Home  About the Journal Editorial Board Aims & Scope Peer Review Policy Subscription Contact us
 
Early Edition  //  Current Issue  //  Open Special Issues  //  Archives  //  Most Read  //  Most Downloaded  //  Most Cited

ISSN 2152-5250
Since 2010
2017 impact factor: 5.058
  About the Journal
    » About Journal
    » Editorial Board
    » Indexed in
  Authors
    » Online Submission
    » Guidelines for Authors
    » Download Templates
    » Copyright Agreement
  Reviewers
    » Guidelines for Reviewers
    » Online Peer Review
    » Online Editor Work
  Editorial Office
Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Metformin and the Risk of Dementia in Type 2 Diabetes Patients
Tseng Chin-Hsiao
Aging and disease    2019, 10 (1): 37-48.   DOI: 10.14336/AD.2017.1202
Abstract2247)   HTML3)    PDF(pc) (607KB)(607)       Save

This retrospective cohort study investigated dementia risk associated with metformin use in type 2 diabetes patients by using the reimbursement database of the Taiwan’s National Health Insurance. The patients had new-onset diabetes during 1999-2005 and were followed up until December 31, 2011. An unmatched cohort of 147,729 ever users and 15,676 never users of metformin were identified, and a matched-pair cohort of 15,676 ever users and 15,676 never users was created by propensity score (PS). Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using PS. Results showed that in the unmatched cohort, 713 never users and 3943 ever users developed dementia with respective incidence of 1029.20 and 570.03 per 100,000 person-years. The overall hazard ratio was 0.550 (95% confidence interval: 0.508-0.596). The hazard ratio for the first (<27.0 months), second (27.0-58.1 months) and third (>58.1 months) tertile of cumulative duration of metformin therapy was 0.975 (0.893-1.066), 0.554 (0.506-0.607) and 0.286 (0.259-0.315), respectively. Analyses in the matched cohort showed an overall hazard ratio of 0.707 (0.632-0.791) and the hazard ratio for the respective tertile was 1.279 (1.100-1.488), 0.704 (0.598-0.829) and 0.387 (0.320-0.468). In conclusion, metformin use is associated with a reduced dementia risk.

Table and Figures | Reference | Related Articles | Metrics
Emerging Anti-Aging Strategies - Scientific Basis and Efficacy
Ashok K. Shetty, Maheedhar Kodali, Raghavendra Upadhya, Leelavathi N. Madhu
Aging and disease    2018, 9 (6): 1165-1184.   DOI: 10.14336/AD.2018.1026
Accepted: 21 November 2018

Abstract1250)   HTML1)    PDF(pc) (481KB)(1052)       Save

The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer’s disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer’s disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Relationship between Hypothyroidism and Endometrial Cancer
Yiqin Wang,Rong Zhou,Jianliu Wang
Aging and disease    2019, 10 (1): 190-196.   DOI: 10.14336/AD.2018.0224
Abstract1221)   HTML2)    PDF(pc) (317KB)(990)       Save

Thyroid dysfunction is involved in several types of carcinoma. Hypothyroidism is one of the most common medical morbidities among patients with endometrial cancer; however, the related mechanism is unclear. Among the risk factors related to endometrial cancer, hypothyroidism interacts with metabolic syndrome, polycystic ovarian syndrome and infertility or directly acts on the endometrium itself, which may influence the development and progression of endometrial cancer. We summarize recent studies on the relationship between hypothyroidism and endometrial cancer and its risk factors to provide references for basic research as well as for clinical treatment and prognostic evaluation.

Table and Figures | Reference | Related Articles | Metrics
Quantitative Evaluation of Gait Disturbance on an Instrumented Timed Up-and-go Test
Shigeki Yamada,Yukihiko Aoyagi,Kazuo Yamamoto,Masatsune Ishikawa
Aging and disease    2019, 10 (1): 23-36.   DOI: 10.14336/AD.2018.0426
Abstract1002)   HTML4)    PDF(pc) (1589KB)(727)       Save

Although the 3-m timed up-and-go test (TUG) is reliable for evaluating mobility, TUG time is insufficient to evaluate mild gait disturbance; we, therefore aimed to investigate other measurements with instrumented TUG (iTUG) using a free smartphone application. Our inclusion criterion in this study is only that participants can walk without any assistance. This study included three heterogeneous groups; patients who underwent a tap test or shunt surgery, 29 inpatients hospitalized for other reasons, and 87 day-care users. After the tap test, 28 were diagnosed with tap-positive idiopathic normal-pressure hydrocephalus (iNPH) and 8 were diagnosed with tap-negative. Additionally, 18 patients were assessed iTUG before and after shunt surgery. During iTUG, time and 3-dimensional (3D) acceleration were automatically recorded every 0.01 s. A volume of the 95% confidence ellipsoid (95%CE) of all plots for 3D acceleration was calculated. Additionally, an iTUG score was defined as (95%CE volume) 0.8 / 1.9 - 1.9 × (time) + 60. The measurement reliability was evaluated using intraclass correlations and Bland-Altman plots. The participants with mild gait disturbance who accomplished within 13.5 s on the iTUG time had the 95%CE volumes for 3D acceleration of ≥70 m3/s6 and iTUG scores of ≥50. The mean iTUG time was shortened and the mean 95%CE volumes and iTUG scores were increased after the tap test among 28 patients with tap-positive iNPH and after shunt surgery among 18 patients with definite iNPH. Conversely, the mean iTUG score among 8 patients with tap-negative was decreased after the tap test. The intraclass correlations for the time, 95%CE volume and iTUG score were 0.97, 0.80 and 0.90, respectively. Not only the iTUG time but also the 95%CE volume was important for evaluating mobility. Therefore, the novel iTUG score consisting both is useful for the quantitative assessment of mobility.

Table and Figures | Reference | Related Articles | Metrics
Traditional Oriental Medicines and Alzheimer’s Disease
Seong Gak Jeon, Eun Ji Song, Dongje Lee, Junyong Park, Yunkwon Nam, Jin-il Kim, Minho Moon
Aging and disease    2019, 10 (2): 307-328.   DOI: 10.14336/AD.2018.0328
Accepted: 29 August 2018

Abstract964)   HTML2)    PDF(pc) (681KB)(647)       Save

Alzheimer’s disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical trials of AD drugs with single targets, such as β-amyloid and tau, have failed, the development of multi-target drugs that ameliorate many of the symptoms of AD is needed. Thus, recent studies have investigated the effects and underlying mechanisms of herbal formulae consisting of various herb combinations used to treat AD. This review discusses the results of clinical and nonclinical studies of the therapeutic efficacy in AD and underlying mechanisms of the herbal formulae of traditional Oriental medicines and bioactive compounds of medicinal plants.

Table and Figures | Reference | Related Articles | Metrics
Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept
Hae Young Chung, Dae Hyun Kim, Eun Kyeong Lee, Ki Wung Chung, Sangwoon Chung, Bonggi Lee, Arnold Y. Seo, Jae Heun Chung, Young Suk Jung, Eunok Im, Jaewon Lee, Nam Deuk Kim, Yeon Ja Choi, Dong Soon Im, Byung Pal Yu
Aging and disease    2019, 10 (2): 367-382.   DOI: 10.14336/AD.2018.0324
Abstract810)   HTML0)    PDF(pc) (607KB)(860)       Save

Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term “senoinflammation”, that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.

Table and Figures | Reference | Related Articles | Metrics
Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease
Shichao Lv, Yang Ding, Haiping Zhao, Shihao Liu, Junping Zhang, Jun Wang
Aging and disease    2018, 9 (6): 1153-1164.   DOI: 10.14336/AD.2018.0112
Abstract785)   HTML2)    PDF(pc) (502KB)(501)       Save

Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro

Table and Figures | Reference | Related Articles | Metrics
Enhancement of Mesenchymal Stem Cell-Driven Bone Regeneration by Resveratrol-Mediated SOX2 Regulation
Yoorim Choi, Dong Suk Yoon, Kyoung-Mi Lee, Seong Mi Choi, Myon-Hee Lee, Kwang Hwan Park, Seung Hwan Han, Jin Woo Lee
Aging and disease    2019, 10 (4): 818-833.   DOI: 10.14336/AD.2018.0802
Accepted: 18 September 2018

Abstract687)   HTML0)    PDF(pc) (1517KB)(389)       Save

Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine. However, MSCs age rapidly during long-term ex vivo culture and lose their therapeutic potential before they reach effective cell doses (ECD) for cell therapy. Thus, a prerequisite for effective MSC therapy is the development of cell culture methods to preserve the therapeutic potential during long-term ex vivo cultivation. Resveratrol (RSV) has been highlighted as a therapeutic candidate for bone disease. Although RSV treatment has beneficial effects on bone-forming cells, in vivo studies are lacking. The current study showed that long-term (6 weeks from primary culture date)-cultured MSCs with RSV induction retained their proliferative and differentiation potential despite reaching ECD. The mechanism of RSV action depends entirely on the SIRT1-SOX2 axis in MSC culture. In a rat calvarial defect model, RSV induction significantly improved bone regeneration after MSC transplantation. This study demonstrated an example of efficient MSC therapy for treating bone defects by providing a new strategy using the plant polyphenol RSV.

Table and Figures | Reference | Related Articles | Metrics
The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases
Wenjun Tu, Hong Wang, Song Li, Qiang Liu, Hong Sha
Aging and disease    2019, 10 (3): 637-651.   DOI: 10.14336/AD.2018.0513
Abstract644)   HTML0)    PDF(pc) (478KB)(724)       Save

Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.

Table and Figures | Reference | Related Articles | Metrics
Metformin Alters Locomotor and Cognitive Function and Brain Metabolism in Normoglycemic Mice
Wenjun Li, Kiran Chaudhari, Ritu Shetty, Ali Winters, Xiaofei Gao, Zeping Hu, Woo-Ping Ge, Nathalie Sumien, Michael Forster, Ran Liu, Shao-Hua Yang
Aging and disease    2019, 10 (5): 949-963.   DOI: 10.14336/AD.2019.0120
Accepted: 25 January 2019

Abstract568)   HTML1)    PDF(pc) (1429KB)(234)       Save

Metformin is currently the most effective treatment for type-2 diabetes. The beneficial actions of metformin have been found even beyond diabetes management and it has been considered as one of the most promising drugs that could potentially slow down aging. Surprisingly, the effect of metformin on brain function and metabolism has been less explored given that brain almost exclusively uses glucose as substrate for energy metabolism. We determined the effect of metformin on locomotor and cognitive function in normoglycemic mice. Metformin enhanced locomotor and balance performance, while induced anxiolytic effect and impaired cognitive function upon chronic treatment. We conducted in vitro assays and metabolomics analysis in mice to evaluate metformin’s action on the brain metabolism. Metformin decreased ATP level and activated AMPK pathway in mouse hippocampus. Metformin inhibited oxidative phosphorylation and elevated glycolysis by inhibiting mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in vitro at therapeutic doses. In summary, our study demonstrated that chronic metformin treatment affects brain bioenergetics with compound effects on locomotor and cognitive brain function in non-diabetic mice.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Is Dementia More Fatal Than Previously Estimated? A Population-based Prospective Cohort Study
Jong Bin Bae,Ji Won Han,Kyung Phil Kwak,Bong Jo Kim,Shin Gyeom Kim,Jeong Lan Kim,Tae Hui Kim,Seung-Ho Ryu,Seok Woo Moon,Joon Hyuk Park,Jong Chul Youn,Dong Young Lee,Dong Woo Lee,Seok Bum Lee,Jung Jae Lee,Jin Hyeong Jhoo,Ki Woong Kim
Aging and disease    2019, 10 (1): 1-11.   DOI: 10.14336/AD.2018.0123
Abstract559)   HTML7)    PDF(pc) (649KB)(501)       Save

Dementia increases the risk of mortality (ROM) in the elderly and estimates of hazard ratio (HR) of dementia for mortality have ranged from 1.7 to 6.3. However, previous studies may have underestimated ROM of dementia due to length bias, which occurs when failing to include the persons with rapidly progressive diseases, who died before they could be included in the study. This population-based prospective cohort study conducted on 6,752 randomly sampled Koreans, aged 60 years or older (the Korean Longitudinal Study on Cognitive Aging and Dementia). Cognitive disorders were evaluated at baseline and 2-year follow-up using the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K), and prevalent and incident cases of dementia were identified. The participants’ deaths were confirmed through the National Mortality Database of Statistics Korea. We compared the ROM between prevalent and incident dementia, and estimated HR of dementia for mortality using Cox proportional hazards model. Of the 5,097 responders to the 2-year follow-up assessment, 150 participants had dementia from the baseline (prevalent dementia), and 95 participants developed dementia during the 2-year follow-up period (incident dementia). The ROM of participants with incident dementia was about 3 times higher than the ROM of those with prevalent dementia (HR = 3.04, 95% confidence interval [CI] = 1.34-6.91). Compared to cognitively normal participants at both the baseline and 2-year follow-up assessments, the ROM of those with incident dementia approximately 8 times higher (HR = 8.37, 95 % CI = 4.23-16.54). In conclusion, the ROM of dementia using prevalent cases was underestimated due to length bias, and dementia may be much more fatal than previously estimated. In clinical settings, the ROM of dementia warrants the attention of physicians, particularly in recently incident dementia cases.

Table and Figures | Reference | Related Articles | Metrics
Epigenetic Regulation of Bone Marrow Stem Cell Aging: Revealing Epigenetic Signatures associated with Hematopoietic and Mesenchymal Stem Cell Aging
Dimitrios Cakouros,Stan Gronthos
Aging and disease    2019, 10 (1): 174-189.   DOI: 10.14336/AD.2017.1213
Abstract556)   HTML3)    PDF(pc) (708KB)(694)       Save

In this review we explore the importance of epigenetics as a contributing factor for aging adult stem cells. We summarize the latest findings of epigenetic factors deregulated as adult stem cells age and the consequence on stem cell self-renewal and differentiation, with a focus on adult stem cells in the bone marrow. With the latest whole genome bisulphite sequencing and chromatin immunoprecipitations we are able to decipher an emerging pattern common for adult stem cells in the bone marrow niche and how this might correlate to epigenetic enzymes deregulated during aging. We begin by briefly discussing the initial observations in yeast, drosophila and Caenorhabditis elegans (C. elegans) that led to the breakthrough research that identified the role of epigenetic changes associated with lifespan and aging. We then focus on adult stem cells, specifically in the bone marrow, which lends strong support for the deregulation of DNA methyltransferases, histone deacetylases, acetylates, methyltransferases and demethylases in aging stem cells, and how their corresponding epigenetic modifications influence gene expression and the aging phenotype. Given the reversible nature of epigenetic modifications we envisage “epi” targeted therapy as a means to reprogram aged stem cells into their younger counterparts.

Table and Figures | Reference | Related Articles | Metrics
Molecular Bases of Alzheimer’s Disease and Neurodegeneration: The Role of Neuroglia
Antonina Luca, Carmela Calandra, Maria Luca
Aging and disease    2018, 9 (6): 1134-1152.   DOI: 10.14336/AD.2018.0201
Abstract542)   HTML5)    PDF(pc) (530KB)(519)       Save

Neuroglia is an umbrella term indicating different cellular types that play a pivotal role in the brain, being involved in its development and functional homeostasis. Glial cells are becoming the focus of recent researches pertaining the pathogenesis of neurodegenerative disorders, Alzheimer’s Disease (AD) in particular. In fact, activated microglia is the main determinant of neuroinflammation, contributing to neurodegeneration. In addition, the oxidative insult occurring during pathological brain aging can activate glial cells that, in turn, can favor the production of free radicals. Moreover, the recent Glycogen Synthase Kinase 3 (GSK-3) hypothesis of AD suggests that GSK3, involved in the regulation of glial cells functioning, could exert a role in amyloid deposition and tau hyper-phosphorylation. In this review, we briefly describe the main physiological functions of the glial cells and discuss the link between neuroglia and the most studied molecular bases of AD. In addition, we dedicate a section to the glial changes occurring in AD, with particular attention to their role in terms of neurodegeneration. In the light of the literature data, neuroglia could play a fundamental role in AD pathogenesis and progression. Further studies are needed to shed light on this topic.

Table and Figures | Reference | Related Articles | Metrics
MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF-β/SMAD2 Signaling Pathway
Hongling Li, Junfen Fan, Linyuan Fan, Tangping Li, Yanlei Yang, Haoying Xu, Luchan Deng, Jing Li, Tao Li, Xisheng Weng, Shihua Wang, Robert Chunhua Zhao
Aging and disease    2018, 9 (6): 1058-1073.   DOI: 10.14336/AD.2018.0214
Abstract541)   HTML5)    PDF(pc) (1848KB)(1602)       Save

As the population ages, the medical and socioeconomic impact of age-related bone disorders will further increase. An imbalance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) can lead to various bone and metabolic diseases such as osteoporosis. Thus, understanding the molecular mechanisms underlying MSC osteogenic and adipogenic differentiation is important for the discovery of novel therapeutic paradigms for these diseases. miR-10b has been widely reported in tumorigenesis, cancer invasion and metastasis. However, the effects and potential mechanisms of miR-10b in the regulation of MSC adipogenic and osteogenic differentiation have not been explored. In this study, we found that the expression of miR-10b was positively correlated with bone formation marker genes ALP, RUNX2 and OPN, and negatively correlated with adipogenic markers CEBPα, PPARγ and AP2 in clinical osteoporosis samples. Overexpression of miR-10b enhanced osteogenic differentiation and inhibited adipogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro, whereas downregulation of miR-10b reversed these effects. Furthermore, miR-10b promoted ectopic bone formation in vivo. Target prediction and dual luciferase reporter assays identified SMAD2 as a potential target of miR-10b. Silencing endogenous SMAD2 expression in hADSCs enhanced osteogenesis but repressed adipogenesis. Pathway analysis indicated that miR-10b promotes osteogenic differentiation and bone formation via the TGF-β signaling pathway, while suppressing adipogenic differentiation may be primarily mediated by other pathways. Taken together, our findings imply that miR-10b acts as a critical regulator for balancing osteogenic and adipogenic differentiation of hADSCs by repressing SMAD2 and partly through the TGF-β pathway. Our study suggests that miR-10b is a novel target for controlling bone and metabolic diseases.

Table and Figures | Reference | Related Articles | Metrics
Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways
Georg Fuellen, Ludger Jansen, Alan A Cohen, Walter Luyten, Manfred Gogol, Andreas Simm, Nadine Saul, Francesca Cirulli, Alessandra Berry, Peter Antal, Rüdiger Köhling, Brecht Wouters, Steffen Möller
Aging and disease    2019, 10 (4): 883-900.   DOI: 10.14336/AD.2018.1030
Accepted: 19 November 2018

Abstract503)   HTML1)    PDF(pc) (522KB)(544)       Save

Despite increasing research efforts, there is a lack of consensus on defining aging or health. To understand the underlying processes, and to foster the development of targeted interventions towards increasing one’s health, there is an urgent need to find a broadly acceptable and useful definition of health, based on a list of (molecular) features; to operationalize features of health so that it can be measured; to identify predictive biomarkers and (molecular) pathways of health; and to suggest interventions, such as nutrition and exercise, targeted at putative causal pathways and processes. Based on a survey of the literature, we propose to define health as a state of an individual characterized by the core features of physiological, cognitive, physical and reproductive function, and a lack of disease. We further define aging as the aggregate of all processes in an individual that reduce its wellbeing, that is, its health or survival or both. We define biomarkers of health by their attribute of predicting future health better than chronological age. We define healthspan pathways as molecular features of health that relate to each other by belonging to the same molecular pathway. Our conceptual framework may integrate diverse operationalizations of health and guide precision prevention efforts.

Table and Figures | Reference | Related Articles | Metrics
Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade
Navneet Kumar Dubey, Hong-Jian Wei, Sung-Hsun Yu, David F. Williams, Joseph R. Wang, Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng
Aging and disease    2019, 10 (3): 483-496.   DOI: 10.14336/AD.2018.0616
Abstract501)   HTML0)    PDF(pc) (1507KB)(735)       Save

Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Vitamin D Receptor in Muscle Atrophy of Elderly Patients: A Key Element of Osteoporosis-Sarcopenia Connection
Manuel Scimeca, Federica Centofanti, Monica Celi, Elena Gasbarra, Giuseppe Novelli, Annalisa Botta, Umberto Tarantino
Aging and disease    2018, 9 (6): 952-964.   DOI: 10.14336/AD.2018.0215
Abstract496)   HTML10)    PDF(pc) (1144KB)(506)       Save

In this study, we investigated the relationship between sarcopenia (evaluated in term of fibers atrophy), vitamin d receptor protein expression and TaqI/Cdx2/FokI VDR genotypes in an Italian cohort of osteoporosis(n=44) and osteoarthritis (n=55) patients. Muscle biopsies were fixed and investigated by both immunohistochemistry (vitamin d receptor expression) and transmission electron microscopy (satellite stem cells niches). Vitamin d receptor polymorphisms were studied on DNA extracted from muscle paraffin sections. For the first time, we reported that aging differently affects the VDR activation in OA and OP patients. In particular, while in OP patients we observed a significant reduction of VDR positive myonuclei with age, no “age effect” was observed in OA patients. The frequent activation of VDR could explain the lower number of atrophic fiber that we observed in OA patients respect to OP. From genetic point of view, we showed a putative association among polymorphisms FokI and Cdx2 of VDR gene, vitamin d receptor activation and the occurrence of sarcopenia. Altogether these data open new prospective for the prevention and cure of age-related muscle disorders.

Table and Figures | Reference | Related Articles | Metrics
Age-Related Changes in Femoral Head Trabecular Microarchitecture
Charlene Greenwood, John Clement, Anthony Dicken, Paul Evans, Iain Lyburn, Richard M. Martin, Nick Stone, Peter Zioupos, Keith Rogers
Aging and disease    2018, 9 (6): 976-987.   DOI: 10.14336/AD.2018.0124
Abstract487)   HTML2)    PDF(pc) (766KB)(487)       Save

Osteoporosis is a prevalent bone condition, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density using dual energy X-ray absorption. However, many studies have shown that bone strength, and consequently the probability of fracture, is a combination of both bone mass and bone ‘quality’ (architecture and material chemistry). Although the microarchitecture of both non-fracture and osteoporotic bone has been previously investigated, many of the osteoporotic studies are constrained by factors such as limited sample number, use of ovariectomised animal models, and lack of male and female discrimination. This study reports significant differences in bone quality with respect to the microarchitecture between fractured and non-fractured human femur specimens. Micro-computed tomography was utilised to investigate the microarchitecture of femoral head trabecular bone from a relatively large cohort of non-fracture and fracture human donors. Various microarchitectural parameters have been determined for both groups, providing an understanding of the differences between fracture and non -fracture material. The microarchitecture of non-fracture and fracture bone tissue is shown to be significantly different for many parameters. Differences between sexes also exist, suggesting differences in remodelling between males and females in the fracture group. The results from this study will, in the future, be applied to develop a fracture model which encompasses bone density, architecture and material chemical properties for both female and male tissues.

Table and Figures | Reference | Related Articles | Metrics
Stronger Association between Insomnia Symptoms and Shorter Telomere Length in Old HIV-Infected Patients Compared with Uninfected Individuals
Yingying Ding, Haijiang Lin, Sujuan Zhou, Keran Wang, Lingling Li, Yucheng Zhang, Yuan Yao, Meiyang Gao, Xing Liu, Na He
Aging and disease    2018, 9 (6): 1010-1019.   DOI: 10.14336/AD.2018.0204
Abstract481)   HTML1)    PDF(pc) (637KB)(523)       Save

Growing evidence suggests that HIV infection may accelerate biological aging. Insomnia symptoms, particularly in later life, exacerbate cellular aging. We examined the association between insomnia symptoms and leukocyte telomere length (LTL), and further explored how this association was affected by HIV serostatus and age. Data were assessed from 244 HIV-infected individuals ≥40 years and 244 HIV-uninfected individuals who were frequency-matched by age, gender and education level. Insomnia symptoms were assessed by responses to four sleep-related questions covering the past month. We performed multivariable linear regression with logarithmically transformed LTL and reported exponentiated coefficients. HIV-infected individuals had shorter LTL compared to uninfected individuals (geometric mean 0.82 vs 0.89, P=0.052), and this association remained after adjustment for gender, education level, and smoking history (-7.4%, P=0.051) but markedly attenuated after additional adjustment for insomnia and depressive symptoms (-3.7%, P=0.367). Significant interactions between age group (55-82 vs 40-54 years) and insomnia symptoms on LTL were observed in the HIV-infected individuals (-28.4%, P=0.033) but not the uninfected (-17.9%, P=0.250). After stratifying by age group, LTL was independently associated with insomnia symptoms in those 55 years and older among the HIV-infected individuals (-24.5%, P=0.026) but not those 40-54 years old (-9.8%, P=0.428). Our findings suggest that elevated insomnia and depressive symptoms may partly explain the correlation between HIV serostatus and shorter LTL. Significant association between insomnia and shorter LTL observed in elderly HIV-infected but not in uninfected individuals suggest that such adverse effect may begin at an earlier age or is more pronounced in HIV-infected individuals but requires further investigation.

Table and Figures | Reference | Related Articles | Metrics
The role of CD2AP in the Pathogenesis of Alzheimer's Disease
Qing-Qing Tao, Yu-Chao Chen, Zhi-Ying Wu
Aging and disease    2019, 10 (4): 901-907.   DOI: 10.14336/AD.2018.1025
Accepted: 08 December 2018

Abstract481)   HTML1)    PDF(pc) (514KB)(684)       Save

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia
Yuxiao Liao,Zhao Peng,Liangkai Chen,Yan Zhang,Qian Cheng,Andreas K. Nüssler,Wei Bao,Liegang Liu,Wei Yang
Aging and disease    2019, 10 (1): 157-173.   DOI: 10.14336/AD.2018.0325
Abstract475)   HTML3)    PDF(pc) (776KB)(670)       Save

Skeletal muscle aging is characterized by decline in skeletal muscle mass and function along with growing age, which consequently leads to age-related sarcopenia, if without any preventive timely treatment. Moreover, age-related sarcopenia in elder people would contribute to falls and fractures, disability, poor quality of life, increased use of hospital services and even mortality. Whey protein (WP) and/or resistance training (RT) has shown promise in preventing and treating age-related sarcopenia. It seems that sex hormones could be potential contributors for gender differences in skeletal muscle and age-related sarcopenia. In addition, skeletal muscle and the development of sarcopenia are influenced by gut microbiota, which in turn is affected by WP or RT. Gut microbiota may be a key factor for WP and/or RT against age-related sarcopenia. Therefore, focusing on sex hormones and gut microbiota may do great help for preventing, treating and better understanding age-related sarcopenia.

Table and Figures | Reference | Related Articles | Metrics
Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity
Yaiza Potes, Zulema Pérez-Martinez, Juan C. Bermejo-Millo, Adrian Rubio-Gonzalez, María Fernandez-Fernández, Manuel Bermudez, Jose M. Arche, Juan J. Solano, Jose A. Boga, Mamen Oliván, Beatriz Caballero, Ignacio Vega-Naredo, Ana Coto-Montes
Aging and disease    2019, 10 (2): 217-230.   DOI: 10.14336/AD.2018.0430
Abstract474)   HTML0)    PDF(pc) (1222KB)(744)       Save

Aging is characterized by a progressive loss of skeletal muscle mass and function (sarcopenia). Obesity exacerbates age-related decline and lead to frailty. Skeletal muscle fat infiltration increases with aging and seems to be crucial for the progression of sarcopenia. Additionally, skeletal muscle plasticity modulates metabolic adaptation to different pathophysiological situations. Thus, cellular bioenergetics and mitochondrial profile were studied in the skeletal muscle of overweight aged people without reaching obesity to prevent this extreme situation. Overweight aged muscle lacked ATP production, as indicated by defects in the phosphagen system, glycolysis and especially mostly by oxidative phosphorylation metabolic pathway. Overweight subjects exhibited an inhibition of mitophagy that was linked to an increase in mitochondrial biogenesis that underlies the accumulation of dysfunctional mitochondria and encourages the onset of sarcopenia. As a strategy to maintain cellular homeostasis, overweight subjects experienced a metabolic switch from oxidative to lactic acid fermentation metabolism, which allows continued ATP production under mitochondrial dysfunction, but without reaching physiological aged basal levels. This ATP depletion induced early signs of impaired contractile function and a decline in skeletal muscle structural integrity, evidenced by lower levels of filamin C. Our findings reveal the main effector pathways at an early stage of obesity and highlight the importance of mitochondrial metabolism in overweight and obese individuals. Exploiting mitochondrial profiles for therapeutic purposes in humans is an ambitious strategy for treating muscle impairment diseases.

Table and Figures | Reference | Related Articles | Metrics
Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer’s Disease
Christopher Bi, Stephanie Bi, Bin Li
Aging and disease    2019, 10 (2): 383-403.   DOI: 10.14336/AD.2018.0425
Accepted: 12 November 2018

Abstract461)   HTML4)    PDF(pc) (540KB)(899)       Save

Alzheimer’s disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a “snowball hypothesis”: the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein “snowballs” both inside and outside of neurons.

Table and Figures | Reference | Related Articles | Metrics
A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder
Yu-Wen Huang, Ming-Fu Chiang, Che-Sheng Ho, Pi-Lien Hung, Mei-Hsin Hsu, Tsung-Han Lee, Lichieh Julie Chu, Hsuan Liu, Petrus Tang, Wailap Victor Ng, Dar-Shong Lin
Aging and disease    2018, 9 (6): 1043-1057.   DOI: 10.14336/AD.2018.0222
Abstract459)   HTML1)    PDF(pc) (1236KB)(445)       Save

Aging is a complex biological process. A study of pyrroline-5-carboxylate reductase 1 (PYCR1) deficiency, which causes a progeroid syndrome, may not only shed light on its genetic contribution to autosomal recessive cutis laxa (ARCL) but also help elucidate the functional mechanisms associated with aging. In this study, we used RNA-Seq technology to examine gene expression changes in primary skin fibroblasts from healthy controls and patients with PYCR1 mutations. Approximately 22 and 32 candidate genes were found to be up- and downregulated, respectively, in fibroblasts from patients. Among the downregulated candidates in fibroblasts with PYCR1 mutations, a strong reduction in the expression of 17 genes (53.1%) which protein products are localized in the extracellular space was detected. These proteins included several important ECM components, periostin (POSTN), elastin (ELN), and decorin (DCN); genetic mutations in these proteins are associated with different phenotypes of aging, such as cutis laxa and joint and dermal manifestations. The differential expression of ten selected extracellular space genes was further validated using quantitative RT-PCR. Ingenuity Pathway Analysis revealed that some of the affected genes may be associated with cardiovascular system development and function, dermatological diseases and conditions, and cardiovascular disease. POSTN, one of the most downregulated gene candidates in affected individuals, is a matricellular protein with pivotal functions in heart valvulogenesis, skin wound healing, and brain development. Perturbation of PYCR1 expression revealed that it is positively correlated with the POSTN levels. Taken together, POSTN might be one of the key molecules that deserves further investigation for its role in this progeroid neurocutaneous syndrome.

Table and Figures | Reference | Related Articles | Metrics
Elevated Inflammatory Status and Increased Risk of Chronic Disease in Chronological Aging: Inflamm-aging or Inflamm-inactivity?
Michael G. Flynn,Melissa M. Markofski,Andres E. Carrillo
Aging and disease    2019, 10 (1): 147-156.   DOI: 10.14336/AD.2018.0326
Abstract450)   HTML2)    PDF(pc) (394KB)(450)       Save

Age-associated hyper-inflammation or “inflamm-aging” has been linked to the development of chronic diseases and characterized as an unavoidable aspect of aging. However, the inflamm-aging model does not adequately address the potential anti-inflammatory effects of exercise training and the potential for exercise to ameliorate several age-related diseases. In this brief review, we introduce a new paradigm—inflamm-inactivity—that describes a potent counter-measure to age-associated inflammatory illness.

Reference | Related Articles | Metrics
Aging and End Stage Renal Disease Cause A Decrease in Absolute Circulating Lymphocyte Counts with A Shift to A Memory Profile and Diverge in Treg Population
Geraldo Rubens Ramos Freitas,Maria da Luz Fernandes,Fabiana Agena,Omar Jaluul,Sérgio Colenci Silva,Francine Brambate Carvalhinho Lemos,Verônica Coelho,David-Neto Elias,Nelson Zocoler Galante
Aging and disease    2019, 10 (1): 49-61.   DOI: 10.14336/AD.2018.0318
Abstract435)   HTML0)    PDF(pc) (883KB)(417)       Save

There is a growing number of elderly kidney transplant (Ktx) recipients. Elderly recipients present lower acute rejection rates but higher incidence of infection and malignancies. Aging per se seems to result in a shift to memory profile and chronic kidney disease (CKD) in premature immunological aging. Understanding aging and CKD effects on the immune system can improve elderly Ktx immunosuppression. We analyzed the effects of aging and CKD in the immune system, comparing healthy adults (HAd) (n=14, 26±2y), healthy elderly (HEld) (n=15, 79±7y), end stage renal disease (ESRD) adults (EnAd) (n=18, 36±7y) and ESRD elderly (EnEld) (n=31, 65±3y) prior to Ktx regarding their naïve, memory and regulatory T and B peripheral lymphocytes. Aging and ESRD presented additive effect decreasing absolute numbers of B and T-lymphocytes, affecting memory, naive and regulatory subsets without synergic effect. Both resulted in higher percentages of T memory subsets and opposing effects on regulatory T (TREG) subsets, higher percentage in aging and lower in ESRD. Combined effect of aging and ESRD also resulted in higher regulatory B cell percentages. In addition to global lymphopenia and TCD4+ memory shift in both aging and ESRD, aging shifts to an immunoregulatory profile, inducing a increase in TREG percentages, contrasting with ESRD that decreases TREGs. Differential immunosuppression regimens for elderly Ktx may be required. (ClinicalTrials.gov number: NTC01631058).

Table and Figures | Reference | Related Articles | Metrics
Influence of Environment and Lifestyle on Incidence and Progress of Amyotrophic Lateral Sclerosis in A German ALS Population
Sonja Korner, Johanna Kammeyer, Antonia Zapf, Magdalena Kuzma-Kozakiewicz, Maria Piotrkiewicz, Bożenna Kuraszkiewicz, Hanna Goszczynska, Marta Gromicho, Julian Grosskreutz, Peter M. Andersen, Mamede de Carvalho, Susanne Petri
Aging and disease    2019, 10 (2): 205-216.   DOI: 10.14336/AD.2018.0327
Abstract432)   HTML2)    PDF(pc) (592KB)(517)       Save

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease mainly affecting upper and lower motor neurons in the brain and spinal cord. Pathogenesis of ALS is still unclear, and a multifactorial etiology is presumed. The remarkable clinical heterogeneity between different phenotypes of ALS patients suggests that environmental and lifestyle factors could play a role in onset and progression of ALS. We analyzed a cohort of 117 ALS patients and 93 controls. ALS patients and controls were compared regarding physical activity, dietary habits, smoking, residential environment, potentially toxic environmental factors and profession before symptom onset and throughout the disease course. Data were collected by a personal interview. For statistical analysis descriptive statistics, statistical tests and analysis of variance were used. ALS patients and controls did not differ regarding smoking, diet and extent of physical training. No higher frequency of toxic influences could be detected in the ALS group. ALS patients lived in rural environment considerably more often than the control persons, but this was not associated with a higher percentage of occupation in agriculture. There was also a higher percentage of university graduates in the ALS group. Patients with bulbar onset were considerably more often born in an urban environment as compared to spinal onset. Apart from education and environment, ALS phenotypes did not differ in any investigated environmental or life-style factor. The rate of disease progression was not influenced by any of the investigated environmental and life-style factors. The present study could not identify any dietary habit, smoking, physical activity, occupational factor as well as toxic influences as risk factor or protective factor for onset or progression of ALS. Living in rural environment and higher education might be associated with higher incidence of ALS.

Table and Figures | Reference | Related Articles | Metrics
Glial S100A6 Degrades β-amyloid Aggregation through Targeting Competition with Zinc Ions
Zhi-Ying Tian, Chun-Yan Wang, Tao Wang, Yan-Chun Li, Zhan-You Wang
Aging and disease    2019, 10 (4): 756-769.   DOI: 10.14336/AD.2018.0912
Accepted: 20 September 2018

Abstract424)   HTML1)    PDF(pc) (1481KB)(588)       Save

Evidence has been accumulating that zinc ions can trigger β-amyloid (Aβ) deposition and senile plaque formation in the brain, a pathological hallmark of Alzheimer’s disease (AD). Chelating zinc inhibits Aβ aggregation and may hold promise as a therapeutic strategy for AD. S100A6 is an acidic Ca2+/Zn2+-binding protein found only in a small number of astrocytes in the normal brain. However, in the AD brain, S100A6 is highly expressed in astrocytes around Aβ plaques. The role of the astrocytic S100A6 upregulation in AD is unknown. In the present study, we examined the effects of S100A6 on Aβ plaques and intracellular zinc levels in a mouse model of AD. Chronic exposure to zinc increased Aβ deposition and S100A6 expression, both reversible by the zinc chelator clioquinol, in the brains of amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice. To examine whether exogenous S100A6 could induce Aβ plaque disaggregation through competition for zinc in vitro, we incubated APP/PS1 mouse brain sections with recombinant human S100A6 protein or co-incubated them with human S100A6-expressing cells. Both treatments efficiently reduced the Aβ plaque burden in situ. In addition, treatment with exogenous S100A6 protected cultured COS-7 cells against zinc toxicity. Our results show for the first time that increased S100A6 levels correlate with both Aβ disaggregation and decrease of Aβ plaque-associated zinc contents in brain sections with AD-like pathology. Astrocytic S100A6 in AD may protect from Aβ deposition through zinc sequestration.

Table and Figures | Reference | Related Articles | Metrics
MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma
Saumyendra N. Sarkar, Ashley E. Russell, Elizabeth B. Engler-Chiurazzi, Keyana N. Porter, James W. Simpkins
Aging and disease    2019, 10 (2): 329-352.   DOI: 10.14336/AD.2018.0409
Abstract419)   HTML1)    PDF(pc) (771KB)(698)       Save

Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.

Table and Figures | Reference | Related Articles | Metrics
Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging
Min-jun Wang, Jiajia Chen, Fei Chen, Qinggui Liu, Yu Sun, Chen Yan, Tao Yang, Yiwen Bao, Yi-Ping Hu
Aging and disease    2019, 10 (4): 871-882.   DOI: 10.14336/AD.2018.1119
Accepted: 26 November 2018

Abstract411)   HTML0)    PDF(pc) (394KB)(511)       Save

Although aging is a physiological process, it has raised interest in the science of aging and rejuvenation because of the increasing burden on the rapidly aging global population. With advanced age, there is a decline in homeostatic maintenance and regenerative responsiveness to the injury of various tissues, thereby contributing to the incidence of age-related diseases. The primary cause of the functional declines that occur along with aging is considered to be the exhaustion of stem cell functions in their corresponding tissues. Age-related changes in the systemic environment, the niche, and stem cells contribute to this loss. Thus, the reversal of stem cell aging at the cellular level might lead to the rejuvenation of the animal at an organismic level and the prevention of aging, which would be critical for developing new therapies for age-related dysfunction and diseases. Here, we will explore the effects of aging on stem cells in different tissues. The focus of this discussion is on pro-youth interventions that target intrinsic stem cell properties, environmental niche component, systemic factors, and senescent cellular clearance, which are promising for developing strategies related to the reversal of aged stem cell function and optimizing tissue repair processes.

Table and Figures | Reference | Related Articles | Metrics
Relationship between Cortical Thickness and Neuropsychological Performance in Normal Older Adults and Those with Mild Cognitive Impairment
Calvin Pak-Wing Cheng, Sheung-Tak Cheng, Cindy Woon-Chi Tam, Wai-Chi Chan, Winnie Chiu-Wing Chu, Linda Chiu-Wa Lam
Aging and disease    2018, 9 (6): 1020-1030.   DOI: 10.14336/AD.2018.0125
Abstract409)   HTML3)    PDF(pc) (610KB)(378)       Save

Mild cognitive impairment (MCI) has been extensively investigated in recent decades to identify groups with a high risk of dementia and to establish effective prevention methods during this period. Neuropsychological performance and cortical thickness are two important biomarkers used to predict progression from MCI to dementia. This study compares the cortical thickness and neuropsychological performance in people with MCI and cognitively healthy older adults. We further focus on the relationship between cortical thickness and neuropsychological performance in these two groups. Forty-nine participants with MCI and 40 cognitively healthy older adults were recruited. Cortical thickness was analysed with semiautomatic software, Freesurfer. The analysis reveals that the cortical thickness in the left caudal anterior cingulate (p=0.041), lateral occipital (p=0.009) and right superior temporal (p=0.047) areas were significantly thinner in the MCI group after adjustment for age and education. Almost all neuropsychological test results (with the exception of forward digit span) were significantly correlated to cortical thickness in the MCI group after adjustment for age, gender and education. In contrast, only the score on the Category Verbal Fluency Test and the forward digit span were found to have significant inverse correlations to cortical thickness in the control group of cognitively healthy older adults. The study results suggest that cortical thinning in the temporal region reflects the global change in cognition in subjects with MCI and may be useful to predict progression of MCI to Alzheimer’s disease. The different pattern in the correlation of cortical thickness to the neuropsychological performance of patients with MCI from the healthy control subjects may be explained by the hypothesis of MCI as a disconnection syndrome.

Table and Figures | Reference | Related Articles | Metrics
Omi/HtrA2 Participates in Age-Related Autophagic Deficiency in Rat Liver
Jiahui Xu, Kun Jiao, Xin Liu, Qi Sun, Ke Wang, Haibo Xu, Shangyue Zhang, Ye Wu, Linguo Wu, Dan Liu, Wen Wang, Huirong Liu
Aging and disease    2018, 9 (6): 1031-1042.   DOI: 10.14336/AD.2018.0221
Abstract409)   HTML2)    PDF(pc) (1815KB)(517)       Save

Liver is a vital organ with many important functions, and the maintenance of normal hepatic function is necessary for health. As an essential mechanism for maintaining cellular homeostasis, autophagy plays an important role in ensuring normal organ function. Studies have indicated that the degeneration of hepatic function is associated with autophagic deficiency in aging liver. However, the underlying mechanisms still remain unclear. The serine protease Omi/HtrA2 belongs to the HtrA family and promotes apoptosis through either the caspase-dependent or caspase-independent pathway. Mice lacking Omi/HtrA2 exhibited progeria symptoms (premature aging), which were similar to the characteristics of autophagic insufficiency. In this study, we demonstrated that both the protein level of Omi/HtrA2 in liver and hepatic function were reduced as rats aged, and there was a positive correlation between them. Furthermore, several autophagy-related proteins (LC3II/I, Beclin-1 and LAMP2) in rat liver were decreased significantly with the increasing of age. Finally, inhibition of Omi/HtrA2 resulted in reduced autophagy and hepatic dysfunction. In conclusion, these results suggest that Omi/HtrA2 participates in age-related autophagic deficiency in rat liver. This study may offer a novel insight into the mechanism involved in liver aging.

Table and Figures | Reference | Related Articles | Metrics
LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy
Tingting Sui,Di Liu,Tingjun Liu,Jichao Deng,Mao Chen,Yuanyuan Xu,Yuning Song,Hongsheng Ouyang,Liangxue Lai,Zhanjun Li
Aging and disease    2019, 10 (1): 102-115.   DOI: 10.14336/AD.2018.0209
Abstract407)   HTML2)    PDF(pc) (1942KB)(438)       Save

Premature aging syndromes are rare genetic disorders mimicking clinical and molecular features of aging. Products of the LMNA gene, primarily lamin A and C, are major components of the nuclear lamina. A recently identified group of premature aging syndromes was related to mutations of the LMNA gene. Although LMNA disorders have been identified in premature aging syndromes, affect specifically the skeletal muscles, cardiac muscles, and lipodystrophy, understanding the pathogenic mechanisms still need to be elucidated. Here, to establish a rabbit knockout (KO) model of premature aging syndromes, we performed precise LMNA targeting in rabbits via co-injection of Cas9/sgRNA mRNA into zygotes. The LMNA-KO rabbits exhibited reduced locomotion activity with abnormal stiff walking posture and a shortened stature, all of them died within 22 days. In addition, cardiomyopathy, muscular dystrophy, bone and joint abnormalities, as well as lipodystrophy were observed in LMNA-KO rabbits. In conclusion, the novel rabbit LMNA-KO model, displayed typical features of histopathological defects that are observed in premature aging syndromes, and may be utilized as a valuable resource for understanding the pathophysiological mechanisms of premature aging syndromes and elucidating mysteries of the normal process of aging in humans.

Table and Figures | Reference | Related Articles | Metrics
Prospective Study of Glycated Hemoglobin and Trajectories of Depressive Symptoms: The China Health and Retirement Longitudinal Study
Haibin Li, Anxin Wang, Wei Feng, Deqiang Zheng, Qi Gao, Lixin Tao, Jin Guo, Xiaonan Wang, Xia Li, Wei Wang, Xiuhua Guo
Aging and disease    2019, 10 (2): 249-257.   DOI: 10.14336/AD.2018.0410
Abstract406)   HTML3)    PDF(pc) (484KB)(568)       Save

The longitudinal association between glycated hemoglobin (HbA1c) and different courses of depressive symptoms is understudied. This study aimed to identify different trajectories of depressive symptoms and investigate the relation of HbA1c with the risk of increasing and high-stable depressive symptoms. In the China Health and Retirement Longitudinal Study, depressive symptoms were measured using the 10-item Center for Epidemiological Studies-Depression scale in three visits (years: 2011, 2013 and 2015) among 9804 participants (mean age 60.0 ± 9.0 years). Group-based trajectory modeling was used to identify trajectories of depressive symptoms. HbA1c was measured at baseline and categorized five groups according to the respective quintile. Multinomial logistic regression was fitted to examine this relationship. Four distinct trajectories of depressive symptoms were identified: low symptoms (n=6401, 65.29%); decreasing symptoms (n=1362, 13.89%); increasing symptoms (n=1452, 14.81%); and high symptoms (n=1452, 14.81%). Adjusting for demographic, health-related, and cognitive factors, the risk ratio (95% confidence interval) pertaining to the highest HbA1c (Quintile 5) for decreasing, increasing, and high symptoms of depression versus low symptoms was 1.01 (0.82-1.25), 1.12 (0.92-1.36), and 1.39 (1.04-1.86) compared with the lowest HbA1c (Quintile 1), respectively. We observed a J-shaped relationship between HbA1c and high depressive symptoms, with the lowest risk at a HbA1c concentration of 5.0%. In summary, in this large population-based cohort, high levels of glycated hemoglobin concentrations were associated with a higher risk of increasing and high-stable symptoms of depression.

Table and Figures | Reference | Related Articles | Metrics
The Prognostic Value of Serum Cytokines in Patients with Acute Ischemic Stroke
Xianmei Li, Siyang Lin, Xiaoli Chen, Wensi Huang, Qian Li, Hongxia Zhang, Xudong Chen, Shaohua Yang, Kunlin Jin, Bei Shao
Aging and disease    2019, 10 (3): 544-556.   DOI: 10.14336/AD.2018.0820
Accepted: 14 September 2018

Abstract404)   HTML0)    PDF(pc) (744KB)(372)       Save

The inflammatory response is an unavoidable process and contributes to the destruction of cerebral tissue during the acute ischemic stroke (AIS) phase and has not been addressed fully to date. Insightful understanding of correlation of inflammatory mediators and stroke outcome may provide new biomarkers or therapeutic approaches for ischemic stroke. Here, we prospectively recruited 180 first-ever AIS patients within 72 hrs after stroke onset. We used the National Institutes of Health Stroke Scale (NIHSS) to quantify stroke severity and modified Rankin scale (mRS) to assess the 3-month outcome for AIS patients. Initially, we screened 35 cytokines, chemokines, and growth factors in sera from 75 AIS patients and control subjects. Cytokines that were of interest were further investigated in the 180 AIS patients and 14 heathy controls. We found that IL-1RA, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, EGF, G-CSF, Flt-3L, GM-CSF and Fractalkine levels were significantly decreased in severe stroke patients. In particular, IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-15, G-CSF and GM-CSF were significantly reduced in AIS patients with poor outcome, compared to those with good prognosis. IL-6 was notably higher in the poor outcome group. Only IL-9 level decreased in the large infarct volume group. After adjusting for confounders, we found that IL-5 was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.042 (P = 0.007), whereas IL-6 was an independent risk predictor for AIS patients with an adjusted OR of 1.293 (P = 0.003). Our study suggests the levels of serum cytokines are related to stroke severity, short-term prognosis and cerebral infarct volume in AIS patients.

Table and Figures | Reference | Related Articles | Metrics
Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling
Xu-Xu Deng, Shan-Shan Li, Feng-Yan Sun
Aging and disease    2019, 10 (4): 807-817.   DOI: 10.14336/AD.2018.0728
Accepted: 04 September 2018

Abstract381)   HTML0)    PDF(pc) (828KB)(504)       Save

Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.

Table and Figures | Reference | Related Articles | Metrics
Maintained Properties of Aged Dental Pulp Stem Cells for Superior Periodontal Tissue Regeneration
Linsha Ma, Jingchao Hu, Yu Cao, Yilin Xie, Hua Wang, Zhipeng Fan, Chunmei Zhang, Jinsong Wang, Chu-Tse Wu, Songlin Wang
Aging and disease    2019, 10 (4): 793-806.   DOI: 10.14336/AD.2018.0729
Accepted: 12 September 2018

Abstract376)   HTML0)    PDF(pc) (1889KB)(573)       Save

Owing to excellent therapeutic potential, mesenchymal stem cells (MSCs) are gaining increasing popularity with researchers worldwide for applications in tissue engineering, and in treatment of inflammation-related and age-related disorders. However, the senescence of MSCs over passaging has limited their clinical application owing to adverse effect on physiological function maintenance of tissues as well as disease treatment. An inflammatory microenvironment is one of the key contributors to MSC senescence, resulting in low regeneration efficiency. Therefore, MSCs with high resistance to cellular senescence would be a benefit for tissue regeneration. Toward this end, we analyzed the senescence properties of different types of stem cells during culture and under inflammation, including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), bone marrow mesenchymal stem cells (BMMSCs), and adipose-derived stem cells (ADSCs). Overall, the DPSCs had higher proliferation rates, lower cellular senescence, and enhanced osteogenesis maintenance compared to those of non-dental MSCs cultured from passage three to six. The expression profiles of genes related to apoptosis, cell cycle, and cellular protein metabolic process (contributing to the cell self-renewal ability and metabolic processes) significantly differed between DPSCs and BMMSCs at passage three. Moreover, DPSCs were superior to BMMSCs with regards to resistance to lipopolysaccharide-induced apoptosis and senescence, with enhanced osteogenesis in vitro, and showed improved periodontal regeneration after injection in a miniature pig periodontitis model in vivo. Overall, the present study indicates that DPSCs show superior resistance to subculture and inflammation-induced senescence and would be suitable stem cells for tissue engineering with inflammation.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury
Dong Liu,Liqun Xu,Xiaoyan Zhang,Changhong Shi,Shubin Qiao,Zhiqiang Ma,Jiansong Yuan
Aging and disease    2019, 10 (1): 116-133.   DOI: 10.14336/AD.2018.0501
Abstract363)   HTML0)    PDF(pc) (980KB)(441)       Save

Aging may aggravate the damage and dysfunction of different components of multiorgan and thus increasing multiorgan ischemia/reperfusion (IR) injury. IR injury occurs in many organs and tissues, which is a major cause of morbidity and mortality worldwide. The kinase mammalian target of rapamycin (mTOR), an atypical serine/threonine protein kinase, involves in the pathophysiological process of IR injury. In this review, we first briefly introduce the molecular features of mTOR, the association between mTOR and aging, and especially its role on autophagy. Special focus is placed on the roles of mTOR during ischemic and IR injury. We then clarify the association between mTOR and conditioning phenomena. Following this background, we expand our discussion to potential future directions of research in this area. Collectively, information reviewed herein will serve as a comprehensive reference for the actions of mTOR in IR injury and may be significant for the design of future research and increase the potential of mTOR as a therapeutic target.

Table and Figures | Reference | Related Articles | Metrics
Deficiency of Yes-Associated Protein Induces Cataract in Mice
Qing He, Yuhao Gao, Tongxing Wang, Lujun Zhou, Wenxia Zhou, Zengqiang Yuan
Aging and disease    2019, 10 (2): 293-306.   DOI: 10.14336/AD.2018.0910
Accepted: 13 October 2018

Abstract361)   HTML0)    PDF(pc) (2231KB)(432)       Save

Cataract is a major cause of blindness worldwide, its complicated and unclear etiopathogenesis limit effective therapy. Here, we found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in lens epithelial cells and Yap conditional knockout (cKO) in the lens leads to cataract. Histologically, Yap deficient lens show fewer epithelial cells, retention of nuclei and accumulation of morgagnian globules in the transitional zone and the posterior area. Mechanistically, GFAP-mediated Yap cKO leads to the reduced proliferation of epithelial cells, delayed fiber cell denucleation and increased cellular senescence in lens. Further RNA profiling analysis reveals Yap cKO results in a significant alteration in gene transcription that is involved in eye development, lens structure, inflammation, cellular proliferation and polarity. Collectively, our data reveal a novel function of Yap in the lens and links Yap deficiency with the development of cataract, making Yap a promising target for cataract therapy.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Significance of Complement System in Ischemic Stroke: A Comprehensive Review
Yuanyuan Ma, Yanqun Liu, Zhijun Zhang, Guo-Yuan Yang
Aging and disease    2019, 10 (2): 429-462.   DOI: 10.14336/AD.2019.0119
Accepted: 25 January 2019
Online available: 12 February 2019

Abstract358)   HTML0)    PDF(pc) (1020KB)(351)       Save

The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.

Table and Figures | Reference | Related Articles | Metrics
Copyright © 2014 Aging and Disease, All Rights Reserved.
Address: Aging and Disease Editorial Office 3400 Camp Bowie Boulevard Fort Worth, TX76106 USA
Fax: (817) 735-0408 E-mail: editorial@aginganddisease.org
Powered by Beijing Magtech Co. Ltd