances in single cell RNA sequencing offers an opportunity to characterize the heterogeneity of cell response and explore the molecular mechanism of complex diseases at a single cell level. Here, we present the application of the Ion AmpliSeq transcriptome approach to profile gene expression in single laser captured neurons as well as pooled 10 and 100 neurons from hippocampal CA1 of AD brains versus matching normal aged brains. Our results demonstrated the high sensitivity and high genome coverage of the AmpliSeq transcriptome in single cell sequencing. In addition to capturing the known changes related to AD, our data confirmed the diversity of neuronal profiles in AD brain, which allow the potential identification of single cell response that might be hidden in population analyses. Notably, we also revealed the extensive inhibition of olfactory signaling and confirmed the reduction of neurotransmitter receptors in AD hippocampus. We conclude that although single neuron data show more variance than data from 10 or 100 pooled neurons, single neuron data can be informative. These findings support the utility of the Ion AmpliSeq method for obtaining and analyzing gene expression data from single defined laser captured neurons.

Table and Figures | Reference | Related Articles | Metrics
Verapamil Ameliorates Motor Neuron Degeneration and Improves Lifespan in the SOD1G93A Mouse Model of ALS by Enhancing Autophagic Flux
Xiaojie Zhang, Sheng Chen, Kaili Lu, Feng Wang, Jiangshan Deng, Zhouwei Xu, Xiuzhe Wang, Qinming Zhou, Weidong Le, Yuwu Zhao
Aging and disease    2019, 10 (6): 1159-1173.   DOI: 10.14336/AD.2019.0228
Accepted: 03 March 2019

Abstract441)   HTML0)    PDF(pc) (1342KB)(685)       Save

Amyotrophic lateral sclerosis (ALS) is a progressive, paralytic disorder caused by selective degeneration of motor neurons in the brain and spinal cord. Our previous studies indicated that abnormal protein aggregation and dysfunctional autophagic flux might contribute to the disease pathogenesis. In this study, we have detected the role of the Ca2+ dependent autophagic pathway in ALS by using the L-type channel Ca2+ blocker, verapamil. We have found that verapamil significantly delayed disease onset, prolonged the lifespan and extended disease duration in SOD1G93A mice. Furthermore, verapamil administration rescued motor neuron survival and ameliorated skeletal muscle denervation in SOD1G93A mice. More interestingly, verapamil significantly reduced SOD1 aggregation and improved autophagic flux, which might be mediated the inhibition of calpain 1 activation in the spinal cord of SOD1G93A mice. Furthermore, we have demonstrated that verapamil reduced endoplasmic reticulum stress and suppressed glia activation in SOD1G93A mice. Collectively, our study indicated that verapamil is neuroprotective in the ALS mouse model and the Ca2+-dependent autophagic pathway is a possible therapeutic target for the treatment of ALS.

Table and Figures | Reference | Related Articles | Metrics
Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: An Update
Feng Zhang, Long Niu, Xinyao Liu, Yufei Liu, Song Li, Huan Yu, Weidong Le
Aging and disease    2020, 11 (2): 315-326.   DOI: 10.14336/AD.2019.0324
Accepted: 29 August 2019

Abstract435)   HTML0)    PDF(pc) (608KB)(839)       Save

Rapid eye movement sleep behavior disorder (RBD) is a sleep behavior disorder characterized by abnormal behaviors and loss of muscle atonia during rapid eye movement (REM) sleep. RBD is generally considered to be associated with synucleinopathies, such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), and usually precedes years before the first symptom of these diseases. It is believed that RBD predicts the neurodegeneration in synucleinopathy. However, increasing evidences have shown that RBD is also found in non-synucleinopathy neurodegenerative diseases, including Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), etc. Sleep disturbance such as RBD may be an early sign of neurodegeneration in these diseases, and also serve as an assessment of cognitive impairments. In this review, we updated the clinical characteristics, diagnosis, and possible mechanisms of RBD in neurogenerative diseases. A better understanding of RBD in these neurogenerative diseases will provide biomarkers and novel therapeutics for the early diagnosis and treatment of the diseases.

Table and Figures | Reference | Related Articles | Metrics
Hydroxyurea Facilitates Manifestation of Disease Relevant Phenotypes in Patients-Derived IPSCs-Based Modeling of Late-Onset Parkinson’s Disease
Yuan Tan, Minjing Ke, Zhijian Huang, Cheong-Meng Chong, Xiaotong Cen, Jia-Hong Lu, Xiaoli Yao, Dajiang Qin, Huanxing Su
Aging and disease    2019, 10 (5): 1037-1048.   DOI: 10.14336/AD.2018.1216
Accepted: 08 January 2019

Abstract428)   HTML0)    PDF(pc) (1828KB)(1012)       Save

Induced pluripotent stem cells (iPSCs)-derived dopaminergic neurons might be reset back to the fetal state due to reprogramming. Thus, it is a compelling challenge to reliably and efficiently induce disease phenotypes of iPSCs-derived dopaminergic neurons to model late-onset Parkinson’s disease (PD). Here, we applied a small molecule, hydroxyurea (HU), to promote the manifestation of disease relevant phenotypes in iPSCs-based modeling of PD. We established two iPS cell lines derived from two sporadic PD patients. Both patients-iPSCs-derived dopaminergic neurons did not display PD relevant phenotypes after 6 weeks culture. HU treatment remarkably induced ER stress on patients-iPSCs-derived dopaminergic neurons. Moreover, HU treatment significantly reduced neurite outgrowth, decreased the expression of p-AKT and its downstream targets (p-4EBP1 and p-ULK1), and increased the expression level of cleaved-Caspase 3 in patients-iPSCs-derived dopaminergic neurons. The findings of the present study suggest that HU administration could be a convenient and reliable approach to induce disease relevant phenotypes in PD-iPSCs-based models, facilitating to study disease mechanisms and test drug effects.

Table and Figures | Reference | Related Articles | Metrics
A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology
Dinesh Upadhya, Maheedhar Kodali, Daniel Gitai, Olagide W Castro, Gabriele Zanirati, Raghavendra Upadhya, Sahithi Attaluri, Eeshika Mitra, Bing Shuai, Bharathi Hattiangady, Ashok K Shetty
Aging and disease    2019, 10 (5): 915-936.   DOI: 10.14336/AD.2019.0720
Accepted: 07 August 2019

Abstract422)   HTML0)    PDF(pc) (1869KB)(817)       Save

Many animal prototypes illustrating the various attributes of human temporal lobe epilepsy (TLE) are available. These models have been invaluable for comprehending multiple epileptogenic processes, modifications in electrophysiological properties, neuronal hyperexcitability, neurodegeneration, neural plasticity, and chronic neuroinflammation in TLE. Some models have also uncovered the efficacy of new antiepileptic drugs or biologics for alleviating epileptogenesis, cognitive impairments, or spontaneous recurrent seizures (SRS). Nonetheless, the suitability of these models for testing candidate therapeutics in conditions such as chronic TLE is debatable because of a lower frequency of SRS and an inconsistent pattern of SRS activity over days, weeks or months. An ideal prototype of chronic TLE for investigating novel therapeutics would need to display a large number of SRS with a dependable frequency and severity and related co-morbidities. This study presents a new kainic acid (KA) model of chronic TLE generated through induction of status epilepticus (SE) in 6-8 weeks old male F344 rats. A rigorous characterization in the chronic epilepsy period validated that the animal prototype mimicked the most salient features of robust chronic TLE. Animals displayed a constant frequency and intensity of SRS across weeks and months in the 5th and 6th month after SE, as well as cognitive and mood impairments. Moreover, SRS frequency displayed a rhythmic pattern with 24-hour periodicity and a consistently higher number of SRS in the daylight period. Besides, the model showed many neuropathological features of chronic TLE, which include a partial loss of inhibitory interneurons, reduced neurogenesis with persistent aberrant migration of newly born neurons, chronic neuroinflammation typified by hypertrophied astrocytes and rod-shaped microglia, and a significant aberrant mossy fiber sprouting in the hippocampus. This consistent chronic seizure model is ideal for investigating the efficacy of various antiepileptic drugs and biologics as well as understanding multiple pathophysiological mechanisms underlying chronic epilepsy.

Table and Figures | Reference | Related Articles | Metrics
Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders
Sunil S Adav, Siu Kwan Sze
Aging and disease    2020, 11 (2): 341-364.   DOI: 10.14336/AD.2019.0604
Accepted: 05 June 2019

Abstract411)   HTML0)    PDF(pc) (1004KB)(507)       Save

Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.

Table and Figures | Reference | Related Articles | Metrics
Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice
Peng Yu, Poornima Venkat, Michael Chopp, Alex Zacharek, Yi Shen, Linlin Liang, Julie Landschoot-Ward, Zhongwu Liu, Rongcai Jiang, Jieli Chen
Aging and disease    2019, 10 (4): 770-783.   DOI: 10.14336/AD.2018.0816
Accepted: 27 August 2018
Online available: 26 August 2018

Abstract399)   HTML1)    PDF(pc) (1991KB)(907)       Save

Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.

Table and Figures | Reference | Related Articles | Metrics
Antidiabetic Drug Metformin Ameliorates Depressive-Like Behavior in Mice with Chronic Restraint Stress via Activation of AMP-Activated Protein Kinase
Heng Ai, Weiqing Fang, Hanyi Hu, Xupang Hu, Wen Lu
Aging and disease    2020, 11 (1): 31-43.   DOI: 10.14336/AD.2019.0403
Accepted: 07 April 2019

Abstract389)   HTML0)    PDF(pc) (1562KB)(488)       Save

Depression is one of the most prevalent neuropsychiatric disorders in modern society. However, traditional drugs, such as monoaminergic agents, have defect showing lag response requiring several weeks to months. Additionally, these drugs have limited efficacy and high resistance rates in patients with depression. Thus, there is an urgent need to develop novel drugs or approaches for the treatment of depression. Here, using biochemical, pharmacological, genetic and behavioral methods, we demonstrate that metformin imparts a fast-acting antidepressant-like effect in naïve mice as well as stressed mice subjected to chronic restraint stress model. Moreover, inhibition of AMP-activated protein kinase (AMPK) activity by compound C or knock down of hippocampal AMPKα occluded the antidepressant-like effect induced by metformin. Our results suggest that metformin may be a viable therapeutic drug for the treatment of stress-induced depression via activation of AMPK.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Genetic Spectrum and Variability in Chinese Patients with Amyotrophic Lateral Sclerosis
Zhi-Jun Liu, Hui-Xia Lin, Qiao Wei, Qi-Jie Zhang, Cong-Xin Chen, Qing-Qing Tao, Gong-Lu Liu, Wang Ni, Aaron D Gitler, Hong-Fu Li, Zhi-Ying Wu
Aging and disease    2019, 10 (6): 1199-1206.   DOI: 10.14336/AD.2019.0215
Accepted: 02 March 2019

Abstract380)   HTML0)    PDF(pc) (476KB)(796)       Save

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by selective impairment of upper and lower motor neurons. We aimed to investigate the genetic spectrum and variability in Chinese patients with ALS. A total of 24 familial ALS (FALS) and 21 early-onset sporadic ALS (SALS) of Chinese ancestry were enrolled. Targeted next-generation sequencing (NGS) was performed in the probands, followed by verification by Sanger sequencing and co-segregation analysis. Clinical features of patients with pathogenic or likely pathogenic variants were present. The mutation frequency of ALS-related genes was then analyzed in Chinese population. In this cohort, 17 known mutations (9 SOD1, 5 FUS, 2 TARDBP and one SETX) were identified in 14 FALS and 6 early-onset SALS. Moreover, 7 novel variants (SOD1 c.112G>C, OPTN c.811C>T, ERBB4 c.965T>A, DCTN1 c.1915C>T, NEFH c.2602G>A, NEK1 c.3622G>A, and TAF15 c.1535G>A) were identified. In southeastern Chinese FALS, the mutation frequency of SOD1, FUS, and TARDBP was 52.9%, 8.8%, 8.8% respectively. In early-onset SALS, FUS mutations were the most common (22.6%). In Chinese ALS cases, p.H47R is most frequent SOD1 mutations, while p.R521 is most common FUS mutation and p.M337V is most common TARDBP mutation. Our results revealed that mutations in SOD1, FUS and TARDBP are the most common cause of Chinese FALS, while FUS mutations are the most common cause of early-onset SALS. The genetic spectrum is different between Chinese ALS and Caucasian ALS.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis
Dingqiao Xu, Shanting Liao, Pei Li, Qian Zhang, Yan Lv, Xiaowei Fu, Minghua Yang, Junsong Wang, Lingyi Kong
Aging and disease    2019, 10 (4): 854-870.   DOI: 10.14336/AD.2018.1027
Accepted: 26 November 2018

Abstract374)   HTML1)    PDF(pc) (1925KB)(848)       Save

Sepsis is a severe disease frequently occurred in the Intenisive Care Unit (ICU), which has a very high morbidity and mortality, especially in patients aged over 65 years. Owing to the aging effect and the ensuing deterioration of body function, the elder patients may have atypical responses to sepsis. Diagnosis and pathogenesis of sepsis in this population are thus difficult, which hindered effective treatment and management in clinic. To investigated age effects on sepsis, 158 elderly septic patients and 71 non-septic elderly participants were enrolled, and their plasma samples were collected for transcriptomics (RNA-seq) and metabolomics (NMR and GC-MS) analyses, which are both increasingly being utilized to discover key molecular changes and potential biomarkers for various diseases. Protein-protein interaction (PPI) analysis was subsequently performed to assist cross-platform integration. Real time polymerase chain reaction (RT-PCR) was used for validation of RNA-seq results. For further understanding of the mechanisms, cecal ligation and puncture (CLP) experiment was performed both in young and middle-aged rats, which were subjected to NMR-based metabolomics study and validated for several key inflammation pathways by western blot. Comprehensive analysis of data from the two omics approaches provides a systematic perspective on dysregulated pathways that could facilitate the development of therapy and biomarkers for elderly sepsis. Additionally, the metabolites of lactate, arginine, histamine, tyrosine, glutamate and glucose were shown to be highly specific and sensitive in distinguishing septic patients from healthy controls. Significant increases of arginine, trimethylamine N-oxide and allantoin characterized elderly patient incurred sepsis. Further analytical and biological validations in different subpopulations of septic patients should be carried out, allowing accurate diagnostics and precise treatment of sepsis in clinic.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Plasma Lipoprotein-associated Phospholipase A2 and Superoxide Dismutase are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment
Shuzhen Zhu, Xiaobo Wei, Xiaohua Yang, Zifeng Huang, Zihan Chang, Fen Xie, Qin Yang, Changhai Ding, Wei Xiang, Hongjun Yang, Ying Xia, Zhong-Ping Feng, Hong-Shuo Sun, Midori A Yenari, Lin Shi, Vincent CT Mok, Qing Wang
Aging and disease    2019, 10 (4): 834-846.   DOI: 10.14336/AD.2019.0304
Accepted: 06 March 2019

Abstract374)   HTML0)    PDF(pc) (1212KB)(808)       Save

Lipoprotein-associated phospholipase A2 (Lp-PLA2) and superoxide dismutase (SOD) are linked to regulating vascular/neuro-inflammation and stroke. Using a retrospective design, we investigated whether circulating Lp-PLA2 and SOD in cerebral small vessel disease (CSVD) patients were associated with cognitive impairment. Eighty-seven CSVD patients were recruited. Plasma Lp-PLA2 and SOD were determined, and cognitive status was measured by the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The severity of white matter hypoerintensities (WMHs) in CSVD patients was rated according to Fazekas scales, and Lp-PLA2/SOD levels and MMSE/MoCA were compared. Multiple linear regressions were used to evaluate the relationship between Lp-PLA2 and SOD and the cognitive impairment. Ordinal logistic regression and generalized linear models (OLRGLMs) were applied to confirm whether Lp-PLA2 and SOD are independent risk factors for cognitive impairment in CVSD. Lp-PLA2 and SOD with mild or severe cognitive impairment were lower than those with normal congnition. Lp-PLA2 and SOD in CSVD patients with severe WMHs were significantly lower than those with mild or moderate WMH lesions. We noted positive linear associations of Lp-PLA and SOD with cognitive impairment in CSVD, independent of LDL-C. OLRGLMs confirmed that Lp-PLA2 and SOD were independent risk factors of cognitive impairment in CSVD. Lp-PLA2 and SOD are independently associated with cognitive impairment and WMH lesion, and may be useful for the rapid evaluation of cognitive impairment in CSVD. Lp-PLA2/SOD are modifiable factors that may be considered as therapeutic targets for preventing cognitive impairment in CSVD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd